Vol. 24, No. 2, 1968

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Semigroup algebras that are group algebras

Donald Brooks Coleman

Vol. 24 (1968), No. 2, 247–256
Abstract

If S is a finite semigroup, and if K is a field, under what conditions is there a group G such that the semigroup algebra KS is isomorphic to the group algebra KG?

The following theorems are proved:

1. Let S have odd order n, and let K be either a real number field or GF(q), where q is a prime less than any prime divisor of n. If KlSKG for a group G, then S is a group.

2. Let K be a cyclotomic field over the rationals, and let G be an abelian group. Then KGKS for a semigroup S that is not a group if and only if for some prime p and some positive integer k,K contains all pk-th roots of unity and the cyclic group of order pk is a direct factor of G.

3. Let S be a commutative semigroup of order n, and let K = GF(p), where p is a prime not exceeding the smallest prime dividing n. If K1SKG for a group G, then S is a group.

The semigroup ring of a semilattice is also considered.

Mathematical Subject Classification
Primary: 20.90
Milestones
Received: 8 November 1966
Published: 1 February 1968
Authors
Donald Brooks Coleman