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If G is any monotone decomposition of Rz, let HG denote
the union of the nondegenerate elements of G9 and let Pa
denote the projection map from Rz onto the decomposition
space R3/G associated with G. Suppose that F and G are
monotone decompositions of Rz such that each of Cl (PF[HFJ)
and Cl (PG[Hσ]) is compact and O-dimensional. Then F and G
are equivalent decompositions of R* if and only if there is a
homeomorphism h from RzjF onto R3/G such that

h[Cl (PF[HF])] = Cl (PG[HG]) .

A necessary and sufficient condition for two decompositions
to be equivalent is given. It is shown that there is a de-
composition with only a countable number of nondegenerate
elements which is equivalent to the dogbone decomposition,
and several related results are obtained.

By introducing the idea of equivalent decompositions of R\ we
are able to analyze in a precise way, a process that seems quite natural
in the study of monotone decompositions of R3 of the type we are
considering. If F is a monotone decomposition of iϋ3, the stipulation
that Cl PF[HF] be a compact O-dimensional set is equivalent to the
following condition: There is a sequence Mu M2, M3, of compact
3-manifolds-with-boundary in R3 such that for each positive integer
j , Mj+1 c Int Mj and g is a nondegenerate element of F if and only
if g is a nondegenerate component of ΠΓ=i -̂ 0-

A process one finds useful in certain situations is one that involves
a sequence fu f2, /3, of homeomorphisms from R3 onto R3 such that
(1) /i shrinks or stretches Mu (2) f2 agrees with /x on J?3 — M1 and
shrinks or stretches M21 (3) /3 agrees with f2 on R3 — M2 and shrinks
or stretches Λf3, and so on. The "new" decomposition has as its
nondegenerate elements the nondegenerate components of

/ι[Λf1]n/,[Jif,]n/s[iiίs]n .

We are able to show that under fairly mild restrictions, there exists
such a sequence of homeomorphisms if and only if the original de-
composition and the "new" one are equivalent in the sense of this
paper.

We indicate some examples that illustrate these concepts. The
first two examples give instances of previous applications of the ideas
of this paper. The remaining ones are described in detail in the
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present paper.

EXAMPLE 1. Meyer proved [10] that if C is a 3-cell in R3 such
that Bd C is locally polyhedral except at points of an arc a on Bd C,
then R3/C is homeomorphic to R3/a.

EXAMPLE 2. Bing described [6] a 2-sphere S in R3 such that S
is locally wild at each point of S and S bounds a 3-cell B in R3.
Armentrout proved [1] that there is a 3-cell J5' in R3 such that Bd J5'
is locally polyhedral except on a Cantor set on Bdl?' and R3/B is
homeomorphic to R3/B'.

EXAMPLE 3. Suppose G is a monotone decomposition of R3 such
that there is a sequence Mlf M2, Af3, of compact 3-manifolds-with-
boundary as described above. Suppose further that each component
of each M{ is a 3-cell-with-handles. Then G is equivalent to a de-
composition into 1-dimensional continua and one-point sets; see §7.

EXAMPLE 4. Bing's dogbone decomposition [5] is equivalent to
a decomposition into one-point sets and at most countably many non-
degenerate continua; see §4.

EXAMPLE 5. In §3 of [7], Bing described a point-like decomposi-
tion G of R3 with only countably many nondegenerate elements such
that R3/G is not homeomorphic to R3. There exists a decomposition
F of R3 such that F is equivalent to G and F has uncountably many
nondegenerate elements; see §5.

2* Notation and terminology* The statement that G is a
monotone decomposition of R3 means that G is an upper semi-continu-
ous decomposition of R3 into compact continua. A compact continuum
K in R3 is point-like if and only if R3 — K is homeomorphic to the
complement, in R3, of a one-point set. A set M in R3 is cellular if
and only if there is a sequence CΊ, C2, C3, of 3-cells in iϋ3 such
that for each i, Ci+1 c Int d and M = ΠΓ=i C;. For compact continua
in R\ "point-like" and "cellular" are equivalent [12]. The statement
that G is a point-like decomposition of R3 means that G is a monotone
decomposition of R3 into point-like sets.

We shal use the notation and terminology introduced in the
introduction.

If M is a 3-manifold-with-boundary, M need not be connected,
and Bd M and Int M denote the boundary and interior, respectively,
of M.
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The s ta tement t h a t the subset K of R3 is a 3-cell-with-handles

means t h a t there is a finite collection C, Cl9 C29 •••, and Cw of 3-cells

such t h a t if i = 1, 2, , or w, C* Π C is t h e union of two disjoint

discs, and d f] C = (Bd d) Π (Bd C), and if i and i are distinct, C<

and Cj are disjoint. Such a collection C,CUC2, •••, and Cw of 3-cells

will be called a standard decomposition of if.
We shall use Cl to denote topological closure. If X is a subset

of R3 and ε is a positive number, then V(X, e) denotes the ε-neigh-
borhood of X in R3.

Suppose G is a monotone decomposition of R3. Then M19 M29 M3,
is a defining sequence for G if and only if Mu M29 Λf3, is a sequence
such that (1) for each positive integer ί, Mi is a compact 3-manifold-
with-boundary such that Mi+1 c Int M{ and (2) g is a nondegenerate
element of G if and only if g is a nondegenerate component of
ΠΓ=i -M*. G has a defining sequence if and only if Cl PG[HG] is a
compact 0-dimensional set. G is definable by S-cells-with-handles if
and only if G has a defining sequence JlfΊ, Λf2, M3, such that for
each positive integer ΐ, each component of Λfi is a 3-cell-with-handles.
G is a toroidal decomposition of R3 if and only if G has a defining
sequence Mu M2, M3, such that for each positive integer i, each
component of M* is a solid torus (3-cell with one handle).

3* The existence of sequences of homeomorphisms* In this
section we establish, under fairly weak conditions on the decompositions
involved, the equivalence of two decompositions with the existence
of a sequence of homeomorphisms hl9 h2, h3, from R3 to R3 as in-
dicated in the introduction.

A compact continuum M in R3 is semi-cellular if and only if for
each open set U in R3 containing M, there is an open set V lying in
U and containing M and such that each simple closed curve in V is
null-homotopic in U. Every point-like compact continuum in R3 is
semi-cellular, since each such set is cellular. Each compact absolute
retract in R3 is semi-cellular. Since there exist noncellular arcs in
R3, the two categories above are not identical. An example of a
semi-cellular compact continuum in iϋ3 neither cellular nor an absolute
retract may be obtained as follows: Let Tl9 T2, Γ3, be a sequence
of solid tori (3-cells with one handle) in R3 such that for each i,
Ti+1 c Int Ti9 T2 lies in T1 as shown in Figure 1, T3 lies in T2 as T2

lies in T19 and for each i, Ti+ι lies in Tt as Tt lies in T^. Then
ΠΓ-i Ti is a continuum with the desired properties.

LEMMA 1. Suppose that F and G are monotone decompositions
of R3 such that Cl PF[HF] and Cl PG[HG] are compact 0-dimensional
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FIGURE 1.

sets. Suppose that M is a compact polyhedral 3-manifold-with-
boundary, each component of which is a 3-cell-with-handles, such
that Cl HF c Int M. Suppose that each element of G is semi-cellular.
Suppose that there is a homeomorphism h from R3/F onto R3/G such
that h[Cl PF[HF]] = Cl PG[HG]. Let ψ be the function from R3 - Cl HF

onto R3 - Cl HG such that if xe (R3 - Cl HF), φ(x) = P^hP^x). Then
there is a homeomorphism f from R3 onto R3 such that

( 1 ) if x e R3 - Int M, f(x) = <p(x) and
( 2 ) f[M] = PG~

ιhPF[M'\, and each component of f[M] is a 3-cell-
with-handles.

Proof. Let Mu M2, •••, and Mn be the components of M. If
i = 1, 2, , or n, φ \ Bd M{ is a homeomorphism, and thus <p[Bd M{]
is a compact tame 2-manifold-with-boundary and 9?[Bd M{] bounds a
compact 3-manifold-with-boundary N{ in R3. Since |J?=i ^ ^ ^s ^^e
boundary of the connected 3-manifold-with-boundary φ[R3 — Int M],
the sets N19 N2, •••, and Nn are mutually disjoint. Let N denote
U?=i -Wi It is n ° t hard to see that N contains Cl HG, φ takes
R3 - Int M homeomorphically onto R3 - Int N, and φ[Bά M] = Bd iV.
Therefore, in order to describe /, it is sufficient to construct, for
each i, an extension of φ \ Bd M{ to Λft .

Suppose then that i = 1, 2, •••, or ^. Since Jlίi is a 3-cell-with-
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handles, there is a finite set {Dil9 Di29 •••, Dimi} of mutual ly disjoint
polyhedral discs such t h a t (1) if j = 1, 2, •••, or mi9 B d A y c B d M*
and I n t Ay c I n t Af« and (2) the closures of the components of

Ά/ί I ϊmi D C Γ* . . . C
ivl Ui=i -L/ijy Oil, O;2, , Oifeί ,

are polyhedral 3-cells such t h a t if t = 1, 2, •••, or fc^BdCi* is t h e
union of a punctured disc Ait and certain ones of the discs DiuDi2, ,
and Dim. such t h a t if Ay and A i t intersect, Ay Π A ί t = Bd Ay and is
also a boundary curve of Ait. If t = 1, 2, •••, or &;, let S 4 i denote
Bd Cit.

If j" = 1,2, •••, or m<, there is a polyhedral subdisc Ay of Ay
such that Ay c Int Ay and (Cl HF) Π Ay <= Int Ay. Let Ay denote
the annulus Ay — Int Ay.

Now PQlhPF[(C\ HF) n D^ ] is compact and lies in Int Ni9 Since
each element of G is semi-cellular, there exists a finite collection
{(U19 Fx), (U2J F2), •••, (£/,, Vr)} of pairs of open sets in R3 such that

( 1 ) if t = 1, 2, , or r, F* c Z7*, Ut c Int JV<, each simple closed
curve in F f is null-homotopic in Ut9 and Vt is a union of elements of
(?, and

( 2 ) each element of G that intersects P^/zP^Ay] lies in some
one of Vl9 V29 •••, and F r .

There is a triangulation T of Ay such that if σ is any 2-simplex
of T, then for some t9PάιhPF[σ\cz Vt. Let σ19 σ2, •••, and σq denote
the 2-simplexes of T.

Let ζx10xnx12y denote the 2-simplex σlm Let y109 yll9 and y12 be
points of P^hPpiXu), P^hPpiXn), and PG1IIPF{X12), respectively. Since
G is monotone, P^/zP^XiΛ^] is a compact continuum and near it
we can choose a polygonal arc ζy10yny such that if σ is any 2-simplex
of T having ζx1Qxny as an edge and PGlhPF\Kxl0Xi^\ c Fβ, then
^2/io2/n>c F β . It is to be true that if ζxlf>xny misses C\HF then
^VioVii} — PG1^PFY"\XIQ^I\A* I1 1 a similar manner we choose polygonal
arcs ζynV^y and ζy10yl2y. We adjust these slightly near Cl HG so that
if 7i = Oio2/π> U <2/n2/i2> U <2/103/i2>, then 7X is a simple closed curve.
Now for some ίlf P^^PpIσ J c F ί χ and by construction 7i c F^. Hence
there is a polygonal singular disc τx in Utl and bounded by 7i.

Corresponding to σ2, we construct 72 and τ2 such that for some
t19 τ2 is a polyhedral singular disc in Uh. It is to be the case that
if a vertex of σ2 belongs to σly we make the same choice for that
vertex of σ2 as was made for σίf and similarly if an edge of σ2 lies
in σx. In addition, if either a vertex or edge of σ2 misses Cl HFi

then for the corresponding set in 72, we use its image under φ and
do not move it in adjusting to obtain 72.

Continue this process. There result polyhedral singular discs
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τl9 r2, , and τq in Int Nt such that \JUI ?t is a singular disc whose
boundary is φ\βάD'i5\ and which lies in Int Nim By applying Dehn's
lemma [10] to the polyhedral singular disc φ[Bi/\ U (U?=iΓ*)> we see
that there is a disc A'iά such that Bd Δ'iS = φ[BάDi:}] and Int Δ'iS c Int Ni9

By well-known techniques it may be shown that there exist
mutually disjoint discs Δiγ, Δi2y , and Δinι such that for each j ,
Bd Δa = φ[Bά Did] and Int ΔiS c Int Nim

Recall that if ί = 1,2, •••, or ki9Cit is a 3-cell contained in
Mi9 Sit = BdCiί, and Ait is the punctured disc Sit — {Jf^lntDij. It
is clear that if Dijlf DiJ2j , and Dijwt are those discs of Dily Di2, ,
and Dim. whose boundaries are contained in Ait, then ^[A^] U (U?-i 4 yp)
is a tame 2-sphere SU*

We can easily show that if s and t are distinct, then int S'it and
intSJβ are disjoint, where " i n t " denotes the interior, in Ez, of a
2-sphere. Both int S'it and int S'is are contained in Int Ni9 If S'it and
int Sit intersect, then some point of either ^[A^] or ^»[Aίs] lies in
Int Ni. This is a contradiction, so int S'it and int S'i8 are disjoint.

There is a homeomorphism θix from Sn onto S^ such that (1)
θ{11 A f l - φ I Ait and (2) if Di3 c S ix, then fl^fA i] = Λ y. There is a
homeomorphism ί i2 from S i 2 onto Sί2 such that (1) ^ ί 2 \Ai2 = φ\ Ai2,
(2) if A i C S 4 1 n S*, then ^ | DiS = θ* | Ay, and (3) if AycS ί 2 > <?«[Ay] =
z/ίi# If ί = 3, 4, •••, or feί, there is a homeomorphism 0 ί f from Sit

onto S ί such that (1) θit \Ait = φ\ Ait, (2) if s = 1, 2, , or (ί - 1)
and ^.cSitΠiSi. , then θit\Δ^ = ^ l ^ , and (3) if A y c S i t , U A i ] - 4

If ί = 1, 2, , or fc^ there is a homeomorphism 0£ from Cit onto
(SJy U int S;v) such that ^ I Sit = ^ 7 . Now let ^ . be the function
from Mi onto JV* defined as follows: If xeMif let ί be an integer
such that xedtj and let ψi(x) be θft{x). The function ^ is well-
defined because if x e Cit Π Ci8, then θ%(x) — θ*s(x). It is easy to see
that ψi is a homeomorphism from Mi onto N{ and that <^ | Bd Mi =
9> I Bd ilί*.

Now we are ready to define /. If x e Rz — Int M, then define
/(») to be φ(x). If O G M , let ί be the integer such that cceΛfi#

Then define /(a?) to be ^(ίc). It is easily seen that / is a homeomor-
phism from Rs onto Rz satisfying the conclusion of Lemma 1.

THEOREM 1. Suppose that F and G are monotone decompositions
of E* such that Cl PF[HF] and Cl PG[HG] are compact ^-dimensional
sets. Suppose that F is definable by 3-cells-with-handles Mu M2,
Suppose each element of G is semi-cellular. Then if F and G are
equivalent decompositions, there exists a sequence f19 /2, /3, of
homeomorphisms from R3 onto Rz such that (1) for each

iy fi+ι I (i23 - Int M^ = fi I (R* - Int Mt) ,
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and (2) /JΛfJ, /2[M2], /3[M3], is a defining sequence for G.

Proof. Since F and G are equivalent, there is a homeomorphism
A from i23/F onto R3/G such that fc[Cl PF[HF]] - Cl P G [ ^ ] . Let φ
be the function from R3 — Cl ΉV onto R3 — Cl iJG such that if

xe(R3 ~ Cl2ϊp), φ(x) = PG

ιhPF{x) .

Since F is definable by 3-cells-with-handles, there exists a defining
sequence Mu M2, Ms, for i*7 such that for each positive integer i,
each component of Λft is a 3-cell-with-handles. By Lemma 1, if i is
any positive integer, there is a homeomorphism f from Iϋ3 onto Rz

such that if xe E3 — Int Af<, /*(#) — 9>(α) We will show that the
sequence fl9 f2, /3, satisfies the conclusion of Theorem 1.

Suppose ί is any positive integer. Then Λfi+1 c Int Mi since
Mu M2, Mz, is a defining sequence for HF. Since

fi+ι I R * - I n t Mi+1) = φ\(R3- I n t Jlf i + 1) ,

then

fi+11 (R3 - Int AT,) ^φ\(R3- Int M<) .

Since /, \ (R* - MJ = φ\ (Rz - Int AQ, it follows that

/<+11 (i23 - Int M<) = ft I (R* - Int

Suppose U is an open set in Rz containing Clίί^. Then Pf1^~1

is open in Jϋ3 and contains Cl HF. Hence there is a positive integer
n such that MndPf1h~ίPG[Ul and it follows that P^hPjlMJaU.
Since fn[Mn] - P^hP^M,], fn[Mn] c U. It is clear that for any
i, (Cl HG) czflM,]. Consequently, /JM,], /2[Afa], fz[M3], is a defining
sequence for G. Hence Theorem 1 holds.

COROLLARY. 1. If F and G satisfy the hypothesis of Theorem 1,
then G is definable by 3-cells-with-handles. If F is toroidal, so is G.

Proof. We use the notation of Theorem 1. By Theorem 1,
/JMj], f2[M2], /3[AΓS], is a defining sequence for G. By Lemma 1,
for each positive integer i, each component of fi[M{] is a 3-cell-with-
handles. Hence G is definable by 3-cells-with-handles. It is clear
that if for each positive integer i, Mt is a solid torus, so is fi[M{].
Therefore, if F is toroidal, so is G.

THEOREM 2. Suppose that F and G are monotone decompositions
of R3 such that Cl PF[HF] and Cl PG[HG] are compact ^-dimensional
sets. Suppose that F has a defining sequence M19 M2, ikΓ3, and
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there exists a sequence / i , / 2 / 3 , of homeomorphisms from R3 onto
Rs such that (1) for each i, fi+ί \ (R3 - Int MJ = /< | (R3 - Int Λf<), and
(2) f[M1]yf2[M2]yf3[M3]y ••• is a defining sequence for G. Then F
and G are equivalent.

Proof. We shall define a homeomorphism h from R3/F onto R3/G
such that h[Cl PF[HF]] = Cl Pβ[Hβ].

Suppose x is a point of .KVί7. Consider first the case where
x£ Cl PF[HF]. Then P j 1 ^ ) is a one-point set and so there is a point
2/ of R3 such that P (̂?/) = x. Further, y % Cl jffp. Hence for some
ny, if ΐ > wy, /i(τ/) = fny(y). Then define fc(α ) to be the point PGfny(y)
of #3/G.

Suppose x G Cl PF[HF]. Then there is a sequence Mlh, M23-2, Λf3j 8,
such that for each k, Mkjk is the component of Mk containing PF\x).
It is true, further, that Pf1(x) = \JT=i Mkjjc. Since^[ΛfJ,/2[Jlf2],/8[ilf8],.
is a defining sequence for HG, then Γϊΐ=ifk[MkJk] * s a n element gz of
G. Define Λ(a ) to be the point z of R3/G such that PG[#X] = {z}.

It is not hard to show, using the hypothesis, that h is a homeo-
morphism from R3/F onto R3/G such that λ[Cl P^ffl^]] = Cl PG[HG].

THEOREM 3. Suppose F and G are monotone decompositions of
R3 such that Cl PF[HF] and Cl PG[HG] are compact ^-dimensional sets.
Suppose F is definable by 3-cells-with-handles and each element of
G is semi-cellular. Then F and G are equivalent if and only if
there exists a defining sequence M19 M2, for F and a sequence
fif fii Λy * of homeomorphisms from R3 onto R3 such that (1) for
each i,

fi+11 (R3 - Int Mt) = f I (R3 - Int Mt) and (2) /.[MJ, f2[M2], /8[M8], •

is a defining sequence for G.

Theorem 3 is a corollary of Theorems 1 and 2.
We shall indicate now some conditions under which a monotone

decomposition F of R3 satisfies the hypothesis of Theorem 3 for F.

LEMMA 2. Suppose that F is a monotone decomposition of R3

such that Cl PF[HF] is a compact ^-dimensional set. Then F is de-
finable by S-cells-with-handles provided it is true that if g is any
element of F, gQ is any subcontinuum of g embeddable in R2, and h
is any embedding of g0 in R2, then h[g0] does not separate R2. In
particular, the condition stated holds provided g satisfies any one
of the following:

( 1 ) g is tree-chainable (see [3] for definition).
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( 2 ) g is snake-like (see [3] for definition).
( 3 ) g is a dendron.
( 4 ) g is an arc.

Lemma 2 may be established by the methods of [2].

4* The dogbone space* In this section it is proved that there
is a decomposition F which is equivalent to the dogbone decomposition
and such that F has only countably many nondegenerate elements.
The notation and terminology of [5] will be used in this section.

LEMMA 3. Suppose f is a homeomorphism of A into Rz, B =
f[A], Bi = f[Ai], Pl9 P2, P8, , and Pm are disjoint horizontal planes
in iϋ3, there exist positive integers j and k such that 1 ^ j ^ k rg m
and B intersects only PjΊ Pj+1, •••, and Pk, and for each positive
integer i, 1 ^ i ^ m, each component of B Π Pi is a tame disc,
B Π (Us<ί Ps) is contained in some component of B — Pίy B Π (Us>; -P*)
is contained in some component of B — Pu and B Π Pi is contained
in some component of B — ( J s ^ Ps. Then there exists a homeo-
morphims h of R3 onto itself such that (1) h is point-wise fixed
outside of B, (2) h[Bt] intersects P3, P i + 1 , •••, and Pk, (3) each of
h[B2], h[B3], and h[B4] intersects at most k — j of the P-s, and (4)
for i = 1,2, 3, or 4, h[B{] Π (UΓ=i Pt) has the same properties as

B n (ur=i Pt).

Proof. Adjust [JU, f~ι[Bi] = \J4

i=1 A{ by a homeomorphism g of
A onto itself such that g is fixed on the boundary and g carries
Ui=i^» to the positions indicated in Figure 2. Let h be fgf~\ It
can be assumed that h[Bi] has small cross sectional diameter, \J4

i==1 h[Bi]

f-][Ptf)B]

FIGURE 2.
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and \jT=iPi are in relative general position, and each component of

(Uί=i h[Bi]) n (UΓ=i Pi) is a disc.
We will now construct the decomposition F. Let Pu P2, •••, and

Pr be horizontal planes which intersect A as shown in Figure 3.
Apply Lemma 3 to A and Pu P2, •••, and Pr to obtain a homeo-
morphism hu and let B{ = / φ l j . See Figure 3. Apply Lemma 3 to
Bi and Pu , and Pr to obtain a homeomorphism hi. Let A2 =
hlhlhlhth and let 5 ί y = h^A^. This process is continued until Bi3...m

intersects at most one of the P/s. When Bi5...m intersects only Ps,
then discs are added to the collection of discs Bi3 ...m Π Ps so that the
total collection cuts Bi3 ...m in the same manner as Pl9 •••, and Pr cut
up A, and so that each component of Bid...m in the complement of
the collection of discs has diameter less than one half the diameter
of B. A modified version of Lemma 3 is now applied to Bi3 ...m and
the collection of disjoint discs.

FIGURE 3.
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F is the decomposition whose nondegenerate elements are the
nondegenerate components of A n (Π 5<) Π (U Biά) Π (U Biάk) (J . It
is clear, using Theorem 2, that i*7 is equivalent to the dogbone
decomposition.

THEOREM 4. F has only countably many nondegenerate elements.

Proof. There is a one to one correspondence between the com-
ponents of A Π (U Bi) Π (Π Biό) Π and the set of all sequences into
{1, 2, 3, 4}, where the sequence t corresponds to A Π Btω Π BtilH{2) Π .
It will next be shown that / is a nondegenerate element of F if and
only if the sequence corresponding to / converges to 1.

Suppose t is a sequence into {1, 2, 3, 4}, t converges to 1, and /
corresponds to t. Then there exist disjoint discs Ex and E2 and an

FIGURE 5.
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integer m such that if n :> m, then Btωt{2)...t{n) intersects Eλ and E2.
Hence / is a nondegenerate element.

Suppose t is a sequence into {1, 2, 3, 4} which does not converge
to 1. Let {q^ be an increasing sequence such that for each i, t{qι) Φ 1.
Then Btωt{2)...t{qr) intersects at most one of Pu P2, •••, and Pr. For
some n, BtU)...t[qn) intersects at most one of the discs used to define
the homeomorphism ht{qr)+1. Hence lim^.^ (diam Btω...t{n)) is zero.

EXAMPLE 6. There exists a point-like decomposition F such that
if K is any point-like decomposition equivalent to F, then K has
uncountably many nondegenerate elements. Let A be a solid double
torus and let Aly A2, - - -, A7, and A8 be solid double tori embedded in
A as shown in Figure 4. Inside each of the A/s eight double tori
are embedded like the A/s are in A, etc. Suppose K is equivalent
to F and let A!i5...m correspond to Aiό.,.m. Let Ό[ and A' be disjoint
discs in A! which are embedded in A in the same manner as A and
D2 are embedded in A. See Figure 4. It follows from the arguments
in [5] that two of the A"s intersect both D[ and A', and inside each
of those two of the Ai3''& interset both D[ and A', etc. It follows
that K has uncountably many nondegenerate elements.

5* A decomposition not equivalent to the dogbone* In this
section G will denote the point-like decomposition of Rz described by
Bing in [7], and the notation and terminology of that paper will be
used. It will be proved that any point-like decomposition equivalent
to G has at least one nondegenerate element which is not locally
connected. Let To denote a round solid torus in R\ Let T0Q and T01

be disjoint solid tori embedded in the interior of To as shown in
Figure 5. Inside each Toί two tori are embedded, etc. G is the
decomposition of I?3 whose nondegenerate elements are the nondegener-
ate components of To Π (U Toi) Π (U Toij) Π . G has countably many
nondegenerate elements, each of which is indecomposable.

Property P. Suppose T is a solid torus. A disc D has Property
P with respect to T if and only if D is a polyhedral disc in general
position with respect to T and Bd D is a simple closed curve on Bd T
which circles Bd T meridianally.

Property A. A collection of sets {Γ, Dly •••, Dn} has Property A
if and only if (1) T is a solid torus, (2) for 1 <; i ^ n, A is a disc
which has Property P with respect to T and no proper subdisc of
A has Property P with respect to T, (3) if iφj then A and Dό are
disjoint, and (4) if C is a longitudinal curve on Bd T which intersects
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FIGURE 5.

each i in a single point q{, then the ordering of the g/s on C

is
Suppose {T, Dlf , Dn} has Property A. A collection (Q19 , Qn}

is a division of T determined by {T9 Du •••,!)„} if and only if for
each ί, 1 ^ i < w, if JD/ denotes the component of I?; — (R3 — T)
which contains BdZ^, for 1 rg i < n, Ql denotes the component of
T — (U D[) whose closure intersects both D[ and D[i+1), Qt = QJ, and
Qw is the closure of the component of T — (Z)/ U DL) which is disjoint
from Q[.

LEMMA 4. // {To, D19 , Dn} /̂ αs Property A and {Q19 , QJ
is α division of To determined by {To, Du ••-,!?„}, ίΛβ^ ί^βre βα ΐsί
αti integer i and discs El9 E29 •••, αwcί £7m suc/z, ί/^αί (1) i = 0 or 1,
(2) {Toί, ̂ , , !£„} Λαs Property A, (3) i / {i2±, , i2m} is the division
of TQi determined by {Toi9 E19 9 Em}, then there exists integers
ilf i2, , and i2n, such that 1 rg i± < i2 < < i2TO ^ m and for some

t,l^t<,n,Riχc: Qt, Rh c Qt-!, , Rh a Q,, Rh+1 aQn, , Rίn

α^ώ (4) i/ R, c Qy, ί/̂ βπ £?,• is contained in one of Dj and DJ+ιand is contained in the other.
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Proof. Consider the universal covering space for To. It is re-
presented by Figure 6 where it appears that To has been rolled out
onto a cylinder. It follows from the proof of [7, Th. 5] that for
some k, either each center for Too intersects two adjacent copies of
Dk in the universal covering space, or each center for TOί intersects
two adjacent copies of Dk in the universal covering space. Assume
each center for Too intersects two adjacent copies of Dk in the uni-
versal covering space and let i = 0. Let C be a center for Too such
that C Π (U Dό) is a finite set, and if C" is a center for Too, then
C'Π(U Dj) contains at least as many elements as C Π (U Dό). This
last condition implies that if reCnDj, then there is a subdisk E of
Dj which has Property P with respect to Too and E Π C = r. It can
be assumed without loss of generality that T0Q is polyhedral and
Bd Too and U D3 are in relative general position.

D

FIGURE 6.

Let C denote one of the copies of C in the universal covering
space as shown in Figure 6. Assume that one of the copies of Djf

say Dj, is the rightmost one of the copies of the Dk's that intersect
C". Let D'j' be the first copy of D5 to the left of D'ά and let Df

k be
the first copy of Dk to the right of D'/. Let t be j - 1 if 2k ̂  j ^ n
or t be n if j = 1. Let fcx be a point in C to the right of Dj and
let k2 be a point in C" to the left of D". Let A be an arc in C
from k1 to &2 and B be the arc in C from &2 to &! which intersects
A only in the end points. Let r'2 be the first point of A in Dr

ά_x and
let τ[ be the last point of A n D's preceding r£ Let r^ be the first
point of A in Dj__2 and let r'z be the last point of i n -DLi preceding
rl. Continue this procedure to obtain points r^r^ •• ,rJΛ_1, and r^.
Let r'zn+z be the first point of B in JDJ+1 and let r'2n+ι be the last
point of B Π D'j preceding r'2n+2. Continue this to get r[, τ2j , r^_1

and r[n. Let r€ be the point in C corresponding to rj .
The r / s have the ordering r ^ -τAnr1 on C, and determine disks

Elf •••, and J54n on Γoo. It can be assumed that each of the ϋ^'s is
a subdisk of [j Dk1 each has property P with respect to Too, no proper
subdisk of E{ has property P with respect to Γoo, if r< = r ί + 1 then
Ei — Ei+1, otherwise the 2?/s form a disjoint collection, and finally
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EjΠC = ry.. If the collection {Eu , i74%} is reindexed to give a
disjoint collection {Eu , jEy then clearly m Ξ> 2% and there exist
integers iu •••, and i2 n which satisfy the conclusion of the lemma.

THEOREM 5. If F is a point-like decomposition equivalent to G,
then some nondegenerate element of F is not locally connected.

Proof. By Theorem 1 and Corollary 1, F is a toroidal decomposi-
tion of Rz and there exists a sequence of homeomorphisms {/̂ }Γ=o of
homeomorphisms such that Λ< is from Rz onto iϋ3, if j > k, then
hj I jβ3 — U Toiv..ik — hk, and the nondegenerate elements of F are the
nondegenerate components of ho[TQ] Π h^ij TQi] D .

Let A and A be disjoint discs, each of which has Property P
with respect to hQ[T0], and such that no proper subdisc of either A
or A has property P with respect to ho[TQ]. Then /^[A] and / ^ [ A ]
are discs, each of which has Property P with respect to To, and no
proper subdisc of either has Property P with respect to To. Let Rι

and R2 be the division of To determined by {To, /^[AL ^Γ'tA]}.
By Lemma 4, there exist an integer tt in {0,1} and disks EίUE12i ,

and £Ίm(D such that, {Toh, En, - - , Elm{1)} has Property A, and if
{i?n, ••-,#!«(!,} is a division of Γoίl determined by {Toh, Eni ---,Eίmω},
then there exist integers j n and j 1 2 , j n < j 1 2 , such that, jRiyil and
Rljί2 are contained in Rlf Eιύχ and EίJ2 are contained in one of ^ [ A ]
and hϊ\D2\ and Elijl+1) and EliJ2+l)modm{1) are contained in the other.
Then {Γo<1, ^^[JSΉ], , ^Γ^iAmd)]} has Property A, and by applying
Lemma 4 again, there exist an integer t2 in {0,1} and discs E2l9 •••,
and J52m(2, such that {Tohhy E21, , E2mi2)} has Property A, and if
{i?21, , i22m(2)} is a division determined by {TOhh1 E2i1 , i72w(2)}, then
there exist integers j 2 1 < j 2 2 < j 2 3 < j M such that

R2j21 c i?i i u, R2J22 c J?2il2, i?2i23 c Rίjl2, and i?2, 24 c JS l i n .

Continuing this process by induction it follows that

(ho[τo] n ΛjΓoj n ̂ [To^J n •) - (A u A)

has an infinite number of components, each of which intersects both
A and D2, and hence is not locally connected.

In fact, countably many of the nondegenerate elements fail to
be locally connected. To see this let v€ denote (t{ + 1) mod 2. Let
Ai and D22 be disjoint discs which have Property P with respect
to h^TovJ and repeat the above argument. Similarly for each of
h2[T0h], h[T0ht2V3l h4[T0ht2hVil etc.

COROLLARY 2. There does not exist a point-like decomposition
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F equivalent to G such that each nondegenerate element of F is
an arc.

COROLLARY 3. The decomposition G is not equivalent to the
dogbone decomposition.

EXAMPLE 7. There does exist a decomposition F equivalent to
G such that some nondegenerate element of F is an arc.

Construction of F. Let Γoo and T01 be embedded in To as shown in
Figure 7. If this pattern is used at each stage, then T01 n Ton n Toin Π •
is an arc.

EXAMPLE 8. There exists a decomposition F equivalent to G such
that F has uncountably many nondegenerate elements and each is an
indecomposable continuum.

Construction of F. Let Too and T01 be embedded in TQ as shown
in Figure 8. This pattern is used at each stage.

6* Tamely finnable 3-cells* In this section we show that if
a 3-cell C in R3 is tamely finnable, then there is a 3-cell C" in R*
with a flat spot on its boundary such that the decomposition of i?3

whose only nondegenerate element is C is equivalent to the decom-
position of Rz whose only nondegenerate element is C. A 3-cell C
in R* is tamely finnable if and only if there exists a tame disc D in
Rz such that D f] C is an arc a and a c (Bd D) Γ) (Bd C). The state-
ment that Bd C has a flat spot means that Bd C contains a polyhedral
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disc. We begin by describing several sets and functions which will
be used in the proof.

Let R be the 3-cell {(x, y, z) : \ x | ^ 1, | y | ^ 2, | z | ^ 1}, R+ be
(R n {(x, y , z ) : y ^ 0 } ) , a n d B r b e (R Π {(x, y , z ) : y ^ 0 } ) . F o r e a c h
subset X of R, let X+ denote X n R+ and X~ denote X n Br.

If P and Q are points in iϋ3, let [P, Q] denote the straight line
interval from P to Q Let A be {(x, y, z): x2 + y2 <^ 1}, A be

U {[(x9 0, 0), (x, y, 1)]: a* + 2/8 = 1} ,

A be

U {[(», 2Λ 0), (a?, T/, 1)] : x2 + y* = 1} ,

A be

and D 5 be {(x, y, 0): x2 + y2 £ 1}.
Let K be the 3-cell bounded by A U A , L be Cl (J? - K), M be

the 3-cell bounded by A U A U A , and ΛΓ be Cl (R - M); see Figure 9.
Let gγ be a homeomorphism of L + onto N+ such that ^x is fixed

on BdL+nBd#,&[{(&, 0,0): - l ^ α ^ l } ] is {(α, 2/, 0): x2 + y2 = 1, y ^ 0}
and ^! moves points only along lines parallel to the y-axis. Let g2

be a homeomorphism of Zr onto N~ such that ^2 is fixed on

Bd L- Π Bd i2, flf2[{(a;, 0, 0) : - 1 ^ x ^ 1}]

is {(α;, y, 0) : x2 + y2 = 1,7/ ^ 0} and #2 moves points only along lines
parallel to the τ/-axis.

Let Mf be M π {( ,̂ ?/, «) : « ^ 0} and let ^ be a continuous func-
tion from Mr onto K such that #3[A] = {(x, 0, 0): — 1 ^ a? ̂  1}, g3 is
the identity on A , #s I A+ = 9T\ Qs I A" = QT\ and ^3 is a homeo-
morphism on (Mr — A )

THEOREM 6. Let C be a 3-cell in R3 such that C is tamely fin-
nable. Then there exists a 3-cell Cr in Rs such that C has a flat
spot and the decomposition of R3 whose only nondegenerate element
is C is equivalent to the decomposition of R3 whose only nondegenerate
element is C'.

Proof. Let C be the 3-cell and D be a tame disc such that
D n C is an arc a lying on Bd D n Bd C. There exists a homeomorphism
h of R3 onto itself such that (1) h[a] = {(x, 0, 0) : - 1 ^ x ^ 1}, (2)
h[D] = {(x,0,z) : M ^ l , O ^ z ^ l } , and (3) h[BdC-a] and K{J(R+r)R~)
are disjoint.

Let F be a homeomorphism from R-(K{J (R+Γ)R~)) onto R — M
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FIGURE 9.

such that if x e [R-{K{){R+fMt~))]+, F(x) = g^x), and if xe[R~
(KU(R+ΠR-))r, F(x) = g2(x). Extend F to R'-R such that if
xe(R3-R),F(x) = x. Let S be D5l)Fh[BdC-a].

It is easily seen that S is a 2-sphere in R3 which bounds a 3-cell
C and Bd C" has a flat spot, the disk _D5. It remains to show that the
decomposition of R3 corresponding to C and C respectively are equi-
valent.

We will define a function Φ from R? onto itself such that \Φ[C]
= h[C] and Φ \ Ext C is a homeomorphism. If PeR3-M, Φ(P) = F~1(P).
If Pe ikP, Φ(F) = gz(P). If P e Mn{(α?, T/, Z): ^^0} andP-(x, i/, «), let Φ(P)
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be (x, 0, z).
Now the function h~xΦ is a continuous function from Rz onto it-

self which maps G onto C and is a homeomorphism outside G. It
follows that the corresponding decompositions are equivalent.

COROLLARY 4. If C is a Z-cell in Rz and C is tamely finnable,
then there exists a disc D in Rz such that the decomposition of Rz

whose only nondegenerate element is C is equivalent to the decom-
position of Rd whose only nongenerate element is D.

Proof. This follows from Theorem 3 of [10].

The statement that K is a crumpled cube means that K is home-
omorphic to the union of a 2-sphere and its interior in R3.

THEOREM 7. If K is a crumpled cube in Rz, there exists a %-cell
C in R3 such that the decomposition of Rz whose only nondegenerate
element is K is equivalent to the decomposition of Rz whose only non-
degenerate element is C.

Proof. Apply Theorem 2 of [8].

7* Improving elements of decompositions* Suppose K is a 3-
cell-with-n-handles in Rz and C, d , C2, C3, •••, and Cn is a standard
decomposition of K. If i is a positive integer less than or equal to n,
let DiΛ and Di}2 be the two components of CπCi. Let p be an ele-
ment of Int C, and if i and j are integers, 1 ̂  i ^ n, 1 ̂  j ^ 2, let pit3

be an element of Int Ditj. Let T be {(α, y, z) e Rz: x2 + y2 ^ 1, | z \ ̂  1}.
If i is a positive integer less than or equal to n, there is a homeomor-
phism /; of d onto Γ such that fi[Ditl] = {(OJ, i/, 2): $2 + ̂ /2 ̂  1, z —
1}, Λ[ A,2] = {(«, 1/, «): ̂ 2 + T/2 ̂  1, « = -1}, f{piΛ) - (0, 0,1) and Mp^) -
(0, 0, -1). Let a, be /^[{(O, 0, 2): | z \ g 1}].

Let / be a homeomorphism of C onto the unit ball {(a?, 7/, s): ̂ 2 +
τ/2 + z2 g 1} such that f(p) — (0, 0, 0). If i and j" are integers, 1 ^
i ^ n, 1 ̂  j ^ 2, let 5ί:, be the straight line interval from f{piyj) to
/(j>), and let ft,, be /-1[6i,i]. Let S be (U?=Λ) U (U?=i«ϊ-A.i). We
will call S a special spine of if.

A partition of if is a finite collection ^ of subsets of K such
that (1) if Q e ̂ , Q is a 3-cell, (2) if Q e ̂  and Q c C, then Q - C,
(3) if Q e & and there is a positive integer i less than or equal to n
such that QaCi, then there exist real numbers a and b such that
- l ^ α ^ δ ^ l and f[Q] = {(x, y, z): a^z^b}f}T, (4) if Qxe^9

Q2 e ̂ , Qi ̂  Q2, and Qx Π Q2 Φ 0 , then Qx Π Q2 is a disc on Bd Qx f]
Bd Q2> and (5) U {Q: Qe^}=- K.

If if is a polyhedral cell with handles in Rz, S is a special spine
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of K, and ε > 0, there is clearly a homeomorphism h of R3 onto itself
and a partition & of K such that (1) if x e (R3 - V(K, e )), h(x) = x,
(2) h[K] c V(S, e ), and (3) if Q e &>, (diam h[Q]) < e .

THEOREM 8. Suppose F is an upper semi-continuous decomposi-
tion of R3 and F is definable by 3-cells-with-handles. Then there ex-
ists an upper semi-continuous decomposition G of R3 such that F is
equivalent to G and each nondegenerate element of G is one dimen-
tional.

Proof. Since F is definable by 3-cells-with-handles, there exists a
defining sequence M19 M2, MB, for F such that for each positive in-
teger k, each component of Mk is a 3-cell-with-handles. Let Ck,u Ckt2,
• * •> Ck,nk be the 3-cells-with-handles which are the components of Mk,
and if j is a positive integer less than or equal to nk, let Skij be a
special spine of Ck,3 .

Let εL be a positive number such that εx < 1 and V(Cltl, εx),
V(CU2, ε j , , and V(CUni, e j are mutually disjoint sets. For each
positive integer j less than or equal to nu there exist a partition Pltj

of Cuj and a homeomorphism huj of "F(ClfJ , εx) onto itself such that (1)
if x e V(Cuί, ε,) - F(C l f i , εx/2), few(a;) = x, (2) /^^-[C^ ] c F(S1 > y, ex), and
(3) if Q G ̂ i , i , (diam ^^-[Q]) < εlβ Let hx be a homeomorphism of Rz

onto itself such that if x £ JJ?ii "̂ (CΊ,»f εi)^ ^i(χ) = χ> a n ( i if i is a posi-
tive integer less than or equal to nx and xe V(Cui, εx), hι(x) = hui(x).

Let δi be min {(diamfe^Q]): Q e ((jSi^.i)} a n d let ε2 be a positive
number such that ε2 < min {δJ2, 1/2} and F ^ C a , ! ] , ε2), F ^ C z ^ ] , ε2),
• , and F(/&i[C2>«2], ε2) are mutually disjoint sets each one of which is
contained in h^ViM^ 1/2)]. For each positive integer i less than or
equal to n2, there exist a partition ^2fj of C2>J and a homeomorphism
h2fj of Fί^JCz,/], ε2) onto itself such that (1) if

x e V{hiC2iJl ε2) - F ί M C U , ε2/2), Λa>i(a;) = x,

(2) ^ ^ [ ^ [ C . ^ l l c F ^ S , , , ] , ^ ) , (3) if Q.e^j, there exists an element

Q2 of U?i i^i . i s u c h t h a t ^ A I O J c W J , and (4) if

Q G ̂ 2 > i , (diam ^^^[Q]) < ε2.

Let fe2 be a homeomorphism of R3 onto itself such that if

and if i is a positive integer less than or equal to n2 and

xe VihilC^], ε2), h2(x) = Λ-2fi(αj).
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Continue in this manner obtaining a sequence hu h21 Λ3, of
homeomorphisms of E3 onto itself. Let h be lim?i_)OO(fewfew_1 hj), and
let G be {^[/]: / e ί 1 } . It is easily seen that G is an upper semi-con-
tinuous decomposition of E3 such that F and G are equivalent. The
fact that each nondegenerate element g of G is one-dimensional can
be seen by noticing that g intersects the boundaries of the images of
the elements of the partitions in a O-dimensional set.

THEOREM 9. Let G be a monotone upper semi-continuous decom-
position of R3 such that G has only countably many nondegenerate
elements, and each nondegenerate element is tame (relative to the
usual triangulation of R3). Then there exists a homeomorphism h of
R3 onto itself such that if g eG, h[g] is polyhedral.

Proof. Let g19 g2i g3, denote the nondegenerate elements of G.
Let ε1 be a positive number such that ei < 1/2. Since gL is tame, it
follows from Theorem 9 of [4] that there exists a homeomorphism hx

of R3 onto itself such that if xeR3 — V(glf eJ4), ht(x) = x, if xeR3,
d(x, hλ{x)) < ε:/4, and h^g^] is polyhedral.

Let ε2 be a positive number such that

ε2 < (6l/2), Vihlgl ε2) c h\V{g2i 1/22)],

and Vih^g*], ε2) f] h^g^ — 0 . There exists a homeomorphism h2 of R3

onto itself such that if xeR3 — V(h^g^[, ε2/4), h2(x) = x, if xeR3 then
d(h2(x), x) < ε2/4, and h2h1[g2] is polyhedral.

If ^ is a positive integer and hl9 h2, •••, and hn^ are chosen, let
εn be a positive number such that

εn < 1/2*, V(hn^ hλ[gnl εn) c hn_x . . . AJFίflr,, 1/2%

and

( n—1 \

U ^n_l ' * * ^l[<7;] ) — 0 .

There exists a homeomorphism Aπ of R3 onto itself such that if

then fen(a?) = £c, if XGJR3 then d(hn(x),x) < εj£, and /&« fei[flr«] is
polyhedral.

Let Λ, be lim^^ hjιn_γ hιm h is the uniform limit of continuous
functions, thus h is continuous. It follows from Theorem C2 of [9]
that h is onto R3.

To show that fe is one-to-one, let x and y be distinct points of it!3.
If a? and ?/ belong to the same element of G, then clearly h(x) Φ h(y).
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Suppose xe gx and yegy and gxφgy where gx and gy are elements of G.
Since G is upper semi-continuous, there exists a positive integer N

such that if n is an integer greater than N and xe V(gn, 1/2U), then
V $ V(gni l/2%), and if n is an integer greater than N and y e V(gn, l/2%),
then xdV(gnjlβ

n).
Now for each positive integer n, let Un be

(K^ . . . Kr\V(K-, K){g«l eJA].

Then Un c F(flr«, l/2%). If for each positive integer % neither x nor #
belongs to Un9 then

λ(a?) = hN ^(α?

and

Suppose there exists a positive integer n such that n > N and
a? G Un. Then

and

Λ-i ht(x) e V(K-r K[g%l en/A).

Since

K[gnl en) c ^_, h[V(gni l/2 )],

and

d(Λn_! K(y), hn^ h^x)) ^ en.

Then

d(h(x), hn_, hγ{x)) ^ εJ2, d(h(y), hn_, . hM) ^ en+1/2 < εn/2

and

d(h(x), h(y)) Φ 0.

Thus h(x) Φ h(y). Hence h is one-to-one.
To show that hrι is continuous, suppose there exists a sequence

xn—>x such that h~1{x)y^h~1(x). Picking a subsequence if necessary,
it can be assumed that there exists a positive number ε such that
for each ΐ, h"ι{Xi) g V{hr\x), ε).

Since h is bounded, {fe—1(a?i): i G J} is bounded and Cl {Λ""1(a;ί): ieJ}
and {/zr1^)} are disjoint compact sets. Hence for some

δ > 0, d(Λ[Cl {A-̂ a;*): i e J}], hh~\x)) > δ.

Then for each positive integer ΐ, d(a?if a?) > δ. This is a contradiction.
Thus hrγ is continuous.
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COROLLARY 5. If F is an upper semi-continuous decomposition
of Rz into tame 3-cells and points, then there exists an upper semi-
continuous G into polyhedral 3-cells and points such that F is equi-
valent to G.
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