THE RATIONAL HOMOTOPY OF A WEDGE

ALLAN CLARK AND LARRY SMITH
THE RATIONAL HOMOTOPY OF A WEDGE

ALLAN CLARK AND LARRY SMITH

The rational homotopy of a wedge $X \vee Y$ is given in terms of the rational homotopy of X and Y.

Let X be a pathwise connected and simply connected space with base point e_x, which is a neighborhood deformation retract in X. (See [5].) We shall say that X is a nicely pointed space. The rational homotopy of X is the connected graded Lie algebra over Q, $L_*(X)$, defined by setting $L_n(X) = \pi_{n+1}(X, e_X) \otimes Q$, with the Lie product induced by the Whitehead product on homotopy groups.

The purpose of this note is to show that the functor \mathcal{F} preserves coproducts. More precisely we show:

Theorem 1. Let X and Y be nicely pointed spaces which are pathwise connected and simply connected and whose rational homotopy has finite type. Then there is a natural isomorphism of graded Lie algebras

$$\phi(X, Y): L_*(X \vee Y) \cong L_*(X) \perp L_*(Y)$$

where \perp denotes the coproduct in the category of connected graded Lie algebras over Q (defined below).

The result follows easily from the natural isomorphism of $L_*(X)$ with $H_*(\Omega X; Q)$, the Lie algebra of primitive elements of the Hopf algebra $H_*(\Omega X; Q)$. This isomorphism was discovered by Cartan and Serre; a revised statement [4, page 263] is due to John Moore to whom we are indebted for many useful conversations. Due to this isomorphism we may view L_* as the composition of four functors: $L_* = PBSHFC$ where

1. P is the functor which assigns to a pathwise and simply connected space the connected differential graded Q-coalgebra formed by its simply connected singular chain complex over Q;
2. F is the cobar construction;
3. H is the homology functor;
4. S is the functor which assigns to a connected graded Hopf algebra over Q the associated connected graded Lie algebra of primitive elements.

The idea of the proof is to show that each of the required categories has coproducts preserved by the four functors involved.

This result has long been a part of the folk literature, but to
the best of our knowledge no proof appears in print. This result extends and compliments results of Hilton, and Porter on the integral homotopy of a wedge.

1. Coproducts. A category \(\mathcal{C} \) has coproducts if to every pair of objects \(A \) and \(B \) of \(\mathcal{C} \), there is assigned a diagram in \(\mathcal{C} \)

\[
A \xrightarrow{i_A} A \perp B \xleftarrow{i_B} B
\]

with the property that for any morphisms \(f: A \to C \) and \(g: B \to C \) of \(\mathcal{C} \), there is a unique morphism \(f \perp g: A \perp B \to C \) such that

\[
\begin{array}{c}
A \xrightarrow{i_A} A \perp B \xleftarrow{i_B} B \\
\downarrow f \perp g \\
C
\end{array}
\]

is a diagram in \(\mathcal{C} \). ("Diagram in \(\mathcal{C} \)" means a commutative diagram of objects and morphisms of \(\mathcal{C} \).)

If \(\perp \) is a coproduct on \(\mathcal{C} \), then as an immediate consequence of the definition, there are natural \(\mathcal{C} \)-isomorphisms \(A \perp B \cong B \perp A \) and \(A \perp (B \perp C) \cong (A \perp B) \perp C \).

Example 1. The wedge \(\vee \) or one point union is a coproduct on the category of pointed spaces \(\mathcal{S}_* \).

In the remaining examples \(K \) will be a commutative ring with unit.

Example 2. \(\mathcal{C} = \text{the category of connected graded } K\text{-modules} \).
For each object \(A \) of, we have \(A_0 \approx K \). The coproduct is defined by \((A \perp B)_n = A_n \oplus B_n \) for \(n > 0 \).

Example 3. \(\mathcal{C} = \text{the category of connected graded } K\text{-algebras} \).
For \(A \in \mathcal{C} \) we define a graded \(K\)-module \(\overline{A} \) by \(\overline{A}_n = A_n \) for \(n > 0 \) and \(A_0 = 0 \). Then \(T(\overline{A}) = K \oplus \sum_{n=1}^{\infty} (\overline{A} \otimes \cdots (n) \cdots \otimes \overline{A}) \), the tensor algebra of \(\overline{A} \), is an object of \(\mathcal{C} \) and there is a canonical homomorphism \(T(\overline{A}) \to A \) in \(\mathcal{C} \), the kernel of which we denote \(I(A) \). A coproduct is defined by \(A \perp B = T(\overline{A} \oplus \overline{B})/(I(A), I(B)) \) where the denominator denotes the ideal of \(T(A \oplus B) \) generated by \(I(A) \) and \(I(B) \). It is routine to verify that \(\perp \) is indeed a coproduct. A simple diagram chase shows that \(T(\overline{A}) \perp T(\overline{B}) = T(\overline{A} \oplus \overline{B}) \).

Example 4. \(\mathcal{C} = \text{the category of connected graded Lie algebras over } Q \). Each \(A \in \mathcal{C} \) is a graded \(K\)-module with \(A_0 = 0 \). We set

1 The word ‘algebra’ means ‘associative algebra with unit’.
$U(A) = T(A)/J$ where J is the ideal generated by all elements $x \otimes y - (-1)^{pq} y \otimes x - [x, y]$ with $x \in A_p$, $y \in A_q$. Then $U(A)$ is a connected graded \mathbb{Q}-algebra, called the universal enveloping algebra of A. There is a canonical morphism $A \rightarrow U(A)$ such that if $\phi: A \rightarrow C$ is a map of A into a connected graded \mathbb{Q}-algebra, such that $\phi[x, y] = [\phi x, \phi y]$, then there is a unique map of algebras $U(\phi): U(A) \rightarrow C$ such that the following diagram is commutative:

\[
\begin{array}{ccc}
A & \longrightarrow & U(A) \\
\downarrow & & \downarrow \\
C & \longrightarrow & U(\phi)
\end{array}
\]

To form the coproduct \perp in \mathcal{C} we begin by forming $U(A) \perp U(B)$ as in Example 2. We define $A \perp B$ to be the sub Lie algebra of (the associated Lie algebra of) $U(A) \perp U(B)$ generated by the images of A and B. Thus we have a diagram

\[
\begin{array}{ccc}
A & \longrightarrow & A \perp B \longleftarrow B \\
\downarrow & & \downarrow \\
U(A) & \longrightarrow & U(A) \perp U(B) \longleftarrow U(B)
\end{array}
\]

It is routine to check the universal property. We note that uniqueness implies $U(A \perp B) \approx U(A) \perp U(B)$ as graded \mathbb{Q}-algebras.

Example 5. $\mathcal{C} =$ the category of connected graded Hopf algebras over K. Since each object of \mathcal{C} is a graded connected K-algebra, we may form the coproduct as in Example 2. Then we need to check that $A \perp B$ is still a Hopf algebra. In the category of graded connected algebras we have the diagram:

\[
\begin{array}{ccc}
A & \xrightarrow{i_A} & A \perp B & \xleftarrow{i_B} & B \\
\downarrow \Delta_A & & \downarrow \Delta_{A \perp B} & & \downarrow \Delta_B \\
A \otimes_K A & \xrightarrow{i_A \otimes i_A} (A \perp B) \otimes_K (A \perp B) & \xleftarrow{i_B \otimes i_B} B \otimes_K B
\end{array}
\]

In other words $\Delta_{A \perp B} = (i_A \otimes i_A) \Delta_A \perp (i_B \otimes i_B) \Delta_B$ is a morphism of graded connected algebras and $A \perp B$ is a Hopf algebra. The required universal property is easily verified.

Example 6. $\mathcal{C} =$ the category of connected differential graded K-coalgebras. The coproduct here is defined as in Example 2 it is only necessary to check that the differential and comultiplication behave well.
EXAMPLE 7. $\mathcal{C} = \text{the category of connected differential graded } K\text{-algebras}$. The coproduct is defined as in Example 3, and the differential extends naturally.

EXAMPLE 8. $\mathcal{C} = \text{the category of connected differential graded Hopf algebras over } K$. The coproduct is defined as in Example 5 and the differential extends naturally.

2. Functors which preserve coproducts. Let \mathcal{I}_*^1 denote the category of nicely pointed 1-connected spaces. Let $\mathcal{C}X$ for $X \in \mathcal{I}_*^1$ denote the normalized singular chains of X with all edges at the base point e_x. In other words $\mathcal{C}X = C_\times (E_2(X, e_x))$, the normalized chain complex of $E_2(X, e_x)$, the second Eilenberg subcomplex. [3; p. 430.] Then \mathcal{C} is a functor with range the category of 1-connected differential graded coalgebras over \mathbb{Z}, which we denote $C^1\text{DGCO}$. \mathcal{C} does not preserve coproducts. However there is a diagram in $C^1\text{DGCO}$:

$$
\begin{array}{ccc}
\mathcal{C}X & \longrightarrow & \mathcal{C}X \perp \mathcal{C}Y \\
\downarrow & & \downarrow \phi \\
\mathcal{C}(X \vee Y)
\end{array}
$$

where ϕ and ϕ are induced by the inclusions into $X \vee Y$. An elementary argument shows that $\phi \phi$ induces a homology isomorphism of coalgebras.

The cobar construction \mathcal{F} is a functor with domain $C^1\text{DGCO}$ and range $C^0\text{DGA}$, the category of connected differential graded algebras. We want to show that

2.1. PROPOSITION. \mathcal{F} preserves coproducts.

Proof. Let C_1 and C_2 belong to $C^1\text{DGCO}$. Then \mathcal{F} induces maps $\mathcal{F}(C_1) \rightarrow \mathcal{F}(C_1 \perp C_2)$. Consequently we have in $C^0\text{DGA}$:

$$
\begin{array}{ccc}
\mathcal{F}(C_1) & \longrightarrow & \mathcal{F}(C_1 \perp C_2) \\
\downarrow & & \downarrow \phi \\
\mathcal{F}(C_1 \perp C_2)
\end{array}
$$

Let $\#$ denote the functors which forget the differentials in various categories. Then $\mathcal{F}(C)_\# = T(C)$ so that

$$
\phi_\#: T(\bar{C}_{1\sharp}) \perp T(\bar{C}_{2\sharp}) \longrightarrow T(\bar{C}_{1\sharp} \oplus \bar{C}_{2\sharp})
$$

is an isomorphism. Since $\#$ is faithful, ϕ is an isomorphism.

Next we restrict our attention to algebras over the rational field.
Q and consider the homology functor $H_* : C^oDGA/\mathbb{Q} \rightarrow C^oGal/\mathbb{Q}$, the category of connected graded \mathbb{Q}-algebras.

2.2. Proposition. $H_*(A \perp B) \approx H_*(A) \perp H_*(B)$.

Proof. We can readily construct a diagram in C^oDGA/\mathbb{Q}

$$\begin{array}{ccc}
H(A) & \rightarrow & H(A) \perp H(B) \\
\downarrow \phi & & \downarrow \phi \\
H(B) & \rightarrow & H(A \perp B)
\end{array}$$

The additive isomorphisms $A \perp B = (\bar{A} \oplus \bar{B}) \oplus ((\bar{A} \otimes \bar{B}) \oplus (\bar{B} \otimes \bar{A})) + \cdots$ and

$$H(A) \perp H(B) = (\bar{H}(A) \oplus \bar{H}(B)) \oplus ((\bar{H}(A) \otimes \bar{H}(B)) \oplus (\bar{H}(B) \otimes H(A))) + \cdots$$

together with the Kunneth Theorem implies that ϕ is an isomorphism.

3. Proof of Theorem 1. In the notation above we have isomorphisms of graded \mathbb{Q}-algebras

$$H_*(\mathcal{F} \mathcal{C} X) \perp H_*(\mathcal{F} \mathcal{C} Y) \approx H_*(\mathcal{F} \mathcal{C} X \perp \mathcal{F} \mathcal{C} Y) \approx H_*(\mathcal{F} \mathcal{C} (X \vee Y)).$$

By a theorem of Adams, for any pathwise and simply connected space Z, there is a natural isomorphism of algebras, $H_*(\Omega Z; \mathbb{Q}) \rightarrow H_*(\mathcal{F} \mathcal{C} Z)$. Consequently the morphism of Hopf algebras

$$H_*(\Omega X; \mathbb{Q}) \perp H_*(\Omega Y; \mathbb{Q}) \rightarrow H_*(\Omega (X \vee Y); \mathbb{Q})$$

is an isomorphism of Hopf algebras, and hence of Hopf algebras. Moore's statement says $H_*(\Omega X; \mathbb{Q}) = U(\mathcal{L}_*(X))$ so we have

$$U(\mathcal{L}_*(X) \perp \mathcal{L}_*(Y)) \approx U(\mathcal{L}_*(X)) \perp U(\mathcal{L}_*(Y)) \approx U(\mathcal{L}_*(X \vee Y))$$

and since PU is the identity, $\mathcal{L}_*(X) \perp \mathcal{L}_*(Y) \approx \mathcal{L}_*(X \vee Y)$.

Remark. It is apparent from the above argument and the theorem of Adams that

$$H_*(\Omega X; k) \perp H_*(\Omega Y; k) \rightarrow H_*(\Omega (X \vee Y); k)$$

is an isomorphism of Hopf algebras for any field k.

This has been proved by Berstein in [2] by slightly different methods.

REMARK. The calculation of the Poincaré Series of the coproduct of two Lie algebras is a difficult number theoretic problem involving Witt numbers.

REFERENCES

Received November 8, 1966. The first author was supported by a National Science Foundation Grant GP-3446. The second author was partially supported by a National Science Foundation Grant GP-3946.

BROWN UNIVERSITY AND PRINCETON UNIVERSITY
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. ROYDEN
Stanford University
Stanford, California

J. DUGUNDJI
Department of Mathematics
Rice University
Houston, Texas 77001

J. P. JANS
University of Washington
Seattle, Washington 98105

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF TOKYO
UNIVERSITY OF CALIFORNIA
UNIVERSITY OF UTAH
MONTANA STATE UNIVERSITY
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA
UNIVERSITY OF WASHINGTON
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON
CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY
TRW SYSTEMS
UNIVERSITY OF SOUTHERN CALIFORNIA
NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California 90024.

Each author of each article receives 50 reprints free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners of publishers and have no responsibility for its content or policies.
John Suemper Alin and Spencer Ernest Dickson, *Goldie's torsion theory and its derived functor* .. 195
Steve Armentrout, Lloyd Lesley Lininger and Donald Vern Meyer, *Equivalent decomposition of R^3* .. 205
James Harvey Carruth, *A note on partially ordered compacta* 229
Charles E. Clark and Carl Eberhart, *A characterization of compact connected planar lattices* .. 233
Allan Clark and Larry Smith, *The rational homotopy of a wedge* 241
Donald Brooks Coleman, *Semigroup algebras that are group algebras* 247
John Eric Gilbert, *Convolution operators on $L^p(G)$ and properties of locally compact groups* ... 257
Fletcher Gross, *Groups admitting a fixed-point-free automorphism of order 2^n* ... 269
Jack Hardy and Howard E. Lacey, *Extensions of regular Borel measures* 277
R. G. Huffstutler and Frederick Max Stein, *The approximation solution of $y' = F(x, y)$* ... 283
Michael Joseph Kascic, Jr., *Polynomials in linear relations* 291
Alan G. Konheim and Benjamin Weiss, *A note on functions which operate* ... 297
Warren Simms Loud, *Self-adjoint multi-point boundary value problems* 303
Kenneth Derwood Magill, Jr., *Topological spaces determined by left ideals of semigroups* .. 319
Morris Marden, *On the derivative of canonical products* 331
J. L. Nelson, *A stability theorem for a third order nonlinear differential equation* ... 341
Raymond Moos Redheffer, *Functions with real poles and zeros* 345
Donald Zane Spicer, *Group algebras of vector-valued functions* 379
Myles Tierney, *Some applications of a property of the functor E_f* 401