GROUPS ADMITTING A FIXED-POINT-FREE AUTOMORPHISM OF ORDER 2^n

Fletcher Gross
GROUPS ADMITTING A FIXED-POINT-FREE AUTOMORPHISM OF ORDER 2^n

Fletcher Gross

Let G be a finite solvable group which admits a fixed-point-free automorphism of order 2^n. The main result of this paper is that the nilpotent length of G is at most $2n - 2$ for $n \geq 2$. This is an improvement on earlier results in that no assumptions are made regarding the Sylow subgroups of G.

Suppose G is a finite solvable group which admits a fixed-point-free automorphism of order p^n where p is a prime. Then it is known that the nilpotent length of G is at most n provided that $p \neq 2$ ([8], [10], [6]). This result also holds for $p = 2$ if the Sylow q-subgroups of G are abelian for all Mersenne primes q ([8], [10]). The purpose of the present paper is to obtain an upper bound on the nilpotent length in the case $p = 2$ without imposing any restrictions on the Sylow subgroups of G. Our result is

Theorem 1.1. If G is a finite group admitting a fixed-point-free automorphism of order 2^n, then G is solvable and has nilpotent length at most $\max\{2n - 2, n\}$.

Here it should be noted that if G admits a 2-group as a fixed-point-free operator group then G must have odd order and thus must be solvable from [2].

The usual methods employed to prove results about solvable groups admitting a fixed-point-free automorphism of order p^n are so similar to the methods used by Hall and Higman [7] to find upper bounds on the p-length that it seems natural to ask whether both types of results might follow from some general theorem about linear groups. If $p = 2$ this can be done and the theorem is the following:

Theorem 1.2. Let G be a finite solvable linear group over a field K such that the order of $F'(G)$ is divisible by neither 2 nor the characteristic of K. Assume that g is an element of order 2^n in G such that the minimal polynomial of g has degree $< 2^n$. Then g^{2^n-1} must belong to $F_2(G)$.

Here $F'(G)$ is the greatest normal nilpotent subgroup of G and $F_2(G) = F'(G \mod F'(G))$. In addition to implying Theorem 1.1, Theorem 1.2 also immediately implies Theorem B of [4] which in turn implies that $l_2(G) \leq \max\{2e_2(G) - 2, e_3(G)\}$ for any solvable group G ([4], [5]).
Preliminary results. For the rest of this paper we adopt the convention that all groups referred to are assumed to be finite. If G is a linear group operating on V and U is a G-invariant subspace, then $[G | U]$ denotes the restriction of G to U. If g is an element of a linear group such that the minimal polynomial of g has degree less than the order of g, then g is said to be exceptional. The rest of the notation used agrees with that of [2].

Before proceeding to the proof of Theorem 1.2, some preliminary results are needed.

Lemma 2.1. Let Q be an extra-special q-group which is operated upon by an automorphism g of order p^n where p is a prime distinct from q. Assume that $[Q', g] = 1$ and let K be an algebraically closed field of characteristic different from q. Then, if M is any irreducible $K - Q(g)$ module which represents Q faithfully, it follows that M is an irreducible $K - Q$ module.

This follows from either [1, Th. 1.30] or [7, Lemma 2.2.3] depending on whether the characteristic of K differs from or is equal to p, respectively. Next we need a generalization of Theorem 2.5.4 of [7].

Theorem 2.2. Suppose that

(i) Q is an extra-special q-group which admits an automorphism g of order p^n where p is a prime distinct from q.

(ii) $[Q', g] = 1$.

(iii) K is a field of characteristic different from q.

(iv) M is a faithful, irreducible $K - Q(g)$ module.

(v) g is exceptional on M.

Then the following must hold:

(a) $p^n - 1 = q^d$.

(b) If Q/Q' is a subgroup of Q/Q' that is transformed faithfully and irreducibly by $\langle g \rangle$, then $|Q/Q'| = q^d$ and $[Q, g] \leq Q_i$.

(c) The minimal polynomial of g on M has degree $p^n - 1$.

Proof. First we show that K may be taken to be algebraically closed. Let L be an algebraically closed extension of K and let N be an irreducible $L - Q(g)$ submodule of $M \otimes_K L$. Now if c generates Q', then, since $c \in Z(Q(g))$, c has no nonzero fixed vectors in M. It immediately follows from this that c is not the identity on N. Since any nontrivial normal subgroup of $Q(g)$ must contain c, this implies that N is a faithful $L - Q(g)$ module.

Thus in proving the theorem we may as well assume that K is algebraically closed. The lemma now implies that M is an irreducible $K - Q$ module. If char $(K) = p$, then the theorem follows from
Theorems 2.5.1. and 2.5.4 of [7]. Hence we now suppose that char \((K) \neq p\).

\(Q/Q'\) is the direct product of groups transformed irreducibly by \(g\). Thus there is a subgroup \(Q_i/Q'\) such that \(g\) transforms \(Q_i/Q'\) irreducibly according to some automorphism of order \(p^n\). Now if \(Q_i\) were abelian, then, since \(g^{p^n-1}\) does not centralize \(Q_i\) and \(M\) is a completely reducible \(K-Q_i\) module, it would follow easily that the minimal polynomial of \(g\) would have degree \(p^n\). Hence \(Q_i\) is not abelian and so must be extra-special. This implies that \(|Q_i| = q^{d+1}\) for some \(d\).

Now if \(N\) is an irreducible \(K-Q_i\langle g \rangle\) submodule of \(M\), \(N\) must faithfully represent \(Q_i\) since \(c\) is represented by a scalar matrix. Hence \(N\) is an irreducible \(K-Q_i\) module.

Since \(g\) is exceptional, there is at least one \(p^n\)-th root of unity in \(K\) which is not an eigenvalue of \(g\). The argument given in [10, pp. 706-707] now implies that \(p^n - 1 = q^d\) and exactly \((p^n - 1)\) \(p^n\)-th roots of unity occur as eigenvalues of \(g\). Thus it only remains to show that \([Q, g] \leq Q_1\) to complete the proof of the theorem. If \(Q_1 = Q_2\), this is trivial. Therefore assume that \(Q = Q_1\). Then if \(Q_2 = C_q(Q_1)\) we find that \(Q_2\) admits \(g\) and \(Q\) is the central product of \(Q_1\) and \(Q_2\).

We now use the construction given in [7, p. 21] to construct linear groups \(H_1, H_2\) where \(H_i = Q_i\langle g_i \rangle\) and \(g_i\) is a \(p\)-element which transforms \(Q_i\) in the same way as \(g\). In the Kronecker product of \(H_1\) and \(H_2\), the product of \(Q_1\) and \(Q_2\) becomes identified with \(Q\). Since \(M\) is an irreducible \(K-Q\) module, it follows that \(g_1 \otimes g_2\) differs from \(g\) only by a scalar factor. Since \(g\) is of order \(p^n\), we find that

\[g = \alpha(g_1 \otimes g_2)\]

where \(\alpha^{p^n} = 1\). Now if \([Q_2, g] \neq 1\), then \(g_2\) has at least two distinct eigenvalues \(\beta, \gamma\). But \(g_1\) has \(p^n - 1\) distinct eigenvalues. Thus if \(\lambda\) is any \(p^n\)-th root of unity then at least one of \(\lambda/\alpha\beta\) and \(\lambda/\alpha\gamma\) must be an eigenvalue of \(g_1\). But this would imply that \(\lambda\) would be an eigenvalue of \(g\). Since \(g\) is exceptional, we must have that \([Q_2, g] = 1\).

Corollary 2.3. Under the hypothesis of the theorem let \(V\) be \(Q/Q'\) written additively and consider \(V\) as a \(GF(q) - \langle g \rangle\) module. Then the minimal polynomial of \(g\) on \(V\) is of degree at most \(2d + 1\).

Proof. This follows immediately from (b).

Theorem 2.4. Let \(G = PQ\) be a linear group over a field \(K\) where \(Q\) is a \(q\)-group normal in \(G\) (\(q \neq 2\)) and \(P\) is cyclic of order \(2^n > 2\) generated by an element \(g\) such that \([Q, g^{p^n-1}] \neq 1\). Assume that \(\text{char}(K) \neq q\) and that the minimal polynomial of \(g\) is of degree at most 3. Then we must have \(q = 3\) and \(n = 2\).
Proof. Extending K affects neither hypothesis nor conclusion so we may as well assume that K is algebraically closed. Now let S be a subgroup of Q which is minimal with respect to being normalized by g but not centralized by h where $h = g^{2n-1}$. Then S is a special q-group.

If V is the space on which G operates, then $V = V_1 \oplus V_2 \oplus \cdots$ where the V_i are the homogeneous $K - S$ submodules of V. Without loss of generality we may assume that $[S, h]$ is not the identity on V_i. But if g^{2m} is the first power of g fixing V_i, then the minimal polynomial of g has degree at least 2^m times the degree of the minimal polynomial of $\{g^{2m} | V_i\}$. This implies that g must fix V_i.

Now let U be an irreducible $K - PS$ submodule of V_i. $[S, h]$ is not the identity on U but $Z(S \setminus U)$ is cyclic generated by a scalar matrix. Thus we conclude that $\{S \setminus U\}$ is an extra special q-group whose center is centralized by $\{g \setminus U\}$. From Theorem 2.2 we now obtain that $2^m = q^d + 1$ and the minimal polynomial of $\{g \setminus U\}$ has degree $2^m - 1$. This implies that $n = 2$ and $q = 3$.

3. Proof of Theorem 1.2. Neither the hypothesis nor the conclusion of the theorem is affected by extending the field K. Thus we may assume without loss of generality that K is algebraically closed. Now if $n = 1$, then, since g is exceptional, g would have to be a scalar matrix which would imply that $g \in Z(G)$. Hence we assume that $n > 1$ and let $h = g^{2n-2}$.

If Q is any normal nilpotent subgroup of G, then char $(K) \nmid |Q|$ and so V, the space on which G operates, is a completely reducible $K - Q$ module. Therefore $V = V_1 \oplus V_2 \oplus \cdots$ where the V_i are the homogeneous $K - Q$ submodules. G must permute the V_i since $Q \leq G$. Now if h^2 did not fix each V_i, then it would follow that the minimal polynomial of g would be of degree 2^n which is a contradiction. Let H be the set of all elements in G which fix each minimal characteristic $K - Q$ submodule of V for each normal nilpotent subgroup Q in G. Clearly $H \leq G$. Hence $F_i(H) \leq F_i(G)$ for $i = 1, 2$. Also we have shown that $h^2 \in H$.

It follows from [4, Lemmas 3.2 and 3.3] that $[Q, H] = 1$ if Q is any normal abelian subgroup of G and that $F_i(H)$ is of class 2. $F_i(H) = Q_1 \times Q_2 \times \cdots$ where Q_i is the Sylow q_i-subgroup of $F_i(H)$ and q_i is an odd prime. Since Q_i is of class at most 2, Q_i is a regular q_i-group. Then the elements of order at most q_i form a subgroup R_i in Q_i. If $R = R_1 \times R_2 \times \cdots$, then $C_H(R) \leq F_i(H)$ [9, Hilfssatz 1.5].

The proof now divides into two parts. First we will show that h^2 induces the identity automorphism on any $2'$-subgroup of $F_2(H)/F_1(H)$. In the second part we consider how h^2 operates on a 2-subgroup of $F_2(H)/F_1(H)$.
Part I. Suppose that \(p \) is an odd prime which divides \(|F_2(H)/F_1(H)| \).

It is easy to show that there is a Sylow \(p \)-subgroup \(P \) of \(F_2(H) \) which is normalized by \(g \). We now proceed to prove that

\[
[P, h^2] \leq F_1(H).
\]

To do this we first note that, since \(P \leq F_1(H) \), \(C_P(O_P, (F_1(H))) = P \cap F_1(H) \). Now let \(N = P \cap F_1(H) \) and suppose that \([P, h^2] \leq N\).

Since \(C_P(O_P, (F_1(H))) = N \), there is a \(q_i \neq p \) such that \([h^2, P, R_i] \neq 1\). Now let \(U \) be a minimal characteristic \(K - R_i \) submodule of \(V \) on which \([h^2, P, R_i] \) is not the identity. Let \(q = q_i, \ S = \{P \mid U\}, \) and \(Q = \{R_j \mid U\} \). \(h^2 \) must fix \(U \) but cannot be a scalar matrix on \(U \) since \([h^2, P, R_i] \mid U \neq 1\). Let \(g^{2^{n-m}} \) be the first power of \(g \) to fix \(U \) and let \(g_i \) be the restriction of \(g^{2^{n-m}} \) to \(U \). But if \(g_i \) were not exceptional then \(g_i \) could not be exceptional. Hence \(g_i \) is exceptional and so \(m \) must be \(> 1 \). Now let \(h_i = g_i^{2^{n-2}} \).

Then \([h_i^2, S, Q] \neq 1\). Since \(U \) is the sum of isomorphic, irreducible \(K - Q \) modules, \(Z(Q) \) must be cyclic generated by a scalar matrix. Therefore \([Z(Q), S \langle g_i \rangle] = 1\) and, since \(Q \) is a homomorphic image of a class 2 group of exponent \(q \), \(Q \) must be an extra-special \(q \)-group.

Next let \(U_i \) be an irreducible \(K - Q \langle g_i \rangle \) submodule of \(U \). Lemma 2.1 implies that \(U_i \) is an irreducible \(K - Q \) module and so \(U \) is the sum of \(K - Q \) modules isomorphic to \(U_i \). From Theorem 2.2 we obtain that \(2^m - 1 = q^d \) and \([Q : C_Q(g_i)] = q^{2d}\). Then \(q \) must be a Mersenne prime and \(d = 1 \).

Now let \(W \) be \(Q/Q' \) written additively and consider \(W \) as a \(GF(q) - S \langle g_i \rangle \) module. The minimal polynomial of \(g_i \) on \(W \) has degree at most 3 from Corollary 2.3. Since \([h_i^2, S] \) is not the identity on \(W \), Theorem 2.4 now implies that \(m = 2 \) and \(p = 3 \) which contradicts \(p \neq q = 2^m - 1 \).

Thus we have shown that \(h^2 \) induces the identity automorphism on any \(2' \)-subgroup of \(F_2(H)/F_1(H) \).

Part II. The \(2 \)-subgroups of \(F_2(H)/F_1(H) \) have to be handled differently and we apply the method of [4, pp. 1224–1228]. Accordingly, let \(V = V_1 \oplus V_2 \oplus \cdots \) where the \(V_{ij} \) are the homogeneous \(K - R_i \) submodules of \(V \). For each \(i \) and \(j \), let

\[
C_{ij} = \{x \mid x \in H \text{ and } ([R_i x] \mid V_{ij}) = 1\}.
\]

Next let \(H_i \) be the intersection of all the \(C_{ij} \) which contain \(h^2 \). If \(h^2 \) belongs to no \(C_{ij} \) then set \(H_i \) equal to \(H \). In any event \(H_i \triangleleft H \).
$h^2 \in H_1$, and g normalizes H_1.

Now choose P to be a Sylow 2-subgroup of $F_2(H_1)$ such that $P\langle g \rangle$ is a 2-group. If $x \in P$, we now assert that $[h^2, x] = [h, x]^2$. The proof of this is identical with the proof of Lemma 3.4 in [4] and, for this reason, is omitted.

Now from the above we see that $[h^2, P] \leq D(P)$. This combined with our result proved in Part I implies that $[h^2, F_2(H_1)] \leq D(F_2(H_1)) \mod F_1(H_1)$. But this implies that $h^2 \in F_2(H_1)$. Since $F_2(H_1) \leq F_2(H)$ and $F_2(H) \leq F_2(G)$, this completes the proof of the theorem.

4. Proof of Theorem 1.1. Let σ denote the fixed-point-free automorphism of order 2^n. If $n \leq 2$, then the result is a known one [3]. Consequently, we assume that $n \geq 3$ and proceed by induction on the order of G.

Now if G has two distinct minimal σ-admissible normal subgroups H_1 and H_2, then by induction, $(G/H_1) \times (G/H_2)$ has nilpotent length at most $2n - 2$. Since G is isomorphic to a subgroup of $(G/H_1) \times (G/H_2)$, the theorem would follow immediately.

Therefore we may assume that G has a unique minimal σ-admissible normal subgroup. This implies that $F_4(G)$ is a p-group for some p. Then we may consider $H = \langle \sigma \rangle G / F_4(G)$ as a linear group operating on V where V is $F_4(G) / D(F_4(G))$ written additively. Now p cannot be 2 and $(\sigma - 1)$ must be nonsingular on V. Thus σ must be exceptional and we obtain from Theorem 1.2 that $\sigma^{2n-1} \in F_2(H)$.

This implies that σ^{2n-1} centralizes $F_4(G) / F_2(G)$ which in turn implies that σ^{2n-1} centralizes $G / F_4(G)$ [8, Lemma 4]. Thus, by induction, the nilpotent length of $G / F_4(G)$ is at most $\max \{2n - 4, n - 1\}$. Since we are assuming that $n \geq 3$, this implies that G has nilpotent length at most $2n - 2$.

REFERENCES

5. ———, The 2-length of groups whose Sylow 2-groups are of exponent 4, J. Algebra 2 (1965), 312-314.

Received July 5, 1967. Research supported in part by a grant from the National Research Council of Canada.

University of Alberta, Edmonton
Now at the University of Utah
Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California 90024.

Each author of each article receives 50 reprints free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners of publishers and have no responsibility for its content or policies.
John Suemper Alin and Spencer Ernest Dickson, *Goldie’s torsion theory and its derived functor* ... 195
Steve Armentrout, Lloyd Lesley Lininger and Donald Vern Meyer, *Equivalent decomposition of \(R^3 \) .. 205
James Harvey Carruth, *A note on partially ordered compacta* 229
Charles E. Clark and Carl Eberhart, *A characterization of compact connected planar lattices* .. 233
Allan Clark and Larry Smith, *The rational homotopy of a wedge* 241
Donald Brooks Coleman, *Semigroup algebras that are group algebras* 247
John Eric Gilbert, *Convolution operators on \(L^p(G) \) and properties of locally compact groups* ... 257
Fletcher Gross, *Groups admitting a fixed-point-free automorphism of order \(2^n \) ... 269
Jack Hardy and Howard E. Lacey, *Extensions of regular Borel measures* 277
R. G. Huffstutler and Frederick Max Stein, *The approximation solution of* \(y' = F(x, y) \) ... 283
Michael Joseph Kascic, Jr., *Polynomials in linear relations* 291
Alan G. Konheim and Benjamin Weiss, *A note on functions which operate* ... 297
Warren Simms Loud, *Self-adjoint multi-point boundary value problems* 303
Kenneth Derwood Magill, Jr., *Topological spaces determined by left ideals of semigroups* .. 319
Morris Marden, *On the derivative of canonical products* 331
J. L. Nelson, *A stability theorem for a third order nonlinear differential equation* ... 341
Raymond Moos Redheffer, *Functions with real poles and zeros* 345
Donald Zane Spicer, *Group algebras of vector-valued functions* 379
Myles Tierney, *Some applications of a property of the functor \(E_f \) 401