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If 9 is a nonassociative algebra over an algebraically closed

field L, then the classification problem for ¥ is the determi-

nation of all algebras % over @ c L where o =9 ®., L. This
brief note studies this problem for the case where ¥ is the
Lie algebra D: and @ is a (finite) algebraic number field. The
main result is a type of Hasse principle which tells us that
a Lie algebra £ (over @) of type D. has known type if the
algebra S% has known type for every completion @, of 0.
This is used in §3 to obtain canonical splitting fields for Lie
algebras of type D: over @. Although the results are incon-
clusive with regard to the existence or nonexistence of new
algebras, it indicates a (twisted) construction, which if non-
vacuous, would yield new exceptional algebras of type Dirrr.}

The notation will be the same as that in the author’s “Jordan
Algebras and Lie Algebras of Type D,” [2]. Throughout the present
paper @, F, E, X, P will denote algebraic number fields and 2(X) will
denote the complete set of primes on the algebraic number field X.
Also, we shall adopt the following convention without further mention:
if X is an algebraic number field, Y a subfield and p e 2(X), then we
shall use p to represent p| Y and Y, for the completion of Y, at
plY, in X,. We begin with a field theoretic preliminary.

1. ProrosiTion 1. Let P/s be a finite dimensional Galois extension
with Galois group G, and let pe Q(P). Then P,/¢, is Galois and
G, = 9(P,/¢,) is isomorphic to a subgroup of G.

Proof. If P is a splitting field for f(\)e€ ¢[\] over ¢, then P, is
a splitting field for f(\) over ¢, and thus P,/¢, is Galois, If P = ¢({),
then P, = 4,({) and the correspondence s, — s, | P = s, is an injection
of G, in G.

G, is called the local Galois group at p and we note that if E is
the subfield of P/s of G-invariants, then K, = ¢,, for E is contained
in the P, invariants of G, so K, & ¢,.

To avoid unnecessary complication we let @ be the field of rational
numbers, €, the split Cayley algebra over @, = H(€,, 1) the split
exceptional central simple Jordan algebra over @ and D = D(F/TQe;)
the split Lie algebra of type D, over Q. If X is any field of charac-

1 The author has recently shown, in collaboration with J. Ferrar, that this
construetion ean he carried ont aver algehraiec numher fields
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teristic 0, then D, = D(J,/2Xe;) will be taken as the split Lie algebra
of type D, over X.

Now let € be a Lie algebra of type D, over ¢ with P/¢ a finite
dimensional Galois splitting extension. If pe Q(P), then 8% is a Lie
algebra of type D, over ¢, split by P,. We first determine the rela-
tionship between the pre-cocycle of G in Auty (®,) corresponding to
&, and the pre-cocycle of G, in Auty (Dp,) corresponding to 2% (2]
§2).

Thus let »— n(r) — C, = [p(r), T(r)] be the pre-cocycle of G in
Auty (Dp) corresponding to 8. If ' = h,| PG, then A’ has a unique
extension to G,, viz., h,. We let C, be the £, -semilinear extension
of C, to I'Ly (3p,/2Ppe;). C,, = [p(h, | P), T(h,)] where T(h,) is the
h,-semilinear extension of 7(%,| P) ([3] p. 12).

We have ChpCrp = C,,prpéh,,r, where C,.C,, = C,.,..0,,.. Thus if
7(h,) < C,,, then h,—7(h,) is a pre-cocyle of G, in Aut, (®r). The
fixed ¢,-form of Dp, associated with this pre-cocycle clearly contains
24, so it must be &, .

ProprosiTiON 2. Let £ be a Lie algebra of type D, over ¢ with
P/s a finite dimensional Galois splitting extension and F the canonical
D,-field extension of . If pe 2(P) then

(i) The D, type of 8¢p is the D, type of a canonical extension
of & ([2] §2).

(i) the canonical D,-field extension of &, is F.

(iii) if L is exceptional then %4 is exceptional if and only if
[Fy: 6,] = 3.

Proof. (i) is a direct consequence of the preceding discussion.
Let F(p) be the canonical D,;-field extension of 8% and suppose that
F(p) is the invariants of H,C G,. If F’ is the invariants of H; then
FcF so F,& F(p). But Spp is of type D,; so F,2 F(p). If 8 is
exceptional then this shows that Sd,p is exceptional if and only if
[F,: 6,] = 3.

2. The classical results on central simple associative algebras
and quadratic forms over algebraic number fields are used to deduce
the next two important results.

THEOREM 1. Let & be a Lie algebra of type D, over an algebraic
number field ¢. Then there exists a finite subset S of Q(¢) such
that &,,p 18 a Jordan D, for all pe 2(¢) — S.

Proof. First suppose that & is of type D,; and let &*=A H AP A,
be its g-enveloping algebra ([2] §2). Let S be any finite subset of
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2(¢) such that %{i% ~1,4=1,2,3 for all pe2(g) — S ([1] Chap IX).
Since &} is clearly the ¢,-enveloping algebra of ¥, for any pe (),
we see that for pe Q(g) — S, 8} is a sum of matrix algebras over ¢,.
This implies that £, is a Jordan D, (J2] Th. I).

Now let £ be an arbitrary Lie algebra of type D, and let F/¢ be its
canonical D,,-field extension. Let T be any finite subset of 2(F) such
that (EF)Fp is a Jordan D, for all pe Q(F) — T, and choose S as the
set of all traces of elements of 7 on ¢. If p|ge2(p) — S then
peAF)— T and &), = Bp, = (&s)r, is a Jordan D,. Since F, is
the canonical D,,-field extension of ¥4 , ¥y is a Jordan D, ([1] Th. I).

THEOREM 2. Let 8 be a Lie algebra of type D, over an algebraic
number field ¢. Then & is o Jordan D, if and only if 8% s a
Jordan D, for every pe ().

Proof. One direction is clear. For the other let F be the canoni-
cal D,-field extension of € and let £} = A, G A, H A, be the F-enveloping
algebra of &£,. Our hypothesis implies that 8Fp == (53¢p)pp is a Jordan
D, for every pe 2(F). Thus %L-Fp ~1,1=1,2 3 and all pe Q(F), so
A, ~1,1=1,2,3. ([1] Chap IX). Thus &, is a Jordan D,; and & is
a Jordan D,.

COROLLARY. & s split +f and only if 8¢p 18 split for all p € (g).

Proof. One direction is trivial. For the other, Theorem 1 and
Theorem 2 imply that & is a Jordan D,;. If & = 3(€, n(-)), € a Cayley
algebra over ¢, then 8% split for all p implies that €, 18 isotropic for
all p. Thus € is isotropic, ([4], Th. 66.1) hence split, and ¥ is split.

3, This last section is devoted to a proof of Proposition 3. Using
this proposition we are able to give a fairly explicit description of
pre-cocycles arising from algebras of type D,;;;.

ProprosITION 3. Let ¥ be a Lie algebra of type D, over an
algebraic number field @, and let F be the canonical D,;-field extension
of &, Then 2 is split by a Galois extension of degree at most 2[F: 9].

Proof. We will only give the argument when € is of type D,
or D,;;;. The other cases are similar. Let S be a finite subset of
2(¢) such that 8% is a Jordan ® if pe2(g) — S. Without loss of
generality we suppose that S contains all the real primes on ¢. If
peS, then 8% is necessarily of type D,;. By the local classification
of D’s ([2] §4), %, is split by a quadratic extension K, /¢,. Let
K, be a root field for »* + a, € ¢[x]. By the approximation theorem,
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since S consists of inequivalent primes, there exists an a€g¢ with
each |a — «a, |, sufficiently small. Let K be a root field for M+ «
over ¢ and F the canonical D,-field extension of £. Note that
K, =K, for all peS.

If € is of type D,; then it is easy to see that (8K)Kp is split for
all pe Q(K). Thus 8 is split. If L is of type D,;; then we claim
that € is split by P=KQ@sF. Let peQ(P). If p|sec(¢) — S,
then 8% is a Jordan D,. If p is complex, &,,p is clearly split whereas
if p is discrete, €, is split by its canonical D, field extension ([2]
§4). In any event, (EP)PP = (&,)p, = ((Ed,p)pp)l,p is split. If plges,
then &, is split by K, = K,C P, so (¥;),, is split. Thus (8p)p, 1s
split at every pe Q(P) and the corollary to Theorem 2 shows that £,
is split. Not that P is sixth degree cyclic.

Now let £ be a Lie algebra of type D, over @, with P/@ a
cyclic sixth degree Galois splitting extension. P/@ contains a unique
quadratic subfield E/s. %, is a D,;;; split by P, so £; is a Jordan
D,. If &, = D(K/t), then since I’ is reduced and is split by P/E,
a cubic extension, &' is itself split. f of course is isomorphic to P.
The isomorphism condition for Jordan D,’s ([2] Th. II) implies that
€, is a Steinberg D,;;; ([2] (10)).

Let »— p(r) be the anti-homomorphism of ¢(P/¢) = G onto A,
determined by &, and choose s as a generator for G with p(s) = (123).
Let € be any Cayley algebra over ¢, split by P, and let S be the
s-semilinear automorphism of €, which is one on €. Finally set
Dg = [(123), S] (cf. [2] (10)), and let » — n(r) —C, be the pre-cocycle
of G in Aut, (D,) corresponding to €. The preceding observation
about £, enables us to assume that C?= Dy, pc K. By replacing
C, by Csn, for some suitable \ e K, if necessary, we may assume
that C, and D? commute. This implies that g = D7*uD?= p. If
C:=0eK, then ¢ = ¢ and o6* = C;%9C, = D;%0D, = 0 so () = .
Applying £(-) to the relation C* = D?¢ we obtain

(1) L(C.)LC,) = ¢

But {(C,)*¢(C,) is fixed under s since {(C,) is fixed s*. Thus (££)° = (o~
This, together with the previous relation shows that p = g,

For simplicity write £(C,) = (o, p¥, 0*) ¢t = (B8, 8%, B°), B = B. (1)
is now equivalent to po** = 8% Since (08)(A)" =1, 0 = NN
and pA* = \M\’B e F, the canonical D,,-field extension of €. Replacing
C, by C, = C,(\, M*\**) we again obtain {(Cy)* = {(C,). But

LC,) = OB, ((WFB), DWN°B)°)

and is fixed under s*. Thus {(C,) = £(C,). We may affect a similar
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alteration of C, so that {(C,) = (a,, a, &) = @ where a® = «, and
aie =1, ie., C, in addition to the above is norm preserving.
Calculating we see that C? = D*w. Then C¢=a® and € is a Jordan
D, if and only if «,e N, (P*). Setting CN'S = D,E we see that
D.,o = ED.E. The simplest form of this equation occurs where E and
D, commute and we obtain E* = a. Thus we are led to the following
(possibly vacuous) construction,

Let & be a reduced exceptional central simple Jordan algebra over
a field ¢, P a cyclic sixth degree extension of ¢ and F a subfield of
& isomorphic to the cubic subfield of P/¢. Then if there exists an
E e GL(Z/F) such that

(1) EeGL(Ip/{Pets),

(il) L&) = (a, o, @) where @, ¢ Ny y(P*) and

(iii) E* = {(K),
then the s-semilinear extension of K to &, induces a pre-cocycle
corresponding to a non-Jordan D,;;;.
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