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Let 2Γ, & denote two families of functions α, 6: JSΓ-> Y.
A function F:Z Q Y —> Y is said to operate in (Sί, &) provided
that for each ae% with range (a) ^ Z we have F(a)e&.
Let G denote a locally compact Abelian group. In this paper
we characterize the functions which operate in two cases:

(i) 8Ϊ = Φr(G) = positive definite functions on G with
φie) = r and ^ = Φi.d.,.(G) = infinitely divisible positive
definite functions on G with φ(e) = s.

(ii) « = ^ = 0X(G) = Log Φi.aUG).

The determination of the class of functions that operate in
(SI, &) for other special families may be found in refernces [3]-[8].
Our goal here is to extend the results of [5, 6] and, at the same
time, to obtain a new derivation of the results recently announced
in [3].

G will denote a locally compact Abelian group and B+(G) the
family of continuous, complex-valued, nonnegative-definite functions
on G. Let

φr(G) = {φ:φeB+(G) and φ(e) = r} 1

Φi.a.ΛG) = {φ:φe Φr(G) and (φ)lln eB+(G) for n ^ 1}

Φr(G) = Log Φimdm,r(G) = {log φ : φ e Φ^.JG)} .

In the case where G is the real line ΦX{G) is the class of characteristic
functions, Φi.d.ΛG) the class of characteristic functions corresponding
to the infinitely devisible distributions while Φ^G) is the class of
logarithms of this latter class whose form is well known since Levy
and Khintchine.

THEOREM 1. If G has elements of arbitrarily high order then
F operates on (< r̂(G), Φi.d.,s(G)) if and only if

F(z) = s exp c(f(z/r) -1) (| z \ ̂  r)

where c ^ 0 and

%,m=0

with

1 We denote the identity element of G by e.
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CO

αw,m ^ 0 and Σ an,m = 1

LEMMA 1. Let

h(s,t)= Σ K,m8*t» ( I s I , 1 * 1 ^

with

b..m ^0 and Σ & . = 1

Suppose that for each integer k, k >̂ 1 we /mve

δn m(&) > 0

where

',t)= Σ Λ,-β ί
n,m=0

with

c ^ 0 0Λ,W ^ 0 α^d Σ_ gntm = 1 .

Proof of Lemma 1. Since (A(s, £))1/fc is to be a generating function
with nonnegative coefficients we must have fc(0, 0) = δo,o > 0. For
suitable ε > 0 we then have

0 < 1 - h(s, t) <1 (0 ^ s, t ^ ε) .

Thus k(s, t) = log {1 — (1 — Λ(s, ί))} admits an expansion

L /ς / \ _ X^ h. qnfm (0 <C Q t <C p\
rv\oj v) — f j rvnymί> l> y\J ^ ^ a, u ^ c)

Clearly kQt0 < 0; we want to prove that all of the remaining coefficients
kn>m are nonnegative. Assume on the contrary that

{(n, m): (n, m) Φ (0, 0) and kn>m < 0} Φ φ .

Let (n0, m0) be a minimal element in this set (under the usual partial
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ordering in the plane). We then write

It is easily seen that the

coefficient of sn°tm° in exp—k(s, t) =
N

coefficient of sn°tm° in exp —
N

But this coefficient is of the form

where σ is a polynomial. For N sufficiently large this coefficient has
the sign of K0>mQ which provides a contradiction. Thus kOiQ < 0 and
kn,m :> 0 ((n, m) Φ (0, 0)).

Proof of Theorem 1. By setting F(z) = (l/s)F(rz) we may assume
that r = s = l. If F operates in (Φ^G), Φi.d.ΛG)) then (F)llk operates
in ΦJJ3) for each integer k, k ^ 1. Thus from [5]

with

an>m(k) ^ 0 and Σ an>m(k) = 1 .

By virtue of Lemma 1 the proof is complete.

LEMMA 2. // G has elements of arbitrarily high order then F
operates in Φλ{G) implies that for any r, 0 < r < oo

F(z) = c(r)|^Σo^,m(r)(r + z)n(r + z

whenever \ z + r j ^ r where c(r) ^ 0, an>m(r) ^ 0

oo

ίi,m=0

Proof. We begin by observing that

Φr(G) - r = {φ-r:φe Φr(G)} £ Φ,(
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Thus if Fr(z) = F(z - r) then expF r operates in (Φr(G), Φi.d.ΛG)) which
proves the lemma by Theorem 1.

THEOREM 2 [3]. If G has elements of arbitrarily high order
then F operates in Φt(G) if and only if

F(z) = -a + βz + Ίz + 5 $ ί e χ P (8Z + tz) - l}μ(ds, dt) ( * )

^ 0

where
( i ) a, β and 7 are real and nonnegative,
(ii) μ is a positive measure on {(s, t): 0 ^ s < oo, 0 <£ t <

which is bounded (except perhaps at the origin) and for which

r-r- t + s {d dt)
Jo Jo 1 + t + SΓ

Proof. Since it is clear that functions of the form (*) operate
on ΦJJJ) it suffices to prove the reverse implication. We begin by
noting that if 0 < r < p then

c(r) { Σ a»..(r)(r + z)n(r + w)m - l\

= c(p){ Σ α.,.(/0)(P + z)n(P + ™T

whenever \z + r\ ^ r and \w + r\ ^ r, where JΓ admits the expansion

TO - c(p)\ Σ a«.

\ρ + z\ ^ p .

We now may uniquely define a function ?F(z, w) in 0 ^ « < oo,
0 ^ w < oo by

Σ an,m(r)(r - z)n(r - wA
n,m=0 )

provided 0 ^ w ^ r and 0 ^ 2 ^ r. We note that

F(z,w)>0

0 <, w < 00 0 ^ 2 ; < o o

i, k ^ 0 i + Jfc > 0 .

It follows from a theorem of Bochner [2, p. 89] that
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Ψ(z, w) = a + βz + ΊW + \ (~[1 - exp - (sz + tw)]μ(ds, dt)
Jo Jo

where a, β, 7 and μ have the desired properties.
We proceed now to give the connection between Theorem 2 and

the results announced in [3].

DEFINITION. A continuous complex-valued function defined on a
locally compact Abelian group G is said to negative definite if

i3=1

for any complex numbers {αj, any {x{} £ G and for n = 1, 2, •••.
The class of such functions is denoted by N(G)' It was already
noticed by Beurling and Deny [1] that N(G) — —ΦJJJ).2 We include
a brief proof for the reader's convenience.

LEMMA 3. A continuous, complex-valued, function f on G is
negative definitely if and only if exp (— /) is the Fourier transform
of an infinitely divisible distribution on G.

Proof. (Necessity) By Bochner's theorem it suffices to show that
exp( — (l/n)f) is a positive definite function on G for n = 1, 2, •••.
Since (l/n)f is a negative definite function it suffices to check that
exp( —/) is positive definite. Now

Σ Σ exp (-/(^ί»71))αiαi

= Σ Σ exp {/(*,) + f(x,) - fiXiXj1)
3=1 < = 1

But the matrix

exp (fix,) + f(xj)

is the limit of positive linear combinations of "element-wise" products
of positive definite matrices. Since such products are again positive
definite by Schur's theorem [9] we see that exp(—/) is indeed positive
definite.

(Sufficiency) By DeFinetti's theorem and the fact that N(G) is
closed under pointwise limits it suffices to show that 1 — φ e N(G) for
φ e ΦJJJ). We must therefore show

2 Professor C. S. Herz has kindly pointed out that this result was actually first
given by I. J. Schoenberg [9], albeit in a different context.
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n n

ΣΣ{1-

= Σ - 2 R e Σ « i Σ '

To prove (**) we first set φ{x) = χ{x) where χ is a character of G
noting that (**) becomes

For general φ we need only observe that by Bochner's theorem φ is
in the closure of the convex hull spanned by the characters of G.

It is now clear that F operates on N(G) if and only if F, defined
by Fiz) = — F( — z), operates on Φ^G). Making this transformation
Theorem 2 becomes identical with the main theorem of [3].
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