A WILD CANTOR SET IN THE HILBERT CUBE

RAYMOND Y. T. WONG
A WILD CANTOR SET IN THE HILBERT CUBE

RAYMOND Y. T. WONG

Let E^n be the Euclidean n-space. A Cantor set C is a set homeomorphic with the Cantor middle-third set. Antoine and Blankinship have shown that there exists a "wild" Cantor set in any E^n for $n \geq 3$, where "wild" means that $E^n - C$ is not simply connected. However it is also known that no "wild" Cantor set (in fact, compact set) can exist in many infinite dimensional spaces, such as s (the countably infinite product of lines) or the Hilbert space l_2. A result of this paper provides a positive answer for a generalization of Blankinship's result in the Hilbert cube.

If X is a space, we denote by X^n the space $\Pi_{i=1}^n X_i$ and X^∞ the space $\Pi_{i=1}^\infty X_i$ with $X_i = X$. Let τ_n denote the projecting function of X^∞ onto X^n and π_n the projecting function of X^∞ onto X_n. Let J, J^∞ denote intervals $[-1,1], (-1,1)$ respectively. The Hilbert cube is the space J^∞ under the metric $\rho(x, y) = \sum_{i \geq 1}(|x_i - y_i|)/2^i$. Hilbert space, l_2, is the space of all square summable sequences of real numbers with metric $d((x_i), (y_i)) = \sqrt{\sum_{i=1}^\infty (x_i - y_i)^2}$. The space J^∞ is also denoted by s. Let $E^n = \Pi_{i=1}^n E_i$ be the Euclidean n-space.

A Cantor set is a set homeomorphic with the Cantor middle-third set. The existence of a Cantor set C in E^n ($n \geq 3$) such that $E^n - C$ is not simply connected was first demonstrated by Antoine [4] in 1921 and constructed by W. A. Blankinship [5] in 1951. It is known that every Cantor set is s (or in l_2) must be tame, in the sense that its complement in s (or in l_2) is topologically as nice as the space itself. In fact it has been proved (by V. Klee in the case of l_2 [9] and by R. D. Anderson [1] in the case of s, using Klee's method) that if K is a compact set in X (for $X = s$ or l_2), then $X - K \approx X$. The question as to whether a finite dimensional closed set can leave the Hilbert cube multiply connected (in particular, whether a Cantor set can have this property) was then raised in [5] by Blankinship and was also later mentioned in [7] by Klee. In this paper we shall give such a question a positive answer by constructing a Cantor set C in the Hilbert cube J^∞ such that $J^\infty - C$ is not homotopically trivial. In fact, we shall apply the result of Blankinship [5] to show that $J^\infty - C$ has nontrivial 1st-Homotopy group. We remark that such a set C cannot be constructed as a subset of J^∞. Note that Anderson [1] (by using Klee's method) proved that any Cantor set C (in fact, any compact set) in J^∞ can be carried into an end-face, say $K_1 = \{x \in J^\infty | \pi_1(x) = 1\}$, by a homeomorphism on J^∞. It is quite clear that the complement of any Cantor subset (in fact, any compact subset)
of \(K \) in \(J^\infty \) is homotopically trivial, therefore, if the complement of \(C \) in \(J^\infty \) is to be homotopically nontrivial, \(C \) must, in a sense, join various end-faces of \(J^\infty \).

2. Some notation and lemma. All homeomorphisms concerned are assumed to be geometric homeomorphisms, and when a homeomorphism has domain in \(E^n \), it is assumed to be linear. Two subsets of \(E^n \) are similar if they are homeomorphic under some homeomorphism. Let \(\Delta \) denote the boundary of the unit square in \(E^2 \). A \(*\)-circle is a set homeomorphic to \(A \). An \(n \)-tube, \(n \geq 3 \), is a set homeomorphic to the product of a circular 2-cell with \((n - 2) \)*-circles.

We shall choose a fixed set of positive real numbers \(r_1, r_2, \ldots \) with the properties that (1) \(r_1 > 1 \) and (2) \(r_{n+1} > 2(\sum_{i=1}^{n} r_i) \). Let \(L_i = [r_i - 1, r_i + 1] \subset E_i \) and \(L^n = \prod_{i=1}^{n} L_i \times (r_{n+1}, r_{n+2}, \ldots) \). We shall regard \(E^n \) as a subset of \(E^{n+1} \) by considering \(E^n \) as \(E^0 \).

Lemma 1. If \(X \) is a Hausdorff space and \(A_1, A_2, \ldots \) is a decreasing sequence of compact subsets of \(X \) such that each \(A_i \) is dense in itself, then \(\bigcup_{i=1}^{\infty} A_i \) is dense in itself.

Proof. If \(x \) is an isolated point of \(\bigcap_{i=1}^{\infty} A_i \), then for some \(i, x \) is an isolated point of \(A_i \), contrary to the hypothesis.

3. Brief outline of the construction. The construction is an inductive modification of the construction by Antoine [4] and by Blankinship [5]. The Cantor set \(C \) will be the intersection of a decreasing sequence of compact subsets \(K_1, K_2, \ldots \) of the Hilbert cube \(L^\infty = \prod_{i=1}^{\infty} L_i \). For each \(n \geq 3 \), \(K_n \) will be the product of a compact subset \(K'_n \) of \(L^n \) with \(\prod_{i=n+1}^{\infty} L_i \). \(K'_n \) is the intersection of a simple chain of linking 3-tubes of \(E^3 \) with \(L^3 \). \(K'_n \) will be contained in \(K'_n \times L_4 \) and is the intersection of a simple chain of linking 4-tubes of \(E^4 \) with \(L^4 \) and so on.

4. Construction of \(K_3 \).

Definition. Let \(r, s \) be positive integers and \(d_r \) an arbitrary real number. Let \(S \) be a compact subset of \(E^\infty (= \prod_{i=1}^{\infty} E_i) \) such that \(\pi_r(S) = d_r \). We say \(\tilde{S} \) is the set generated by rotating \(S \) about the hyperplane \(x_r = d_r \) and \(x_s = 0 \) if

\[
\tilde{S} = \left\{ x \in E^\infty : \exists y \in S \exists (x_r, x_s) \in \text{Bd}([d_r - y_s, d_r + y_s] \times [-y_s, y_s]) \right\}
\]

and \(x_i = y_i \) for \(i \neq r, s \) if

\[
\text{where } [d_r - y_s, d_r + y_s] \subset E_r, [-y_s, y_s] \subset E_s.
\]
The following Lemma is evident:

Lemma 2. Suppose S is the set defined above and $\pi_s(S) > 0$, then \tilde{S} is homeomorphic to the product of S with a \ast-circle.

Definition. Let

$$T^2 = \{ x \in E^\infty : (x_1 - r_1)^2 + (x_2 - r_2)^2 \leq \left(\frac{1}{4}\right)^2 \text{ and } x_i = r_i \text{ for } i \geq 3 \}$$

$$A_0 = \{ x \in E^\infty : (x_1 - r_1)^2 + (x_2 - r_2)^2 = \left(\frac{1}{2}\right)^2 \text{ and } x_i = r_i \text{ for } i \geq 3 \}.$$

For $n \geq 3$, define T^n inductively to be the set generated by rotating T^{n-1} about the hyperplane $x_{n-1} = 0$, $x_n = r_n$.

Lemma 3. For $n \geq 2$, $\min \pi_n(T^n) \geq 1$.

Proof. It is clear for $n = 2$. For $n \geq 3$, it follows from the fact $\min \pi_n(T^n) = r_n - (1/4 + r_2 + \cdots + r_{n-1})$ and from the hypothesis of r_i.

Lemma 4. For $n \geq 3$, T^n is an n-tube in E^n.

Proof. $\pi_2(T^n) > 0$ by Lemma 3. Then by Lemma 2, T^3 is a 3-tube. Inductively, T^n is an n-tube.

Lemma 5. For $n \geq 3$, $T^n \cap L^n = \tau^3(T^3) \times \prod_{i=3}^n L_i \times (r_{n+1}, r_{n+2}, \cdots)$.

Proof. This is a consequence of Lemma 3.

Let $\{t_i^3\}_{i=1}^l$ be a chain of cyclically linked disjoint 3-tubes contained in the interior of T^3 and looping once around the axis of T^3. We assume (1) they are all similar to T^3, (2) $l \equiv 0 \pmod{4}$ and l is large enough so that each t_i^3 can be regarded as the set generated by rotating a small circular 2-cell t_i^2 along a small \ast-circle A_i, (3) $\text{diam}(t_i^3) < 1/3(\text{diam } T^3)$ for all i, and (4) Only two members of $\{t_i^3\}_{i=1}^l$ intersect $\text{Bd}(L^2)$ (one in each side) and the intersection of each such t_i^3 with $\text{Bd}(K)^3$ is exactly two disjoint 2-cells. Let $A_3 = \bigcup_{i=1}^l t_i^3$, $K' = A_3 \cap L^2$ and $K_3 = K' \times \prod_{i=4}^\infty L_i$.

5. Construction of K_4, K_5, \ldots. For the purpose of simplicity, we shall give only the construction of K_4 and assert that for $n \geq 5$, K_n can be inductively constructed.

Step 1. For each i, let h_i be a (linear) homeomorphism of T^3
onto \(t^3_i \). Hence \(\{ t^3_{ij} = h_i(t^3_j) \}_{j=1}^{n} \) is a similar chain of cyclically linked disjoint 3-tubes in \(t^3_i \). We require that each \(h_i \) is so chosen that (1) if \(t^3_i \) is a member that intersects \(\text{Bd}(L^3) \), then only two members of \(\{ t^3_{ij} \}_{j=1}^{n} \) intersect \(\text{Bd}(L^3) \) and the intersection of each such member with \(\text{Bd}(L^3) \) is exactly two disjoint 2-cells and (2) \(\text{diam}(t^3_{ij}) < (1/3^n)\text{diam}(T^3) \) for all \(ij \).

Step 2. For each \(i,j \), let \(t^4_{ij} \) be the 4-tube in \(T^n \) generated by rotating \(t^3_i \) about planes \(x_3 = 0, x_4 = r_i \). We now regard each \(t^4_{ij} \) as the set generated by rotating a small 2-cell \(t^3_{ij} \) along a small *-circle. We assume further that \(t^4_{ij} \) is contained in \(L^3 \) whenever \(t^3_i \) intersects \(\mathbb{R}^3 \). Let \(\widehat{t}^3_{ij} \) be the set generated by rotating \(t^3_{ij} \) about planes \(x_2 = 0, \alpha = \pi \). Then \(t^4_{ij} \) can be regarded as the geometric product of \(\widehat{t}^3_{ij} \) with \(\Delta_{ij} \). Let \(h_{ij} \) be a linear homeomorphism of \(T^n \) onto \(\widehat{t}^3_{ij} \). Let \(t^4_{ijk} = h_{ij}(t_k) \), \(k = 1,2,\ldots,l \). We require each \(h_{ij} \) is so chosen that (1) if \(t^3_{ij} \subset \mathbb{R}^3 \), then only two members of \(\{ t^4_{ijk} \}_{k=1}^{l} \) intersect \(\mathbb{R}^3 \times \text{Bd}(L) \) (one in each side) and the intersection of each such member with \(\mathbb{R}^3 \times \text{Bd}(L) \) is exactly two disjoint 2-cells and (2) \(\text{diam}(t^4_{ijk}) < (1/3^n)\text{diam}(T^3) \). Let \(t^4_{ijk} \) denote the geometric product of \(t^3_{ijk} \) with \(\Delta_{ij} \).

Let \(A_4 = \bigcup_{i,j,k=1}^{n} t^4_{ijk}, K'_4 = A_4 \cap L^4 \) and \(K_4 = K'_4 \times \prod_{i=0}^{n} L_i \).

6. **Theorem 1.** Let \(C = \bigcap_{i=3}^{n} K_i \). Then \(C \) is a Cantor set in \(\mathbb{R}^n \).

Proof. It follows from the construction that \(K_3, K_4, \ldots \) is a decreasing sequence of compact subset of \(\mathbb{R}^n \) and each \(K_i \) is dense in itself. Hence \(C \) is dense in itself by Lemma 1. Furthermore, each \(K_i \) is a finite union of disjoint compact subsets whose diameters are uniformly small and tend to zero as \(i \to \infty \). We conclude then that \(C \) is a compact zero-dimensional space which is dense in itself, hence is a Cantor set.

Theorem 2. If \(F \) is a mapping of \(\Delta_0 \times I \) into \(\mathbb{R}^n \) (\(n \geq 3 \)) such that \(F \mid_{\Delta_0 \times 0} = \text{identity on} \ \Delta_0 \) and \(F(\Delta_0 \times 1) \) is a point, then \(F(\Delta_0 \times I) \cap K_n' \neq \emptyset \).

Proof. The proof is due to [5]. Basically Blankinship had constructed a Cantor set \(C' \) in \(A_n \) such that \(C' \) links \(\Delta_0 \) in \(E^n \), hence \(A_n \) also links \(\Delta_0 \) in \(E^n \). As a consequence, \(K_n' = A_n \cap \mathbb{R}^n \) links \(\Delta_0 \) in \(\mathbb{R}^n \).

Theorem 3. \(\mathbb{R}^n - C \) has nontrivial 1st-Homotopy group.

Proof. Let \(F \) be a mapping of \(\Delta_0 \times I \) into \(\mathbb{R}^n \) such that \(F \mid_{\Delta_0 \times 0} = \emptyset \).
identity on $Δ_o$ and $F(Δ_o \times 1)$ is a point. For each $n \geq 3$, $τ_n(F')$ is a mapping of $Δ_o \times I$ into L^n satisfying $(τ_n F')_{Δ_o \times 0} = \text{identity on } Δ_o$ and $(τ_n F')(Δ_o \times 1)$ is a point. Hence by Theorem 2, $(τ_n F')(Δ_o \times I) \cap K'_n \neq \phi$. This implies $F(Δ_o \times I) \cap K_n \neq \phi$, hence $F(Δ_o \times I) \cap C \neq \phi$.

Theorem 4. There exist two Cantor sets in the Hilbert cube such that no homeomorphism of one onto the other can be extended to a homeomorphism on the whole Hilbert cube.

Let $\hat{L}_i = \text{Int}(L_i)$ and let $(\hat{L})^\infty = \prod_{i=1}^\infty \hat{L}_i$. Let $V'_n = K'_n \cap \text{Int}(L^n)$ and $V_n = V'_n \times \prod_{i=n+1}^\infty \hat{L}_i$. Then each V_n is a closed subset of $(\hat{L})^\infty$ and hence $C_0 = \bigcap_{n=3}^\infty V_n$ is both zero-dimensional and closed in $(\hat{L})^\infty$. By similar reasoning C_0 links $Δ_o$ in $(\hat{L})^\infty$. Finally, using the fact $s \simeq (\hat{L})^\infty$ and $l_z \simeq s$ [2], we conclude:

Theorem 5. s and l_z contain zero-dimensional closed sets whose complements are not simply-connected.

References

Received October 28, 1966, and in revised form May 1, 1967. This paper is a part of the author's doctoral thesis under the direction of Professor R. D. Anderson and revised into its present form while the author held a National Science Foundation Grant GP-5860, at UCLA 1966-1967.

Louisiana State University, Baton Rouge
University of California, Los Angeles
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harry P. Allen, Lie algebras of type D₄ over algebraic number fields</td>
<td>1</td>
</tr>
<tr>
<td>Charles Ballantine, Products of positive definite matrices. II</td>
<td>7</td>
</tr>
<tr>
<td>David W. Boyd, The spectral radius of averaging operators</td>
<td>19</td>
</tr>
<tr>
<td>William Howard Caldwell, Hypercyclic rings</td>
<td>29</td>
</tr>
<tr>
<td>Francis William Carroll, Some properties of sequences, with an application to noncontinuous power series</td>
<td>45</td>
</tr>
<tr>
<td>David Fleming Dawson, Matrix summability over certain classes of sequences ordered with respect to rate of convergence</td>
<td>51</td>
</tr>
<tr>
<td>D. W. Dubois, Second note on David Harrison's theory of preprimes</td>
<td>57</td>
</tr>
<tr>
<td>Edgar Earle Enochs, A note on quasi-Frobenius rings</td>
<td>69</td>
</tr>
<tr>
<td>Ronald J. Ensey, Isomorphism invariants for Abelian groups modulo bounded groups</td>
<td>71</td>
</tr>
<tr>
<td>Ronald Owen Fulp, Generalized semigroup kernels</td>
<td>93</td>
</tr>
<tr>
<td>Bernard Robert Kripke and Richard Bruce Holmes, Interposition and approximation</td>
<td>103</td>
</tr>
<tr>
<td>Jack W. Macki and James Sai-Wing Wong, Oscillation of solutions to second-order nonlinear differential equations</td>
<td>111</td>
</tr>
<tr>
<td>Lothrop Mittenthal, Operator valued analytic functions and generalizations of spectral theory</td>
<td>119</td>
</tr>
<tr>
<td>T. S. Motzkin and J. L. Walsh, A persistent local maximum of the pth power deviation on an interval, p < 1</td>
<td>133</td>
</tr>
<tr>
<td>Jerome L. Paul, Sequences of homeomorphisms which converge to homeomorphisms</td>
<td>143</td>
</tr>
<tr>
<td>Maxwell Alexander Rosenlicht, Liouville's theorem on functions with elementary integrals</td>
<td>153</td>
</tr>
<tr>
<td>Joseph Goeffrey Rosenstein, Initial segments of degrees</td>
<td>163</td>
</tr>
<tr>
<td>H. Subramanian, Ideal neighbourhoods in a ring</td>
<td>173</td>
</tr>
<tr>
<td>Dalton Tarwater, Galois cohomology of abelian groups</td>
<td>177</td>
</tr>
<tr>
<td>James Patrick Williams, Schwarz norms for operators</td>
<td>181</td>
</tr>
<tr>
<td>Raymond Y. T. Wong, A wild Cantor set in the Hilbert cube</td>
<td>189</td>
</tr>
</tbody>
</table>