THE REGULAR OPEN CONTINUOUS IMAGES OF COMPLETE METRIC SPACES

HOWARD HENRY WICKE
THE REGULAR OPEN CONTINUOUS IMAGES OF COMPLETE METRIC SPACES

HOWARD H. WICKE

This article characterizes the regular T_0 open continuous images of complete metric spaces. These images are shown to be the regular T_0-spaces having monotonically complete bases of countable order. This follows from a theorem of Worrell and Wicke and a theorem below which shows that every regular T_0-space having a monotonically complete base of countable order is an open continuous image of a complete metric space.

The class of regular T_0-spaces having monotonically complete bases of countable order is equivalent to a class of spaces Aronszajn introduced axiomatically in [4]. This class includes the complete metric spaces and spaces satisfying R. L. Moore’s Axiom 1 [9]. Theorem 2 provides contrast to the theorem of Ponomarev [10]: every T_0 first countable space is an open continuous image of a metric space. A result related to Theorem 3 is Arhangel’skii’s characterization of the T_i open compact continuous images of metrizable spaces as the metacompact developable T_1-spaces [2]. In connection with this result, it may be noted that an open compact continuous T_1 image of a regular T_0-space having a base of countable order also has a base of countable order [11], and a T_i metacompact space having a base of countable order is developable [12].

For notation and terminology the reader is referred to [7], [9], and [12]. Space is used here to mean topological space. The null set convention is not used. A base for the topology of a space S will be referred to as a base for S. Recall that a collection of sets is said to be perfectly decreasing [12], if and only if each of its elements properly includes an element of the collection; and that a base of countable order for a space [3], can be defined as a base B for the space such that if P is a point common to the elements of a perfectly decreasing subcollection K of B, any open set containing P includes an element of K; i.e., the elements of K form a base at P. By a monotonically complete base [11], is meant a base B such that the closures of the elements of any monotonic subcollection of B have a point in common. Recall also that regular T_0-spaces are T_1, as Koutský remarked [5, p. 826].
2. Regular spaces having monotonically complete bases of countable order.

Theorem 1. A regular T_0-space S has a monotonically complete base of countable order if and only if there exists a sequence G_1, G_2, \ldots of bases for the topology of S such that if g_1, g_2, \ldots is a sequence such that, for each n, g_n belongs to G_n and $\overline{g_{n+1}}$ is a subset of g_n, then there exists a point P in each g_n such that the collection of terms of g_1, g_2, \ldots is a base at P.

Proof. Suppose V is a monotonically complete base of countable order for S. There exists a sequence H_1, H_2, \ldots of well-ordered subcollections of V covering S such that these conditions are satisfied:

1. For each n and h in H_n there exists a point $P_{n,h}$ belonging to h such that no element of H_n precedes h and contains $P_{n,h}$.
2. If $n < k$, the closure of the first element h of H_k containing the point P is a subset of the first element h' of H_n containing P. For some $k \geq j$, g_j belongs to H_k. Let P denote the point P_{k,g_j}. If h is the first element of H_n to contain P then h includes g_j. Thus h does not precede h_n. Since h_n contains P it follows that $h = h_n$. Similarly, h_{n+1} is the first element of H_{n+1} to contain P and thus h_{n+1} is a subset of h_n. If $h_n = h_{n+1}$ for some n, then $h_n = \{P\}$ for some point P, and thus $g_k = \{P\}$ for some k, and $\{g_k\}$ is a base at P. If $h_n \neq h_{n+1}$, for any n, the terms of h_1, h_2, \ldots form a monotonic subcollection of V and thus there exists a point P common to each $\overline{h_n}$. Since $\overline{h_{n+1}}$ is a subset of h_n, P is in each h_n. If D is open and contains P, there exists some h_n which is a subset of D and thus some g_k is included in D. Hence P is in $\overline{g_k}$ for all k, and since $\overline{g_k}$ is a subset of g_{k-1} for all $k > 1$, it follows that P is in each g_k. Since the h_n's form a base at P so do the g_n's.

If G_1, G_2, \ldots is a sequence as in the statement of Theorem 1 there exists a sequence H_1, H_2, \ldots of well-ordered collections covering S such that for each n: (1) H_n is a subcollection of G_n. (2) Each element h of H_n contains a point belonging to no predecessor of h in H_n. (3) If $n < k$ and P is a point, the closure of the first element of H_k containing P is a subset of the first element of H_n doing so. $V = H_1 + H_2 + \ldots$ is a base for S and can be shown to be a base of
countable order by an argument used in Theorem 2 of [12]. A technique
similar to one employed there and also in the preceding paragraph,
shows that V is monotonically complete.

Theorem 2. A regular T_0-space having a monotonically complete
base of countable order is an open continuous image of a complete
metric space.

Proof. Let S denote a regular T_0-space having a monotonically complete
base of countable order. By Theorem 1 there exists a sequence
G_1, G_2, \cdots of bases for S with the property stated in that theorem.
Form the Baire space M [6] over the collections G_1, G_2, \cdots. The
elements of M are sequences $\xi = (g_1, g_2, \cdots)$ where g_n belongs to G_n. If $\xi = (g_1, g_2, \cdots)$ and $\xi' = (g_1', g_2', \cdots)$ the distance $\rho(\xi, \xi')$ is defined
to be $1/k$ if there exists a first positive integer k such that $g_k \neq g_k'$. Otherwise
$\rho(\xi, \xi') = 0$. Designate by $O_{a_1\cdots a_k}$ the collection of all se-
quencies (a'_1, a'_2, \cdots) such that $a_i = a'_i$, $i = 1, \cdots, k$. Let W denote
the collection of all elements in M of the form (g_1, g_2, \cdots) where for
each n, g_{n+1} is a subset of g_n. Then, by the condition on G_1, G_2, \cdots,
there exists a unique point P common to the terms of g_1, g_2, \cdots. If
$\xi = (g_1, g_2, \cdots)$ is in W, define f_ξ to be the unique point P common
to the terms of ξ. Hence f is a mapping of W onto S. Suppose W
intersects the set $O_{a_1\cdots a_k}$. Then g_{i+1} is a subset of g_i for all $i \leq k - 1$. Clearly, $f(W \cdot O_{a_1\cdots a_k})$ is
a subset of g_k. If P is an element of g_k, there exists g_{k+1}, g_{k+2}, \cdots
such that g_{k+n} is a subset of g_{k+n-1} for all $n \geq 1$. Hence $f(W \cdot O_{a_1\cdots a_k}) = g_k$. Since the collection of all sets $W \cdot O_{a_1\cdots a_k}$ is a base for W and
by the property of G_1, G_2, \cdots, f is open and continuous on W. (This argument is related to one used by Ponomarev [10].)

Suppose P_1, P_2, \cdots is a sequence of points of W satisfying the
Cauchy convergence criterion. For each n, there exists a positive
integer m_n such that $\rho(P_k, P_j) < 1/n$, provided $k, j \geq m_n$. It may be
assumed that $m_{n+1} > m_n$ for every n. Let $a^n_1, a^n_2, \cdots, a^n_n$ denote the
first n coordinates of P_{m_n}. Let a_n denote a^n_n for each n. Then if
$k \geq m_n$, the first n coordinates of P_k are a_1, \cdots, a_n. For if $n = 1,$
$a_1 = a^n_1$ is the first coordinate of P_{m_1}. If $k > m_n$, then $\rho(P_k, P_{m_n}) < 1,$
and thus a_1 is the first coordinate of P_k. Suppose the statement is
true for n. If $k \geq m_{n+1}$, then $\rho(P_k, P_{m_{n+1}}) < 1/(n + 1)$. Since
$m_{n+1} > m_n$, the first n coordinates of $P_{m_{n+1}}$ are a_1, \cdots, a_n, by the as-
sumption, and the $(n + 1)^{st}$ coordinate is a_{n+1}. Let P denote (a_1, a_2, \cdots). It
follows that P is the sequential limit point of P_1, P_2, \cdots. Moreover,
since P_{m_n} is in W, the coordinates a_1, a_2, \cdots, a_n satisfy the condition
that \bar{a}_{k+1} is a subset of a_k for all $k \leq n - 1$. Since this is true for all n, it follows that P is in W, and thus W is complete with respect to ρ.

Remark. From the proof of the above theorem it may be seen that the complete metric space of the theorem may be taken to be of zero dimension and of the same weight as the image space. (The weight of a topological space is the minimum cardinal number m such that the space has a base of power m [1].)

3. **The characterization theorem.** In [11] Worrell and Wicke define a λ-base for a topological space as a base B of countable order for the space such that if K is a perfectly decreasing monotonic sub-collection of B, there exists a point P such that any open set containing P includes an element of K. A regular T_0-space has a λ-base if and only if it has a monotonically complete base of countable order [11]. A principal theorem of [11] is that an open continuous (essentially) T_1 image of a space having a λ-base also has a λ-base.

Theorem 3. A regular T_0-space is an open continuous image of a complete metric space if and only if it has a monotonically complete base of countable order.

Proof. The sufficiency follows from Theorem 2. The necessity is a consequence of the theorems cited in the paragraph preceding the statement of Theorem 3, and the facts that a regular T_0-space is T_1 and that a complete metric space has a λ-base.

Theorem 4. The following conditions on a regular T_0-space are equivalent.

(a) The space has a monotonically complete base of countable order.

(b) The space satisfies Aronszajn's axiom [4, p. 231].

(c) The space has a λ-base.

(d) The space is an open continuous image of a complete metric space.

Proof. The equivalence of (a), (b), and (c) is stated in [11], and may be established by methods used in the proof of Theorem 1 above. Theorem 3 above shows the equivalence of (a) and (d).

By using techniques similar to those used above, the following theorem may be proved. (The sufficiency is a joint result of Worrell and Wicke given in [11].)
THEOREM 5. A T_γ-space S has a base of countable order if and only if there exists a metric space (M, d) and an open continuous mapping f of M onto S such that for each x in S, $f^{-1}(x)$ is complete with respect to the metric d.

This result and a theorem of Arhangel’skii [3] imply the following theorem of Michael [8]:

If f is an open continuous mapping of a metric space E onto a T_1 paracompact space F such that $f^{-1}(y)$ is complete for every y in F, then F is metrizable.

REFERENCES

3. ——, *Some metrization theorems*, Uspehi Mat. Nauk 113 (1963), 139-145, (Russian).

Received August 23, 1966. This work was supported by the United States Atomic Energy Commission.

SANDIA LABORATORY
ALBUQUERQUE, NEW MEXICO
Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced). The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens at the University of California, Los Angeles, California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.
A. A. Aucoin, *Diophantine systems* .. 419
Charles Ballantine, *Products of positive definite matrices, I* 427
David Wilmot Barnette, *A necessary condition for d-polyhedrality* 435
James Clark Beidleman and Tae Kun Seo, *Generalized Frattini subgroups of finite groups* .. 441
Carlos Jorge Do Rego Borges, *A study of multivalued functions* 451
William Edwin Clark, *Algebras of global dimension one with a finite ideal lattice* .. 463
Richard Brian Darst, *On a theorem of Nikodym with applications to weak convergence and von Neumann algebras* .. 473
George Wesley Day, *Superatomic Boolean algebras* 479
Lawrence Fearnley, *Characterization of the continuous images of all pseudocircles* .. 491
Neil Robert Gray, *Unstable points in the hyperspace of connected subsets* 515
Franklin Haimo, *Polynomials in central endomorphisms* 521
John Sollion Hsia, *Integral equivalence of vectors over local modular lattices* .. 527
Jim Humphreys, *Existence of Levi factors in certain algebraic groups* 543
E. Christopher Lance, *Automorphisms of postliminal C*-algebras* 547
Sibe Mardesic, *Images of ordered compacta are locally peripherally metric* 557
Albert W. Marshall, David William Walkup and Roger Jean-Baptiste Robert Wets, *Order-preserving functions: Applications to majorization and order statistics* .. 569
Wellington Ham Ow, *An extremal length criterion for the parabolicity of Riemannian spaces* .. 585
Wellington Ham Ow, *Criteria for zero capacity of ideal boundary components of Riemannian spaces* .. 591
J. H. Reed, *Inverse limits of indecomposable continua* 597
Joseph Gail Stampfli, *Minimal range theorems for operators with thin spectra* .. 601
Roy Westwick, *Transformations on tensor spaces* 613
Howard Henry Wicke, *The regular open continuous images of complete metric spaces* .. 621
Abraham Zaks, *A note on semi-primary hereditary rings* 627
Thomas William Hungerford, *Correction to: “A description of Mult(A₁, · · · , Aⁿ) by generators and relations”* .. 629
Uppuluri V. Ramamohana Rao, *Correction to: “On a stronger version of Wallis’ formula”* .. 629
Takesi Isiwata, *Correction: “Mappings and spaces”* 630
Henry B. Mann, Josephine Mitchell and Lowell Schoenfeld, *Correction to: “Properties of differential forms in n real variables”* 631
James Calvert, *Correction to: “An integral inequality with applications to the Dirichlet problem”* .. 631
K. Srinivasacharyulu, *Correction to: “Topology of some Kähler manifolds”* 632