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Let F be a local field with characteristic unequal to two,
and in which the element 2 is not unitary. Let V be a regular
quadratic space over F, I a lattice on V. The group of units
of L is the subgroup

L) ={cc0(V)|eL = L}

of the orthogonal group O(V). Two vectors % and v in L are
defined to be integrally equivalent if there exists an isometry
c€0(L) mapping one onto the other. This paper gives neces-
sary and sufficient conditions for integral equivalence of vectors
when the underlying lattice L is modular.

A very fundamental theorem in all studies of quadratic forms is
the well-known Witt’s Theorem. Yet, integral versions of it come
scarce. However, there has been some stirring signs of interest and
activity of late along this direction. The solution for integral equiv-
alence of vectors would, of course, constitute an one-dimensional in-
tegral extension of this classic theorem. Recent works by James [3],
Knebusch [4], Rosenzweig [8], Trojan [9], and Wall [10] may be
consulted for the few known special cases. Earlier in [2] the author
had extended Trojan’s unramified modular solution to the special case
of the so-called depleted modular lattices over any dyadic local field.
This paper removes the restriction to the size of the weight ideal as-
sociated with the lattice and thereby completes the solution for arbi-
trary modular lattices over dyadic local fields.

The technicalities involved when dealing with an arbitrary lattice
are substantial and not all of which we have been able to overcome.
Here again special cases have been solved and they are included in
the author’s doctoral dissertation [1].

1. Preliminaries. We shall freely make use of the results and
terminologies of [6]. We do, however, wish to emphasize a few im-
portant relevant facts.

The ground field F is a fixed dyadic local field that is a finite
(ramified or unramified) extension of the usual 2-adic number field Q,
(including @,). We let < stand for the ring of integers in F, 7/ for
the group of units, & for the unique maximal ideal, = for a prime
element generating .27, ord for the ordinal function, and | | for the
normalized multiplicative valuation in prime spot <. The residue
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class field is a finite field of characteristic 2 and is therefore perfect.
This means, in particular, that every unit ¢ = g mod & for some unit
. The quadratic defect =(a) of a field element « is the ideal
generated by the element 8 where o — 8 is a square and |8 is
minimal, If ¢ecl, then

(i) «=(e) is one of the ideals: 0,427,472 ..., P* P,

(ii) =) = 4¢ if and only if F(V/¢ )/F is a quadratic unramified
extension;

(iii) suppose ¢ = 7* + a with |[4| <]a| <1 and ord « is odd,
we have () = a”.

Hensel’s Lemma will frequently be applied, and usually we refer
to it as the Local Square Theorem which states: “For any integer
ae ”,1 + 4rna is a square.”

If «, B are nonzero field elements, then af ~ 1 (or a ~ B) means
ord « = ord 8 mod 2; otherwise, af ~ 7.

A quadratic space V over a field F' is simply a finite dimensional
vector space endowed with a symmetric bilinear form B (and its as-
sociated quadratic form Q). A lattice L on V is a finitely generated
>-module in V such that the subspace FL spanned by L equals V.
The coefficient ideal of a vector  in V with respect to L is

N ={aeFlaxeL}.

Vector z is called maximal (primitive) in L if AL = 27, A sublattice
M of L splits if M is an orthogonal direct summand, i.e. L= M1 N
for some N. The ~-modules generated by the sets B(L, L) and Q(L)
in F are called the scale &L and the norm ideal "L respectively.
Let 2 be a fractional ideal, lattice L is said to be A-modular if and
only if B(z, L) = % for every primitive vector x € L. The norm group
<L of L is the additive subgroup of F generated by Q(L). This
object is usually much finer than the norm ideal and it was first in-
troduced by O’Meara to characterize completely isometric modular
lattices. Theorem (O’Meara): Two modular lattices on the same
quadratic space are isometric if and only tf their scales and morm
groups are equal, Hence, in particular, they are isometric if and
only if they represent the same numbers in F. We shall obtain a
result very analogous to this. We note here that even if L is modular
@Q(L) needs not equal L. O’Meara has shown [6] that if L is
modular with dim L > 5, then Q(L) = & L. This was improved by
Riehm (see [7], Th. 7.4) to dim L = 4. Notice that if F'is unramified
(over @Q,) then the concepts of norm groups and norm ideals coincide
since the maximal ideal _# L contained in # L has always the same
order parity as _¢# L. This reveals an important point as to why the
unramified theory is very much simpler because _¢~L is a far easier
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creature to contend with than L. A wnorm gemerator of L is an
element a € L such that a» = _#"L. The object &#(.# L) + 2L
is called the wetight ideal 97" L of L, and a scalar b is called a weight
generator if and only if b” = 9#"L. An element be £ L such that
ab ~ 7 and |b| is the largest in & L is called a base generator of L
(following Riehm). It is well-known that L = a2 + bs” where b
is either a base or a weight generator and a is a norm generator. A
base generator is often also a weight generator (e.g. when 9" LD2.57L)
and we shall use this letter b indiscriminately. L is a depleted
modular lattice if 9L = 25°L. It was precisely this restriction to
the size of %L that enabled the norm ideal to play a more dominant
role and thereby facilitating us in our earlier solution of the integral
equivalence problem over such lattices.

The symbol A(«, B) denotes a two dimensional unimodular (scale = )
lattice having basis {x,y} such that Q(z) = a, Q(y) = 8, B(z, y) = 1.
Similarly, the symbol {&)> stands for an one dimensional lattice with
a basis vector {x} whose length is Q(x) = a.

The set of all isometries of V leaving L stable is a subgroup
O(L) of the orthogonal group O(V). Vectors u, vec L are integrally
equivalent (symbolically u ~ v) if there exists an isometry oc O(L)
such that o(u) = v. Our task is to determine necessary and sufficient
conditions for integral equivalence when lattice L is modular. Since
the coefficient ideals and the lengths of % and v must clearly be the
same for necessity, we shall henceforth take these vectors as being
primitive in L with common length 6. By scaling (see [6]), we may
assume L is unimodular. Furthermore, since the depleted case has
been settled we may assume, whenever necessary, that o7 LDO22
which implies, in particular, ord (_#"L) + ord (37" L) is odd. Also, if
dim L > 3, then L represents every weight (base) generator.

Finally, we associate to every maximal vector x¢ L its charac-
teristic set

M, = {ze L| Bz, 2) = 1} .

The numbers represented by this set will be an important invariant
needed to classify integrally equivalent vectors.

2. Binary case.

DEFINITION. Let L be binary unimodular and u,ve L. We say
u, v are of the same parity if and only if for all pairs (#, 7) of vec-
tors in L such that #eM,, 7€M, we have

Q(#) = Q(?) mod w7

where w = max {2, }. (Of course, maximum is taken in the sense of
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their valuations.)
We have proved in [2] the following result.

THEOREM 2.1. Let L be any binary wnimodular lattice. Then,
u ~ v of and only if they are of the same parity.

PropPOSITION 2.2. Suppose L is binary unimodular with o7 L>227,
then w ~ v always.

Proof. By (|6], 93:10) we have L = A(a, b) where o and b are
norm and weight generator respectively. Hence, O(L) = O(FL) by
([7], Lemma 3.5). Now % ~ v by Witt’s Theorem.

3. Classification of vectors.

DEFINITIONS. A maximal (primitive) vector « in L is A#~regular
(resp. Z-regular) if and only if _y~({x)*) = 4 L (resp. & (x)*) = £ L),
where

(x>t ={ze L|B(x,2) = 0} .

Otherwise, x is A<~irregular (resp. Z-irregular).
Again, putting ® = max {2, 6}, we call w a vector of Type 1 if
AN Kuyt) € w7; otherwise, u is of Type II.

REMARK. If F' is unramified, then the concepts of _#<regularity
and Z-regularity coincide.

DEFINITION. Suppose L is unimodular with dim L = 2n,n = 1.
Then, there exists a splitting

L=L1.--1L,

where L, = A(a;,v;) with a,2 = 4+ L,v,e 7 L, < 9% L for ¢=
1, ..., n. Such a splitting is called a quasi-canonical splitting'.

It is quite clear that if Qu) = 0¢ % and dim L is odd, then w
is #~regular always. Also, u is _#“regular whenever ¢ is a norm
generator and dim L is even. The _#<irregular vectors are charac-
terized as follows: (i) Assume dim L = 3. If w is #~irregular, then
for every #eM,, Q(#) is a norm generator. The converse is true
provided L is not totally improper (i.e. "L # 25°L = 2¢7). (ii) Let
dim L = 2n,n = 1. For every quasi-canonical splitting

L = j-LiyLiEA(aiy'Yi):ﬁxi‘i‘ﬁyiy1§i§nr
i-1

1 The existence is seen by applying ([6], 93:12 and 93:18) and O’Meara’s op-trans-
formations (see [5]).
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we put

w = > (&x; + B, &, B:i€ 7.
Then, u is _#~irregular implies all the B,’s are unitary. Again, the
converse holds for L not totally improper.

ConDITION (D). (Assume dim L = 3, and 9% 'LD222). An ele-
ment « in £ L is said to satisfy condition (D) provided the quadratic
defect satisfies the inequality

(e 4" Lo L
for every norm generator ac £ L.
LEMMA 8.1, Suppose 6e €L and 67 + 4"L. Then, if there

exists one norm generator o such that < (0a’YyC 4 Ly L, we have
0 satisfying condition (D).

Proof. Write £ L = o’ 2* + be” for the given ¢ and an arbitrary
base generator b. 6 # .4 L implies 6 = a't> + ba has |t]| < 1. Since
a'b ~m we see |a| <1 by the assumption that < (da’)c_ s Lo L.
The rest is computational.

ProprosiTION 3.2. Let u be an _#<regular vector with length &
satisfying condition (D). Then # is also Z-regular if and only if
there exists a vector # < I, such that Q(#)e &# 7 L.

Proof. Since ¢ satisfies condition (D), we have the implicit as-
sumptions of dim L =3 and 9# LH27”. Therefore, 6 is not a norm
generator since otherwise 6 + b is a norm generator also (here b is
any base generator) and

(0(0 + b)) = 0b” = 4L 'L,

implying that 6 does not satisfy condition (D). Putting L=K.1 M
where

K = 7w+ o = A, Q) with Q) e L% L ,
it is quite clear that +"M = _+ L. Write
M =a,0*+ b, and K = a,* + b, .
But,
w L = ;‘_, 0 D ()

where v runs through the set {b,,a,, b} (see page 31, [7]). Now,
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D(ana,) 4 Lo L since 0 satisfies condition (D) and Q(#) e <#97 L.
If [0| = |27 L|, then

b, = 2(0Q%)) + 200w L.

On the other hand, 6 ¢ <27 L implies b, < # L since L is not de-
pleted by hypothesis. Thus, % L = <# M proving « is G-regular.

Conversely, assume Z((uyt = ¥ L. Suppose the contrary is true,
ie. every %' e, is such that Q)¢ P L. Putting L =
(Pu+ owW)LT, wesee that T = 4 L since u is _#~-regular with
0 not being a norm generator. We also have,

B <a>J_... =% L e
T A(a, ) Lo = (B A ) L e

Suppose Q(w') is already a norm generator, we apply op(u') = ' Lex
where ¢ is an unit such that

Qex) = Q(u')mod 27 °L .

Now, Q(op(u')) lies in 9#"L. On the other hand, if |Qu')| < |_+"L|,
by applying op(«’) = 4’ L« we have made op(%') a norm generator and
furthermore,

L =(ou+ Z0pw)) LT, 4T = L.

Therefore, in either case we know that by applying op-transforma-
tions, at most twice if necessary, there exists a vector #e <z, with
ord Q%) = ord (%#"L). Let Q&) = b and write

L=K1M
again as above. Then, +" M = _4 L and
(*) lupt = dKoy L M .

where dK is the discriminant of K. Now, writing a, = a, it is easy
to see that = (ad)cab” implies also that < (addK)cabs”. Hence,
M= L. This means, in particular, that M represents every
weight (base) generator of GL whenever dim M = 3. By applying
op-transformations, if necessary, and by the perfectness of the residue
class field, we can find an # ¢ M, with Q@) e &#%# L and so we are
done except for dim M = 1,2. But dim M =1 is not possible since
L is not depleted. (Referring to (x) above, one sees immediately that
since ¢ does not satisfy condition (D)—nor does édK—dim M = 1 would
imply % is Z-irregular contradicting hypothesis.) Finally, suppose
dim M = 2. We express

M= A(a, —aa™)
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where | —aa™| = |7 L], (see [6], 93:10 & 93:17). Again, it is not
difficult to see that there is a suitable op-transformation such that
op(%) € M, with length contained in 27 L, contradicting the initial
assumption,

COROLLARY 3.3. If w is a Z-regular vector with length Q(u) = 0
satisfying condition (D), then (1) dim L = 4, and (ii) for every u# <N,
e(ou + oun)t = € L.

ProposITION 3.4. Let dim L >3 and 6 not satisfying condition
(D). Then, u ~ v if and only if {u)* = {v)*'.

Proof. We may assume 6 is not a norm generator by Proposition
2 in [2]. Therefore, < (da’) = 4 L% L for each norm generator
ao'e L. Putting L = a7+ b for some base generator b, we
have

o =a'tt +be, el =1,]t|<1.

Case 1. Suppose both % and » are _#<regular, then there is
#eM, with Q@) edbsr. Let K,=ou+ o4, M, = K. Then,
AN"M, = _4 L. Since a’b ~x,ordd <ordd. Let o:<{uyt— v)* be
the given isometry and o(M,) = M,. Then M, splits.

L =K, M, with K, = ov + &% = A(3, Q7))
for some ve€ M,. We claim
Q)edr .
Suppose not. Put
QD) = a’s* + br with |a's?| > |b].

Then,

0Q(7) = (a'ts)’ + a's’be + b%r + at®dr .
Clearly, we may assume that ords < ord¢. But,

dK, = dK,— 2(-dK,) = 2(-dK,) .

Now, —dK, has quadratic defect contained in 6bs”. On the other
hand, by direct computations, we see

(—dK,) = Q@b > (—dK,) .

This is a contradiction so the claim is true. Hence, 4+ 'K, = /'K, =
0 and we see readily that K, = £ K,. By Witt’s Theorem and
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O’Meara’s Theorem on isometry of modular lattices, K, = K,. Finally,
u ~ v follows from another application of Proposition 2, [2].

Case II. Suppose both are _s<irregular. Let @ e 9N, be arbitrary
and K, M,, M,, K, = ~7v + v for some 7¢I, as before. But now,
Q(#) and Q(¥) are norm generators for < L. FK, is isometric to
FK, by Witt. Itis an easy computation to check that the sublattices
K, and K, are not depleted; indeed, K, = €K, = < L. Hence,
% ~ v by Proposition 2.2,

RemMARK. It can be shown that when dimL =3 and if ¢ does
not satisfy condition (D), then u ~ v always provided éd ¢ . In prov-

ing this fact, we show that (u>" = {v>' by using O’Meara’s Theorem
93:28, [6].

PROPOSITION 3.5. Suppose dim L = 3 and both % and v are Type
I vectors. Then, v ~ v if and only if (i) «, v are of the same parity,

and (ii) <upt = {v>*.

Proof. The case of 6 being an unit is obvious. So, let d¢ z.
Hence, choose any % eI, and put

K, =cuv+ouT,=K;.

Suppose ¢: {uy* — {v)>* is the given isometry. Then, o(T,) = T, splits
and we have

L=K,1T,

where K, = &v + <7 for some veWM,. If [6]| <|2]|, then (i) im-
plies K, = €K, so that K, = K, by Witt and O’Meara and there-
fore w ~ v follows from Theorem 2.1. Otherwise, define the mapping
¢: FK, — FK, by: ¢(u) = v, ¢(u — 0%) = p(v — 0v) where

1 — 0Q(%)
1 —0Q(7)

Now, again condition (i) implies that

p=

@ = 1mod ¢’ .

It is easily checked that ¢, in fact, maps K, onto K, and we are done.

4. Main results. We recall that to every maximal vector  in
L, there is associated with it a characteristic subset 9, of the lattice

M, ={#eL|B(x,z) =1}.
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A central result given below states that « is integrally equivalent
to v if and only if 9, and M, represent the same field elements when
the dimension of the given lattice is sufficiently large. This theorem
may be viewed (for dim L large enough) as an analogue to the well-
known theorem on the integral classification of modular quadratic
forms over local fields.

THEOREM 4.1. Let L be an unimodular lattice over o dyadic
local field of characteristic zero, and that dim L = 4,5,6. Then,
two maximal vectors w and v in L are integrally equivalent if and

only if Qu) =0 = Qv) and QEAMN,) = Q(N,).

Proof. Necessity is obvious. As for sufficiency we proceed in
several steps.
1. Pick any #e I, 7€M, such that Q(#) = Q(¥). Then,

WM, =4+ Zu—ou)y LT, =a+ lup*
M, =T+ Fw—00)LT, =7+ {vp-.

Hence, QKu)*) = Q(Kv)>*ymod 227, (i.e. for every ze<u)*, qwe{v)t
such that Q(z) = Q(w) mod 2¢7) Therefore, the norm groups are equal

T = Tw') = ) .

It is also clear that Fu)' = F(v)>* and FT, = FT,.
2. Suppose dim L = 9 so that dim 7, = dim T, = 7. Then, it is
well-known (see [6], 93:18) that

T, = A(0, 0) 1L A(0, 0) L --- .

Take a norm generator o’ and a base (weight) generator b for
g upt). So, T(Kuyt) = a'* + ber. Therefore,

lupt = A(0, 0) L A0,0) LK,
for some K,. But now,
C(K3) =20 + C(K7) = 2(uph)

so that o/,b lie in Z(KZ). (Here K7 ={zxecK,|B(z, K,) & ~}.)
Hence, by ([6], 93:13), we have

Qudt = A(a’, 0) LA, 0) LK, .
This means there exists a Jordan decomposition
lupt = W, LW,
where W, = (Kuyt) and W, = & (u — 0%).
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3. Let dimL = 7. Just adjoin an hyperbolic plane H to L, H =
A(0,0). Now, apply step (2) and we have

lupt LH= W§LW]
with Wi = £(u)*) and W = «(u — du). But, dim W; = 7 here
so that W} admits a splitting
Wk = A(0,0) L A0, 0)L W;.

Clearly, Wi = W} = £(uy*). Upon cancelling the hyperbolic
plane, we obtain

iyt = Wi L Wi .

Similarly for <w)>'. Hence, {u)>* = {v)>*.

4, By (2) and (3), we put L, P, = L = L,1 P, where P, = P,
have norm groups equal to &, and L, = 2w + ou', L, = &v + o'
Let v* ¢ M, such that Q(v*) = Q(w’). Hence, we have

v =0 + w, welvyt,
Therefore,
Q) = QW) + a, for some «a in Z.

On the other hand, we have

P, = A0,0) L R, where € R, = ¥ still!
By (|6], 93:13),

P,==A,0) LR, =y + --+) L R,.
Applying the op-transformation: ¢ — op(v') = v’ L y, we see that
L) = 7v + & (op(')) splits L

with P] as its orthogonal complement and furthermore, & P, still equals

<. Now, u ~ v is clear.
5. When dim L is less than 4, the proof of the theorem is

entirely trivial.

COROLLARY 4.2. Let L be an unimodular lattice with arbitrary
dimension, w and v be to two maximal vectors in L having the same

length. If QM,) = QM,), then, {up' = {v)*.

Proof. By adjoining a suitable number of A(0, 0)’s and calling
the enlarged lattice L', we have u integrally equivalent to v over L'.
Hence,
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luyt(in L) = (w)t(in L') .
But,
luyt(in L'y = (uy*(in L) L A(0,0) L --- 1 A(0,0)
and similarly for {v)>*. Now, cancel out the A(0, 0)’s .

COROLLARY 4.3. Let L be unimodular having arbitrary dimension,
0e27, and QM) = QM,). Then, u ~ v always.

Proof. Choose any #ec, and veWM, such that Q@) = Q¥),
and put

L,=2ouw+ ou, P, =L, L,= v+ &, P,= L} .

Then, FP, = FP,. Since ¢ lies in 277, it is clear that £ P, = ZP,.
The rest is obvious.

THEOREM 4.4. Let dimL = 4,5 and QOR,) = QM,). If there
extsts a vector we WM, such that (Fw + OU)* vs isotropic, then u ~ v.

We shall first prove a lemma,

LEmMMA 4.5. Under the same hypothesis as in the theorem except
dim L may be 6, there exist them wvectors x,€ M, x,e M, such that
Q(x,) = Qx,) and moreover, by denoting L, = 7u + 7%, and L, =
ov + 7, we will have FL; = FL; are tsotropic spaces, and
A (Ly) = A Kupt) = A7(Ly).

Proof. The case of 6 e % is quite obvious. Let # be the given
vector, we put K, = ou + 4. If w is a Type II vector (hence so
is v), then /" (K,) already equals s ({u)') and everything is clear.
So let both be Type I vectors. By a suitable op-transformation, we
may assume _/ (K}') = 4 (Kuy*). Pick v from I, with Q(7) = Q(#),
and denote K, = ~v + 7. By Witt’s Theorem, FK;} is isotropic.
Hence, K} has a splitting of the form

K}=A4(,0) L - =(Px+ 72y L -+ .
We know that
Loyt =K 1L o — 09) .

Apply op(x) =2 L (v — 07), then K} becomes (7 (op(x)) + &2) L+
and call this T} where T, = &v + & w for some wecM,. In fact,

w=7+ alv—00) + Bx + 72, a, 8, 7e 7.
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Using the fact that w is orthogonal to both z and op(x), one deduces
B =0 and v = (1 — ad)D, where D is the discriminant of K,.
Consequently,

Q(w) = Q(F) + a?D — 2aD .

Here, « can be quite arbitrary so that by choosing order of a to be
sufficiently large, we see that T, = K,. But now, T, is easily seen
to have its norm ideal equals to _#"(Kv)t) = #"((u)'), because if
0| < |4 (Kv>t)| then K, already has norm equal to _#"({v>'). The
existence of such vectors z, and x, is now clear.

Proof of the theorem. Let L, = ou+ <z, and L, = o7v+ 7%,
enjoy the properties as stated in the lemma. We put D = dL, = dL,.
Suppose, for the moment, that L is quarternary. Then, we write

Li = A@,,0), Ly =cow+ &z= Aa,0)

where a, and a, are norm generators for < ((uyt). If 7 ((u)t) =
2¢7, then it is easy to see that L! = L} and so % ~ v. Therefore,
(a,0D) must equal e, 7 Ku)')! As in the lemma, since
a, € Q(v)>") we have

a, = A’a, + B%D + 24’ |A|=1,B,Aec.

Applying the op-transform, op(x) = 2 L BA~(v — 0x,) one sees by
direct computations that

L =(Zv+ &, L DBA7'2)) L (& (op(x)) + &°z) .

(The choice of z, 1 DBA~'z corresponds to the choice of a equals zero
in the proof of the lemma.) Now, observe that the first term on
the right-hand-side is isometric to L, and the second term is isometric
to L; because

Qop(x)) = a,A*mod 27, with Ae % .

Hence, w ~ v.

Now, let dim L = 5. By proving a result similar to Lemma 4.5,
we may assume (<% + < x,)* has norm group equal to & ({u)*). But,
(v + &Zx,)* will not, in general, simultaneously enjoy this same
property.

Let us call P, =L}, P, =L, 2wty = & = ac?* + be”; the
discriminant of P, we denote by d and therefore by ([6], 93 :18)

P, =<{—d> 1L A(b,0)
P,={—dy L A¥,0),
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where b’ is a weight generator for < P,, which we may assume to
be of having larger order than that of b because otherwise, P, = P,
already.

Suppose the component A(d, 0) is adapted to a basis &z + %
again. Take op(x) = © L (v — dx,). If D still denotes the discriminant
of L,= ~7v + 7z, it is readily seen that

L= (v + &, L D) L<{—d> L (P(op@) + &2) ,

where the first term on the right side again is isometric to L,. Because
of the assumption that |0| < |b|, we must have < (—d( + oD))
equal to %7 (Kw)'). Hence,

P, =<L{—d> L (Z(op(x)) + &%) .

The rest is obvious.

REmMARks. (i) It follows from the proofs of the theorem and
the lemma that if either de %7 ((u)t)Z® or 7 (Kuy*) # 27, then
u ~ v regardless of the dimension and the existence of the vector #
with the stated property.

(ii) A 4-dimensional unimodular lattice with given discriminant
assumes two possible forms (either J or K in 93:18 of [6]). By a
result of Riehm (Theorem 7.4, [7]) it is known that such a lattice
represents every element of its norm group. Now, employing the same
notations as in the proof of the last theorem, it is readily seen that
we may assume when dimL = 6 (as in the dim L =5 case) that
(7w + ~%,)* has norm group equal to & already. Hence, the proof
of Theorem 4.4 still goes through if P, takes the “J-form”. (It is
easily seen that P, takes the “J-form” if and only if P, does so since
the spaces on which they sit are isometric.)

(iii) Theorem 4.4 also goes through when dim L = 6 and when
both u and v are _s -irregular vectors.

(iv) Finally, we remark that Theorem 4.1 remains valid if and
only if the characteristic sets satisfy the somewhat weaker property:
For each #ecIM,, there is a vector ve _~, with

Q(7) = Q(¥)mod 277 .

DEFINITION., Let & be an additive subgroup of F. We say u
and v are of the same parity mod & if Q(#) = Q(¥)mod & for all
neM,, veM,.

We have then the immediate consequence which we mention here
only because it is generally slightly easier to apply than Theorem 4.1
itself.
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PROPOSITION 4.6. Let dim L = 7. Then, two maximal vectors
and v having the same lengths are integrally equivalent if and only
if () Tud) =% = T, and () w and v are of the same
parity mod G.

We wish to make the conjecture here that both Theorem 4.1 and
Proposition 4.6 hold for dim L =4,5,6 in the general situation as
well.

5. Ternary case.

ProPOSITION 5.1. Let L be ternary unimodular. Then, u ~ v if
and only if. (i) there exist vectors «,€M,, 2, €M, such that
Q(z,) = Q(x,)mod 2.7 when 0€277; Q.) = Q(xz,) mod 46~'<? when
|21 £ 6] < 1; (i) otherwise, TKuy') = < (Kvph).

Proof. Necessity is obvious. As for sufficiency, we put L =
L, \ ow,= L, L &w, where L, = Zu+ %, & L,=c0v+ o,
But, dL, = dL, by the Local Square Theorem. Therefore, by Witt
Q(w,) = Qw,) and FL, = FL,.

It is not difficult to see that L, = L, so that u ~ v by Theorem
2.1 since u, v are of the same parity over isometric binary components.
(These statements are true provided 6¢ %. But, then if deZ,
condition (ii) finishes the proof immediately.)

6. dimL = 4,5,6. Let us put

= weM, | N (P + Tw) =257
Mt = {w € WM |7 (Fx + Tw)t = 2774 .

We shall write (L) = 4 (K)moed &7 (here 57 denotes any
fractional ideal in F) to mean that there exist respective norm
generators a, € Q(L), ax € QK) such that a, = ax&mod o7 for some
unit &,

PROPOSITION 6.1. Let L be quarternary unimodular. Then, u~v
if and only if conditions (i) and (ii) in Proposition 5.1 hold, and also
NW(TU + ) = ANV + Tu)* mod 27,

Proof. Sufficiency follows closely to the proof of last proposition.
Denote L, and L, as before. Again, L, = =~ L, by direct computation
of the norm groups. Condition

N(Cu+ Cu)t = (v + T w) mod 27

together with 93 :17 of [6] give us
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L = A(a, —aay’), L = Aa,, —aa;?)

for the suitable norm generators a,, a, of L}, L} respectively. Now,
it is easy to see that 97 (Li) = o7 (L}) = (say %°). Thus, a, =
a,mod %, so that <(L}) = <(Ly) and L} =L} by Witt and
O’Meara.

Direct computations again shows that u, v are of the same parity
over isometric binary components and so apply Theorem 2.1. Again,
the case of § being unitary is trivial.

ProPOSITION 6.2, Suppose dim L = 5. Then, u ~ v if and only
if: (i) there are vectors x, e MY, x, e M»" for some ¢ >0 such
that Q(z,) = Q(x,) mod 46~ when 0 ¢ 2.77; and Q(z,) = Q(x,) mod 27
when 6e2 (i) T uyt) = vyt if 6eZ. (Here, e denotes
ord 2.)

Proof. Using the same L, and L,, one proves that they are again
isometric. So, FL, = FL, by Witt. But now, dim L; = dim L} = 3
so that L. represents every weight (base) generator; similarly for
L. Put o7 (L) = % (L) = b,

If (LYo (L) ~1, (i.e. if t is even) then

Li=A(0,0) L{—d>= L,

where d = dL,. Thus, u ~ v by Theorem 2.1.
If ¢ is odd, then 93:18 of |6] shows that L; = A(b,0) L {—d>
if FL, is isotropic, and L} = A(b,4pb7") L {—d(l — 4p)) if FL,
1~

anistropic. Similarly, we write out for L;. Thus, L} = L; always.
Apply Theorem 2.1,

PrOPOSITION 6.3. Suppose dim L, = 6. Then, u ~ v if and only
if: (i) there are vectors x, e MY, x, e M= for some s,t = 0 such
that Q(z,) = Q(x,) mod 22 for o €2<”; and congruence modulo 46—
if 6¢27;, (i) S/ (Cu+oz) = 4 (Fv+ 7)) mod 27~ and
(iil) < wy') equals (v)y*) if de Z.
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