A NOTE ON FUNCTIONS WHICH OPERATE

ALAN G. KONHEIM AND BENJAMIN WEISS
A NOTE ON FUNCTIONS WHICH OPERATE

ALAN G. KONHEIM AND BENJAMIN WEISS

Let \mathcal{A}, \mathcal{B} denote two families of functions $a, b: X \to Y$. A function $F: Z \subseteq Y \to Y$ is said to operate in $(\mathcal{A}, \mathcal{B})$ provided that for each $a \in \mathcal{A}$ with range $(a) \subseteq Z$ we have $F(a) \in \mathcal{B}$. Let G denote a locally compact Abelian group. In this paper we characterize the functions which operate in two cases:

(i) $\mathcal{A} = \Phi_r(G) =$ positive definite functions on G with $\phi(e) = r$ and $\mathcal{B} = \Phi_{i.d.}(G) =$ infinitely divisible positive definite functions on G with $\phi(e) = s$.

(ii) $\mathcal{A} = \mathcal{B} = \tilde{\Phi}_r(G) =$ Log $\Phi_{i.d.}(G)$.

The determination of the class of functions that operate in $(\mathcal{A}, \mathcal{B})$ for other special families may be found in references [3]–[8]. Our goal here is to extend the results of [5, 6] and, at the same time, to obtain a new derivation of the results recently announced in [3].

G will denote a locally compact Abelian group and $B^+(G)$ the family of continuous, complex-valued, nonnegative-definite functions on G. Let

$$
\Phi_r(G) = \{\phi : \phi \in B^+(G) \text{ and } \phi(e) = r\}^1
$$

$$
\Phi_{i.d.}(G) = \{\phi : \phi \in \Phi_r(G) \text{ and } (\phi)_{1/n} \in B^+(G) \text{ for } n \geq 1\}
$$

$$
\tilde{\Phi}_r(G) = \text{Log } \Phi_{i.d.}(G) = \{\text{Log } \phi : \phi \in \Phi_{i.d.}(G)\}.
$$

In the case where G is the real line $\Phi_r(G)$ is the class of characteristic functions, $\Phi_{i.d.}(G)$ the class of characteristic functions corresponding to the infinitely divisible distributions while $\tilde{\Phi}_r(G)$ is the class of logarithms of this latter class whose form is well known since Levy and Khintchine.

Theorem 1. If G has elements of arbitrarily high order then F operates on $(\Phi_r(G), \Phi_{i.d.}(G))$ if and only if

$$
F(z) = s \exp c(f(z/r) - 1) \quad (|z| \leq r)
$$

where $c \geq 0$ and

$$
f(z) = \sum_{n, m=0}^{\infty} a_{n, m} z^n z^m \quad (|z| \leq 1)
$$

with

1 We denote the identity element of G by e. 297
\[a_{n,m} \geq 0 \quad \text{and} \quad \sum_{n,m=0}^{\infty} a_{n,m} = 1. \]

Lemma 1. Let
\[h(s, t) = \sum_{n,m=0}^{\infty} b_{n,m}s^n t^m \quad (|s|, |t| \leq 1) \]
with
\[b_{n,m} \geq 0 \quad \text{and} \quad \sum_{n,m=0}^{\infty} b_{n,m} = 1. \]

Suppose that for each integer \(k, k \geq 1 \) we have
\[(h(s, t))^{1/k} = \sum_{n,m=0}^{\infty} b_{n,m}(k)s^n t^m \quad (|s|, |t| \leq 1) \]
with
\[b_{n,m}(k) \geq 0 \quad \text{and} \quad \sum_{n,m=0}^{\infty} b_{n,m}(k) = 1. \]

Then
\[h(s, t) = \exp c(g(s, t) - 1)) \quad (|s|, |t| \leq 1) \]
where
\[g(s, t) = \sum_{n,m=0}^{\infty} g_{n,m}s^n t^m \quad (|s|, |t| \leq 1) \]
with
\[c \geq 0 \quad g_{n,m} \geq 0 \quad \text{and} \quad \sum_{n,m=0}^{\infty} g_{n,m} = 1. \]

Proof of Lemma 1. Since \((h(s, t))^{1/k}\) is to be a generating function with nonnegative coefficients we must have \(h(0, 0) = b_{0,0} > 0\). For suitable \(\varepsilon > 0\) we then have
\[0 < 1 - h(s, t) < 1 \quad (0 \leq s, t \leq \varepsilon). \]
Thus \(k(s, t) = \log \{1 - (1 - h(s, t))\}\) admits an expansion
\[k(s, t) = \sum_{n,m=0}^{\infty} k_{n,m}s^n t^m \quad (0 \leq s, t \leq \varepsilon). \]

Clearly \(k_{0,0} < 0\); we want to prove that all of the remaining coefficients \(k_{n,m}\) are nonnegative. Assume on the contrary that
\[\{(n, m) : (n, m) \neq (0, 0) \quad \text{and} \quad k_{n,m} < 0\} \neq \emptyset. \]
Let \((n_0, m_0)\) be a minimal element in this set (under the usual partial
ordering in the plane). We then write

\[k(s, t) = k_{0,0} + \sum_{0 \leq n \leq n_0, 0 \leq m \leq m_0} k_{n,m} s^n t^m + k_{n_0,m_0} s^n t^{m_0} + r_{n_0,m_0}(s, t). \]

It is easily seen that the coefficient of \(s^n t^{m_0} \) in \(\exp \frac{1}{N} k(s, t) \) equals

\[\frac{1}{N} k_{n_0,m_0} + \sum_{0 \leq n \leq n_0, 0 \leq m \leq m_0} k_{n,m} s^n t^m + k_{n_0,m_0} s^n t^{m_0}. \]

But this coefficient is of the form

\[\left\{ \frac{1}{N} k_{n_0,m_0} + \frac{1}{N^2} \sigma \left(\frac{1}{N} \right) \right\} \exp \frac{1}{N} k_{0,0}. \]

where \(\sigma \) is a polynomial. For \(N \) sufficiently large this coefficient has the sign of \(k_{n_0,m_0} \) which provides a contradiction. Thus \(k_{0,0} < 0 \) and \(k_{n,m} \geq 0 \) \(((n, m) \neq (0, 0)) \).

Proof of Theorem 1. By setting \(\tilde{F}(z) = (1/s)F(rz) \) we may assume that \(r = s = 1 \). If \(F \) operates in \((\Phi_1(G), \Phi_{t,d,1}(G)) \) then \((F)^{1/k} \) operates in \(\Phi_1(G) \) for each integer \(k, k \geq 1 \). Thus from [5]

\[(F(z))^{1/k} = \sum_{n, m = 0}^{\infty} a_{n,m}(k)z^n \bar{z}^m (|z| \leq 1) \]

with

\[a_{n,m}(k) \geq 0 \quad \text{and} \quad \sum_{n, m = 0}^{\infty} a_{n,m}(k) = 1. \]

By virtue of Lemma 1 the proof is complete.

Lemma 2. If \(G \) has elements of arbitrarily high order then \(F \) operates in \(\bar{\Phi}_1(G) \) implies that for any \(r, 0 < r < \infty \)

\[F(z) = c(r) \left\{ \sum_{n, m = 0}^{\infty} a_{n,m}(r)(r + z)^n(r + \bar{z})^m - 1 \right\} \]

whenever \(|z + r| \leq r \) where \(c(r) \geq 0, a_{n,m}(r) \geq 0 \) and

\[\sum_{n, m = 0}^{\infty} a_{n,m}(r)r^n m^m = 1. \]

Proof. We begin by observing that

\[\Phi_*,(G) - r = \{ \phi - r : \phi \in \Phi_*(G) \} \subseteq \bar{\Phi}_1(G). \]
Thus if $F_r(z) = F(z - r)$ then $\exp F_r$ operates in $\left(\Phi_r(G), \Phi_{i,d}(G)\right)$ which proves the lemma by Theorem 1.

Theorem 2 [3]. If G has elements of arbitrarily high order then F operates in $\tilde{\Phi}_1(G)$ if and only if

$$F(z) = -\alpha + \beta z + \gamma \bar{z} + \int_0^\infty \int_0^\infty \exp(sz + t\bar{z}) - 1 \mu(ds, dt) \quad (*)$$

Re $z \leq 0$

where

(i) α, β and γ are real and nonnegative,

(ii) μ is a positive measure on $\{(s, t): 0 \leq s < \infty, 0 \leq t < \infty\}$ which is bounded (except perhaps at the origin) and for which

$$\int_0^\infty \int_0^\infty \frac{t + s}{1 + t + s} \mu(ds, dt) < \infty .$$

Proof. Since it is clear that functions of the form (*) operate on $\tilde{\Phi}_1(G)$ it suffices to prove the reverse implication. We begin by noting that if $0 < r < \rho$ then

$$c(r) \left\{ \sum_{n,m=0}^{\infty} a_{n,m}(r)(r + z)^n(r + w)^m - 1 \right\}$$

$$= c(\rho) \left\{ \sum_{n,m=0}^{\infty} a_{n,m}(\rho)(\rho + z)^n(\rho + w)^m - 1 \right\}$$

whenever $|z + r| \leq r$ and $|w + r| \leq r$, where F admits the expansion

$$F(z) = c(\rho) \left\{ \sum_{n,m=0}^{\infty} a_{n,m}(\rho)(\rho + z)^n(\rho + \bar{z})^m - 1 \right\}$$

$|\rho + z| \leq \rho .$

We now may uniquely define a function $\Psi(z, w)$ in $0 \leq z < \infty$, $0 \leq w < \infty$ by

$$\Psi(z, w) = c(r) \left\{ 1 - \sum_{n,m=0}^{\infty} a_{n,m}(r)(r - z)^n(r - w)^m \right\}$$

provided $0 \leq w \leq r$ and $0 \leq z \leq r$. We note that

$$\frac{(-1)^{j+k-1}z^j\bar{z}^k}{\partial^j z \partial^k \bar{w}} \Psi(z, w) \geq 0$$

$0 \leq w < \infty \quad 0 \leq z < \infty$

$$j, k \geq 0 \quad j + k > 0 .$$

It follows from a theorem of Bochner [2, p. 89] that
\(\Psi(z, w) = \alpha + \beta z + \gamma w + \int_{0}^{\infty} \int_{0}^{\infty} [1 - \exp - (sz + tw)] \mu(ds, dt) \)

where \(\alpha, \beta, \gamma \) and \(\mu \) have the desired properties.

We proceed now to give the connection between Theorem 2 and the results announced in [3].

Definition. A continuous complex-valued function defined on a locally compact Abelian group \(G \) is said to **negative definite** if

\[
\sum_{j=1}^{n} \sum_{i=1}^{n} \{f(x_i) + \bar{f}(x_j) - f(x_i x_j^{-1})\} a_i \bar{a}_j \geq 0
\]

for any complex numbers \(\{a_i\} \), any \(\{x_i\} \subseteq G \) and for \(n = 1, 2, \ldots \). The class of such functions is denoted by \(N(G) \). It was already noticed by Beurling and Deny [1] that \(N(G) = \Phi(G) \). We include a brief proof for the reader's convenience.

Lemma 3. A continuous, complex-valued, function \(f \) on \(G \) is negative definitely if and only if \(\exp(-f) \) is the Fourier transform of an infinitely divisible distribution on \(G \).

Proof. (*Necessity*) By Bochner's theorem it suffices to show that \(\exp(- (1/n)f) \) is a positive definite function on \(G \) for \(n = 1, 2, \ldots \).

Since \((1/n)f \) is a negative definite function it suffices to check that \(\exp(-f) \) is positive definite. Now

\[
\sum_{j=1}^{n} \sum_{i=1}^{n} \exp(-f(x_i x_j^{-1})) a_i \bar{a}_j
\]

\[
= \sum_{j=1}^{n} \sum_{i=1}^{n} \exp\{f(x_i) + \bar{f}(x_j) - f(x_i x_j^{-1})\}
\cdot (a_i \exp(-f(x_i))(a_j \exp(-f(x_j)))
\]

But the matrix

\[
\exp(f(x_i) + f(x_j) - f(x_i x_j^{-1}))
\]

is the limit of positive linear combinations of "element-wise" products of positive definite matrices. Since such products are again positive definite by Schur's theorem [9] we see that \(\exp(-f) \) is indeed positive definite.

(*Sufficiency*) By DeFinetti's theorem and the fact that \(N(G) \) is closed under pointwise limits it suffices to show that \(1 - \phi \in N(G) \) for \(\phi \in \Phi(G) \). We must therefore show

Professor C. S. Herz has kindly pointed out that this result was actually first given by I. J. Schoenberg [9], albeit in a different context.
To prove (**) we first set $\phi(x) = \chi(x)$ where χ is a character of G noting that (**) becomes

$$\left| \sum_{i=1}^{n} a_i \chi(x_i) \right|^2 + \left| \sum_{i=1}^{n} a_i \right|^2 - 2 \Re \sum_{i=1}^{n} a_i \sum_{j=1}^{n} a_j \phi(x_j) \geq 0 .$$

For general ϕ we need only observe that by Bochner’s theorem ϕ is in the closure of the convex hull spanned by the characters of G.

It is now clear that F operates on $N(G)$ if and only if \hat{F}^3, defined by $\hat{F}^3(z) = -F(-z)$, operates on $\Phi_1(G)$. Making this transformation Theorem 2 becomes identical with the main theorem of [3].

REFERENCES

Received July 12, 1966. The research of A. C. Konheim was supported by the United States Air Force under Contract No. AF 49(638)-1682.

IMB WATSON RESEARCH CENTER
YORKTOWN HEIGHTS, NEW YORK
John Suemper Alin and Spencer Ernest Dickson, *Goldie’s torsion theory and its derived functor* .. 195
Steve Armentrout, Lloyd Lesley Lininger and Donald Vern Meyer, *Equivalent decomposition of R^3* .. 205
James Harvey Carruth, *A note on partially ordered compacta* 229
Charles E. Clark and Carl Eberhart, *A characterization of compact connected planar lattices* ... 233
Allan Clark and Larry Smith, *The rational homotopy of a wedge* 241
Donald Brooks Coleman, *Semigroup algebras that are group algebras* 247
John Eric Gilbert, *Convolution operators on $L^p(G)$ and properties of locally compact groups* ... 257
Fletcher Gross, *Groups admitting a fixed-point-free automorphism of order 2^n* ... 269
Jack Hardy and Howard E. Lacey, *Extensions of regular Borel measures* ... 277
R. G. Huffstutler and Frederick Max Stein, *The approximation solution of $y' = F(x, y)$* ... 283
Michael Joseph Kascic, Jr., *Polynomials in linear relations* 291
Alan G. Konheim and Benjamin Weiss, *A note on functions which operate* ... 297
Warren Simms Loud, *Self-adjoint multi-point boundary value problems* 303
Kenneth Derwood Magill, Jr., *Topological spaces determined by left ideals of semigroups* ... 319
Morris Marden, *On the derivative of canonical products* 331
J. L. Nelson, *A stability theorem for a third order nonlinear differential equation* ... 341
Raymond Moos Redheffer, *Functions with real poles and zeros* 345
Donald Zane Spicer, *Group algebras of vector-valued functions* 379
Myles Tierney, *Some applications of a property of the functor Ef* 401