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In this paper we shall consider the reflection of solutions
of systems of equations

(1'1) uzz+uyy+Auz+Buy+Cu=0,

where % = (uy, Uz, -+, u,)", A, B,C are constant, pairwise com-
mutative n X n matrices, across an analytic arc x on which
the solutions satisfy 7 analytic linear differential boundary
conditions, If the boundary conditions have coefficients which
are analyiic in a specific preassigned geometrical region can-
taining », then we shall show that the solution of (1.1) satis-
fying such boundary conditions can be extended across «,
provided certain inequalities are satisfied. Moreover, the region
into which » can be extended will depend only on the analytic
arc «, the original region, and the coefficients of the boundary
conditions; i.e., we shall have reflection “‘in the large’ and
the region will not be restricted by the equation,

There are two basically different situations considered, the results
of which are stated in Theorem 1, Theorem 2, and Theorem 3.

Theorem 1 treats the reflection of solutions of a system (1.1)
initially given on an open set £ for which the boundary conditions
on an arc £ adjacent to 2 are

ipap(D)u,g = f.(2), a=1,2 ---,no0r ¢
B=1

where

(D) = 3, < pig(2)DiDy
r+ssk<2n

with pz3(2) and f.(2) analytic in QUEUD, where £ is an open set
determined by & adjacent to £ and disjoint from £. In the event
that two inequalities involving the pi3(z)(r + s = k) are satisfied, then
we can reflect the solution of the system across & into £U$, so that
the original solution is extended into all of QU&U 2.

In Theorems 2 and 3 the reflection of solutions given in 2, of the
special system (1.1)

du + Eu =0, E = n x n constant matrix,
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542 JAMES M. SLOSS

is treated. In these cases boundary conditions of the form

> pRR)DDu, = f.(2), v=12---,m

r+ssk<2n
are assumed prescribed on &, in which p7:(z) and f,(z) are analytic in
QUEUS. For Theorem 2, k =n, and for Theorem 3, &k =n — 1.
There are five conditions which must be satisfied in Theorem 2 to
insure reflection. Aside from two inequalities involving the p:{(z) that
must be satisfied as in Theorem 1, there is an additional determinental

inequality on the arc (z = G(z))
1.2)  [D'[Ge) - G@F|+0, l=vy=n-1, 1=j=n-1,

which must be satisfied as well as two additional inequalities which
depend on the constants of the differential equations.*

In Theorem 3 it is unnecessary to assume (1) one of the dif-
ferential equation conditions, and (2) condition (1.2). Moreover, in
Theorem 3 the reflection is reduced in quadratures whereas in Theorem
2, for the general case, we have only an existential proof.

Finally, we shall give equations and boundary conditions te which
the theorems apply. Theorem 1 is applicable when the boundary con-
ditions are u = (@.(2), Px(2), *++, P.(?)).

Theorem 2 and Theorem 3 are suitable for systems of differential
equations of the form

S Piy(dyu; = 0, i=1,2 -, m
j=1

where the P;; are polynomials with constant coefficients and 4 is the
Laplacian. Two inequalities involving the coefficients of the P;; must
be satisfied. A special example is the metaharmonic equation

A4+ a4 'u + --- +a,u =0, a; = constant .

In this case it is only necessary to check one inequality for the
differential equation in the case of Theorem 2. A special example of
the metaharmonic equation is the polyharmonic equation

d"u = 0.

In this case there are no inequalities for the differential equation
that must be checked for Theorem 2 or 3. Also in this case there
is a particularly simple representation of the solution in terms of
analytic functions in 2 and analytic functions in £ which is a gener-
alization of the representation in [8].

In the special case of equations

* J. Leray kindly pointed out to me that (62) and one of the d.e. inequalities
are always satisfied and that the 3 holds for k<2n.
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Au; = ;U + Qs j=12, a;; = constants ,

a special case of which is the metaharmonic equation
Ly + adu + dbu =0, a, b constant ,

the condition on the arc & is automatically satisfied. Moreover, the
conditions of Theorem 2, for the biharmonic equation, reduce to the
conditions given in [8] with the exception that Theorem 2 requires
we CHHQUE)NCHQ) whereas [8] requires only that

uwe CHRUE)NCHAYNCHRUE) .

Finally, it is noted that in the case when the analytic arc is a
portion of the x axis then the condition (1.2) is automatically satisfied.

Restricting ourselves to equations of the type (1.1) we get explicit
representations for the solutions in terms of the zero order matrix
Bessel function. For purposes of brevity we shall consider homogeneous
equations (1.1) since the treatment of nonhomogeneous equations in-
volves only obvious changes.

In his beautiful paper [6], Lewy thoroughly considered the question
of a single elliptic equation in two independent variables for which
the coefficients are analytic functions in a neighborhood of £. Brown
[1] considered the reflection laws for a general fourth order elliptic
equation, with constant coefficients, in two independent variables across
a straight line segment on which he assumes the solution satisfies two
boundary conditions of the form

JrZS DDz, 0) = f.(w) , vy=1,2,
where the line of reflection is ¥ = 0 and p’* are constants. Assuming
the original domain is convex then he achieves reflection in the large,
i.e., the domain of reflection is determined initially by the differ-
ential equation. Filipenko [2] investigated reflection for the harmonic
equation in more than two independent variables across the plane x, =0
and has shown that reflection in the large for certain initial domains
is possible provided boundary conditions of the form

o

— + P(xy, %5, -, 2,)u =0

ox,
are prescribed on the plane, where P is a polynomial. Lewy [7] has
given an example to show that the modification of P from a polynomial
to an analytic function is not possible. Garabedian [3], [4] has also
investigated certain reflection laws in the small for a nonlinear elliptic
equation and for quasilinear equations with special boundary conditions.
J. Leray [5] has, in a very interesting paper, used reflection for the
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explicit determination of the Greens function for an M-harmonic
equation in a band, when differential boundary conditions are given
on the boundary of the band.

2. Geometric reflection across an analytic arc. Let £ be an
open analytic arc defined by the real analytic function F(z,y) =0
with F?+ F?-+0. As shown in [8], this defines a function { = G(?),
of the complex variable z = # + 1y which is analytic in a neighborhood
of £ and for which & is described by z = G(z). 2 = G(z) is called the
reflection of z across . 2 =z on £, Let 2 be a semi-neighborhood
of &, with G(z) analytic and univalent on 2 and thus G'(z) = 0 on 2.
Let 2 = G(?) and assume 9NQ = . Then it can be shown that
for z in QUkUQ, G(z) is univalent, Z2=12zand G'(z) = 0. Moreover

G =[GE
and

G"(z) = —G"(2)G'()° .

3. Representation of the solutions. In this section we shall
derive a representation for the solutions of (1.1) which are in C'(QU k).
This will be done by a slight variant of the very elegant method
developed by Lewy [6]. The solutions are expressed by means of a
complex Riemann function, which can be found explicitly in our case.

First we consider the transformation

(3.1) w = gD B (g )

where the exponential matrix is defined as usual by its MecLaurin
expansion. Due to the pairwise commutativity of A, B and C we get
(1.1) becomes

(3.2) g2 A+ B) {wm + w,, + %[40 . Bz]w} —0,

which is equivalent to:

(3.3) Wyy + Wyy + Dw =0
where
(3.3.1) D= %[40 _ A*— BY.

Note that (3.3) can be written for z in 2 as
(3.4) 4G (w, + Dw =0

where
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5 1T o .0 5  1[~—T'[3 . .0
]
@9 =2l Tl 3 T2l e T,

Let

(3.6)  w(w,y) = w2 12,2 gi—] — [ 22 ZG‘Q’, 2 ‘22?‘2)] = Wiz 2)

[

for z=2 + iyelUk and 2 = G(z) e P Uk.
With the idea of finding a representation of the solution of (3.3),
we seek the complex Riemann function; viz. the solution of

3.7) Lv] = v, + %DG’(C)?; —0
which is a function R[?’, (% 2, (] Pf four complex arguments each
ranging independently over QUxU L2 with
(3.8) L,JR}=0
and
R}z, 052,00 =1

(3.9) R[22 01=0.
Rz, 0% 2, 0] =0

We claim that such a matrix function is given by

(3.10) R[2, % 2, (] = J[VD((z — 2NG©) — GE)]

where if @ is an © X n matrix, we define

Ol=1-9 @ _ &
SV QT =1 22 +24(2z)2 26(31)2+ )

With any norm for @ we get
IV Q1 = JLiVTQIl]

where J,, on the right, is the zero order Bessel function and thus
the matrix series converges for all @. Thus R[z°, (% #, ], as defined,
is analytic in 2, 2z and  for 2°, % z and  in QU&ULR. Moreover
it is easy to see that (8.9) are satisfied and by direct computation,
we see that (3.8) is satisfied.

Our next aim is to find a representation of W(z, Z) as defined by
(3.6). This will be done by finding a function W*(z,{) which is
analytic for z in 2 and analytic for ¢ in 2 and for which

W*(z,2) =Wz, 2) .
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We consider now the Cartesian product
SxS={z0:2eQUk LclUk}.

Let 2, and z, be arbitrary points of QU and let » be a path joining
2, to z, which lies in 2Uk. Then let § be the reflection of p joining
Z, to 2, in QUk, Let

S¥z, 2, p) = {(2,0) e S x S:zep and Cep}.
Note that
RL{W*] — LIR]W *
(3.11) — RW2A + —i—G’(C)RDW* — R.W* — —i-G'(c)DRW*
= (BW*). — (RW?*) — (BW7),
since, as is clear from (3.10), RD = DR. We define

W*(z, 2) = W(z, 2) = w(x, y), W, (2, 0) |s=2 = W.(2, 2),
Wz, Q) et = Wiz, 2),

i.e. the solution to equation (3.3), and let this be the “initial condition”
for the extension of W* as an analytic function in (z,{). Let W*
be assumed to be a solution of L[W *] =0 for (z, {) € Sz, 2, p). We
shall want to integrate (3.11), when W* is such a solution and R is
a Riemann function, over “triangles” 4, of S*=z, z,, p) with vertices
(&, 09, (2°, &%) and (2", 2°), over “triangles” 4, with vertices (Z°, £, (&°, 2°)
and (2%, 2°) and over “squares” with vertices (¢, ¢), (2, €), (7, 2), (c, %),
¢ being a point of k. Over such “regions” as these, we have:

(3.12) 0= — §(RW*)tdt + §R,W*dt - fR,W*da.

Consider R[z° ° t, ] and W*(¢, o) in the above, where the region is
the “triangle” Sz, 2, p) with vertices (&, &%), (2%, &), (z°, 2°). We
get, due to the nature of R[2°, (% t, o],

W@, ) = W*E, ¢

+ | R, o, (WL, 2, - R ar

(3.13) (0,20

(49,20)

+ S TR, 06, a|WHE, 0)do .
(¢0,80)

Next we consider R, 2% ¢, 0] and W*(t, 0) in (3.12) and integrate

over the triangle c S%z, 2, p) with vertices (&, &%), (2%, 39, (&, 2°) and

get, making use of the special character of the Riemann function
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W, 2% = W, 2°)
(20,/:20) . N ~
—_ G 20, %k . *
5.14) | o (RIE 255 1, YW, ), — Rl
[ RIE, 26, 010G, 0¥
(30 ¢oy
Finally we shall integrate (3.12) with R|z, Z; ¢, 0] over the rectangle

c Sz, 2., p) with vertices (¢, ¢), (z, ¢), (z, 2), (¢, 2) where ¢ is assumed
to be a point of £, and thus, (¢ = é):

W*(zy 2) = W*(C, 2) =+ W*(z’ c) — R[Z, 2; c, C]W*(c, C)
(z,¢) . 3
(3.15) - S Rz, Z; t, c]JW*(t, c)dt

(ese)
N

Rz, 75, oW (e, oo
)

(ese

This gives the representation of the solution of (3.3) for which we
were looking. The integrals entering (38.13), (3.14) and (3.15) are
independent of the path » since in (3.13) and (3.14)
[(BW*), — (RW*"], — |[R,W*], = RW} + RW; — R, W* — R, W/
= RL, JW?*} - L, JRIW* =0
by (3.11).

Next we show that W*(z, {) as defined by (3.13) is an analytic
function of z and ¢ for z in 2 and {e Q. This is done by showing
oW*(z,0)/0z =0 and 0W*(z,()/6f =0; i.e. the Cauchy Riemann
equations are satisfied. Since R is an analytic function of its
arguments, 2 = z, 2 = G(2), d3/dZ = G'(2),

G @)W *(z, 2)Ro(2, 80, 0) [5z0-2 = 0
by the nature of R. Next we check analyticity in .

GQQOW:*C, 0 — GOURE, G t, DOWH(E, £) — RW (¢, 8)]i=g e
=GOIW:*C, 0 — Rz, 5 t, OWEE, T) |imtice] =

by the nature of R = J,. Note that (3.14) can be got from (3.13)
simply by substitution. The representation of the solutions of (1.1),
which we shall use, is given with the aid of (3.1) and (3.15) by:

U*(z, 3) = exp {A*z + B*G(%)}{W*(z, ¢) + W, 2)
— Rz, 2; ¢, c]W*(c, ¢)

(3.16) i
- S Rz, 3; t, )W *(t, ¢)dt

A

— SZR,,[z, Z;c, a|W*(c, a)d(i}



548 JAMES M. SLOSS

where
% 1 . N 1 .
A = —E'(A - 'LB) y B = —z(A =+ ’LB) .

4. Reflection of solutions of (1.1) across analytic boundary
conditions. Before proving the reflection theorems we shall need to

prove two lemmas,

LEMMA 1. Let p = py + to, o, and p, nonnegative integers,
4.1) D, = -é-(D, _iD), Ds =—;—G’(§)(D,, +iD,)
then for fumctions

Mw,y) = M| £EEE 220 | yeg, 2)

that are analytic in = and y, the following operator relation holds:

DDy = (i)"“{é (@)D~ Di — (2, w“ﬁ‘"z(;z £ 2)

(@ @) G (2)DE
4.2) + terms of order < ¢ — 1 in D, and D; all

of which contain terms of order at least

one and not greater than p — 2 in Dy; d.e.

all of order < 1 — 2 in D,} ,

where o2, ol o2 ... a2 gre the coeffictents of a*, a*'b, .-, b*
i (a + b)*(a — b)* (Note afw2 = 1, afir2 = (—1)*) and
ov,)=01if v > pu,
=lifyv=spu.
Proof. By induction on «. For g =0 clearly true. For =1
we have from (4.1) for ¢, =1, pt, =0
D, =D, + (G'(Z)™'D; which is (4.2) for ¢, =1, ¢, =0
and for ¢, =0, 4, =1
D, = iD, — «(G'())*D;  which is (4.2) for ¢, =0, ¢, =1,

Assume (4.2) true for g, we must show it is ture for g+ 1, i.e.,
assume (4.2) and then consider
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Dy = (i) 3, gl (@/ () DI iD} + (@'(2) 4+ Di=iD§]

=0
— aﬁl/‘z(G’(2))—(#+2)G”(2)[# + (# /_4_ 2)]02/:
(A) + terms of order <y in D, and D, all containing
terms of order at least one and not greater than
p—1in D;}. i.e.,
DD = (i)#z{Dzﬂ+1 + i (G’(E))*jD,”“‘jDﬁ"[aﬁ-’”‘? + al]
i=1
4 aﬁ1#2(G’(’z‘))—(/‘+l)Dsﬂ+l
_ aﬁlf‘z(G’(2))‘(”+2’G”(2)(ﬁ i DD; + . } .
But
(a + b)(a + by (a — b)*
= (a + b){a* + af12a*'b + afi2a*~%h® + .0 4 afivhr}
= q*tt + (a{‘wz + 1)a#b + (a{‘1”2 + aé’wz)aﬂ—lbz
4 eee (aﬁy{z + aﬁlf‘ﬁ)ab#
+ aﬁl#zbﬂ‘l'l

and thus we see
D;‘1+1Dyf‘2 = (7:)#2{%1 a#]ﬁ“#z(G’(é‘))—j_D;‘H—jD;j
7=0
— @ (@)@l 1)+ o)
where a1+'#2 gre the coefficients of a***,a*b, «-+,b**' in (a+b)"1 (@ —b)*.
Now consider
D;’IDJ‘Z+1 — (i)ll2+l{Dzﬂ+l + ﬁ“ (G'(2))—jsz+1—jD2i[a;fﬂz _ a?l”ﬂ
=1

— QG @)D

(B) 4+ aﬁl#z(Gl(g))—(ﬂﬂ)Gn(g)[# + (# /_i 2)]-0;# 4. .}
= ({3} ap(G'@)~DI+D]
i=o

— a2¥‘12+1(G'(2))—(F+2)G"(’z‘)<i’; i DD; 4. }

where since

(@ — b)(a + b)(a — b)*2 = a** + (afr*2 — 1)a*b + (afv2 — afi*2)q*—h?
+ eee (aﬁl#z — aﬁ‘_ﬂl“’)db‘" — azulzbllﬂ

the ai*2 are the coefficients of a**', a*b, -+« b*** in (a + b)*1(a — b)*2+!,
Thus the lemma is proved.
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LEMMA 2. Given the operators

Pa(D) + DiD) + + -+ + Diu(D) 1=12--,m
where
pa(D) = > pi@D:Dy, pa(D) = > pE()D:Dy, -
then for

D, = %(Dz —iD,), D, = %G'(é)(Dz +4D,)

z

(p:s(D)) = M = M (2)D} + M,_,,(2)(G'(2))"' D' Dy+ M,_,,((2) D™
+ M, (2NG'(2)) "D} + M, 1(2)(G'(2))~* D, D}~
+ Mo,k—l(z)ng—l + T o(?)

where T, ,(2) s a matric of terms in D, and D, and of order
<k—2 1in D, and of order <k—2 wn D,.

P P12 vt Pla
Md) = 3 () )—rz (i) (233

r+s= +s=k
251 R 25
M) = 5, e, Mal® =5, (703

Moi®) = 30 (—0'0), Musa®) = 3 () aita(pis
Musald) = 3 (@i (@ @) (i) — 32, k)

x 3 rar(, )@@ e @ws

r+s=k

where a&° are the same as in Lemma 1,
Proof. By Lemma 1
k - . .
pa(D) = 3 pi{(] (@ @) DD

~ 0@ war(y, F )6 @ e @]
T2, O PaD 3, O e @ @)D

+ qu(D,, D,) where g;, is a polynomial in D, and D,

of degree <k — 1 with coefficients analytic in QUsUQ and which
contains terms of order <k — 2 in D, and of order <k — 2 in D,.
Similar results hold for p,s(D), 8 = 2, ---, n. Combining these results
with the fact that aj* = (—1)°, we get the conclusion of the lemma.
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We are now in a position to prove

THEOREM 1. Let w = (U, Uy, +++, %,) € CHQ) and satisfy in 2
(4.3) Upy + Uyy + AU, + Bu, + Cu =0

where A, B,C are pairwise commutative constant m X n matrices.
Moreover let ue CHQUKE)NC'(RQUk) and satisfy on k£ the boundary
conditions:

g,lpaﬁ(z, D,, D)yus = fu2) , a=1,2 0,

where

paﬁ(zi E: 77) = — Z on pZE(z)Erﬁs )

ssk<

with pia(z) and f(z) analytic in QUEUQD. Moreover, if P2, &, 7)
is the principal part of p.s(z, &, 1), we assume in QUEU L

4.4) 0 # | M, o(2)| = | Pasl2, 1, —7)
and
0 # | My,i(2) | = | Pagl2, 1, —9) ' .

Then we can reflect w across £ imto Q; i.e., there exists a unique
function w which is a solution of (1.1) in QU kUL and which
agrees with the given solutions w of (1.1) im 2 U k.

Proof. We apply M of Lemma 2 to the representation (3.16)
and evaluate on £. For simplicity let

9(2) = W*(e,2), h(z)=W*Qz,c).
Then we get on £, remembering that z = Z there:
(4.5) e EFEOM, (2)RF(2) + M, (2)(G'(2)) 9™ (2) + Tiilg, b, 2]} = f(2),

where f(z) = (fi(?), ++-, f.(?))" and T,_Jlg, h, 2] is an expression of the
form:

Tooil9, by 2] = a4, (DRE(@) + a0 DR*D(@) + + -+ + a2)h(2)
(4.6) + S“‘z DI(E)AE + bya(R)g* () + + - + by(2)9(2)

+ §’b_l<z, tg(t)dt + E(2)W*(c, ¢)

1 As Professor Jean Leray has kindly pointed out to me, these statements concern
the behavior of the boundary conditions in the characteristic directions.
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where E and the a’s and b’s are matrices, analytic in 2UxU£2. Note
that for 7 = 1,

1
(7 - D!

and similarly for ¢(z) where 2 (¢) and ¢**(c) are known via (3.13)
and (3.14). Moreover if K(z,t) is a matrix function known and
analytic in QU kU 2 then for k = 1

1
 — 1)1

(4.7  h(z) = S(z — h(E)dE + 21 %(z — ¢)h(c)

| Kz, eyt = [LatK @, 1))t — )= h o (E)dt + Ki(2)

where K,(z) is a known matrix function analytic in QUxU £ and thus

(4.8) S’K(z, D)t = SK(z HROG)dE + Ki(z)
where

_ 1 : ket

Ko §) = gy . _ K e )~ 0

Thus (4.5) becomes on £ with the aid of (4.7) and (4.8) and the
significance of (4.6).

w1700 LM, (@RM(E) + MonlD)(@ @) (2
(4.9) z z
+ S K*z, h®(8)dt + S K**(z, H)g(t)dt + H(z)} = (z)

where H(z) is a known vector function of z, analytic in QU x U £,
and K* and K** are known matrix functions of 2z,¢ analytic in
QUrUL. Thus, since | My, q2)] = 0 and | M,,.(2)| = 0 and G'(z) = 0
in QU kU £, we can solve for A*(z) and g®(z) and get:

(4.10) h(z) = S‘K(z, HE#(8)dt + H(z) on &
and
(4.11) g¥(z) = S’I?(z, g™ ()dt + H(z) on &

where K(z,t) and K(z,t) are known matrix functions analytic for z
and ¢ in QU kU 2 and H(z) is analytic in 2 and continuous in QU«x

H(z) is analytic in 2 and continuous in 2 U &.

Treating (4.10) as a system of Volterra integral equations in
Q Uk and treating (4.11) as a system of Volterra integral equations
in QU &, we get the analytic extension of A™(z) into QU U 9 and
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g™ (2) into 2U £ U 2. By integration, since % and g and their deriva-
tives of order <k are known and continuous on £ and specifically at
¢ at the outset, we get the unique extension of A(z) and ¢g(z). By
means of (3.15) we get the unique analytic extension of W *(z, ) into
QU kU Q2 and thus the extension of u(zx,y) into 2 U £ U 2.

We shall next concern ourselves with a system which is particularly
useful when certain higher order equations are reduced to a system
of equations. With this in mind, we shall consider a more restricted
class of equations, since the inequality becomes very unwieldy.

Notation. Let

el A ek

é; e; e;
E = JE Y= U, EF =

e, e, ex

where e, = (éi,, e, +--, €},) is the m™ row of EJ,
Before stating the theorem, we shall prove

LEMMA 3.
R[z, & t, 0] = p.{E, (¢ — 2)[G(0) — GO}
= S a.{(t - 2I6(0) - GOVE

where v,_(x, s) 1s the polynomial of degree <m — 1 in x that interpo-
lates J[V'xs] at the eigenvalues of E (s held fived); a;(s) are entire
functions of s and E° = 1. In the event that some or all of the
etgenvalues Ny, Ny, +++, N; of E are multiple, i.e.,

[E — M= (A= M™M= N2 oo e (M = Ap)"i(=1)*,
NeFE N Af 1 EER, M A+ M+ oo + n; =n, then we use Hermite im-
terpolation to determine p,_(x) such that if J(\s) = J0[1/>Ts_]

om—

'pn~1(>\41; 8) JO"lS)y 10%_1(7&1, 3) = SJ(”(XLS), a)v"

— o Pai(s 8)

= s (0, s)
oni—
T o

= gni-1J () s)

Paa(Vi 8) = T(0;8), == 10,,_1(%;, 8) = sJV(\;3), - —, Doy 9)

Proof. The unique Hermite interpolation polynomial p,_,(\,s) is
of the form:
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Puaihy 8) = 3TN + 38T OV + -+
i=1 i=1
+ 3 8T )i (V)
=1

where the [;,(\) are polynomials in \ of degree <n — 1.
Consider for Q(\) the characteristic polynomial of E:

_ JA8) — poa(n, 8)
f(x, 8) 20

J(ns) and p,_,(\, s) are entire functions of A and s, moreover the
polynomial Q(\) has the same zeros in A\ (multiplicity included) as
JA8) — p,_i(N, 8). Thus f(»,s) is an entire function of )\ and s.
Rearranging, we get

J(As) = QS (N, 8) + Paca(X, 8) ©

But Q(\) is the characteristic polynomial of E. Thus by the Cayley-
Hamilton theorem Q(F) = 0 and

J(Es) = p,_(¥, s)
which gives the result since

JE(t — 2)[G(o) — GO} = J{VE({t — 2)[G(o) — GOI} = Rz, (¢, 0} .

Now we are in a position to state the theorem.

THEOREM 2. (H1) Let k£ be an analytic arc of the type described
in § 2 for which the determinant of the (n — 1) X (n — 1) matrix
(4.12)  4.(2) = || D:[G(e)) - G@F | #0, 1sv=n-11<j<n-1
for z on QU kU Q (arc condition).

10 ... 0

a;(0) 20

(H2) det
a*=(0)
where a; are those of Lemma 3 (differential equation condition).

(H3) Let w = (%;,Us, +++,%,)" €eCHRURNCHD), R =k <20 — 1,0 =2)
and satisfy in 2

(4.13) Upy + Uyy + B = 0

where E is a constant m X n matriz for which
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1, 0, «ee, 0
By (B, oy (B (differential
(4.14) 4, =By, (EYyp, ooy (B |[#0 equation
condition)
(B )y (B gy v ooy (B

where (E*);; is the ij component of the k™ power of E.

(H4) Let u satisfy on the analytic arc £ the boundary conditions
(4‘15) pﬂl(zv Dwv Du)ul = fa(z) ’ a = 1, 2, -0, m,
where

pal(zy &, 7)) = .t E o p;i(z)&’v’ ’

ssk<

with p() and fu(2) analytic in QU kU Q. Moreover if P,(z, &, 7)
s the principal part of pu(z,§,7) (as polynomial in & and 7)), we
assume for
D5"~1Pu(z, &, 7])1 5n—2Dqu, cee, D’IH_IPu
Az(z, E, 77) = De’n—l .12( )7 Dn_zDUPZI’ LN .Dvn—-l_P21
Den—l m( ), Df _ZDanly cee, D;&~1Pm

that for ze QUEUR

(4.16) 4y = 4:(2, &, Pe=ryn=i = O
and
(4.17) Aa = Az(zy Ey 77)5=1,0=—i #* 0%,

Then u = (%, Uy, *++, )" can be reflected across the boundary con-
ditions (4.15) into 2 U &k U £2.

Before proceeding to the proof of Theorem 2, we shall state
Theorem 3, which deals with the case £ = n — 1, since the proof of
Theorem 3 follows the same lines as the proof of Theorem 2. Only
in the proof of Theorem 3, Lemmas 4,5, 4A and 5A are unnecessary.

THEOREM 3. Let £ be an analytic arc of the type described in § 2.
(H1*) Let u = (4, Uy, -+, u,)" € C*(QU k)N CYRQ) and satisfy in Q

2 These, as Professor Jean Leray has kindly pointed out to me, are conditions on
the behavior of the boundary conditions in the characteristic direction. He has also
proved that Conditions (H1) and (H2) are always satisfied, i.e. they are unnecessary
restrictions.
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Upe + Uyy + B = 0
where E is a constant n X n matrixz for which
(4.14%) 4,#0 (see Th, 2).
(H2*) Let u satisfy on the analytic arc k the boundary conditions

415  pDuw = 3 pi@DDju =), v=1,2--m,

r+ssn—1

where pii(z) and f.(z) are analytic in QU kU Q. Also assume in
QUEUR

(4.16)* A2, &, N)emyyn=i = 0 (see Th. 2 with k =n—1).
(4.17)* 4y, &, N)eyyp=—i = 0 (see Th. 2 with k=n—1).

Then u = (Uy, Uy, ~~+, U,)" can be reflected across the boundary con-
ditions (4.15%) into Q U £ U 2. Moreover the reflection can be reduced
to quadratures.

Proof of Theorem 2. We first consider (3.16) with A* = B* =0
and

9(2) = W*(c, 2) , h(z) = W*(z, ¢)
and get:
U*(z, 2) = h(z) + 9(2) — R|z, Z; c, c]h(c)

(4.18) _ ngt[z’ 2; t, clh()dt — SZR.,[z, z; ¢, olg(0)do

where, since it was shown that W*(z, {) is an analytic function of z
for z in 2 and an analytic function of ¢ for { in £, then h(z) is an
analytic function of z for z in 2 and g¢g() is an analytic function
of ¢ for ¢ in £. From (3.13) and (3.14) and (H.3) we see that
h(z) e C*R U £) and g(z) e CH2 U k).

With the aid of Lemma 3 we get

(4.19) Rz 2t c] = E[G(C) — G(@)]a{(t — 2)[G(c) — GBI E’

(4.20) R,z %;¢,0] = g’f G (0)(c — 2)aP{(c — 2)[G(o) — GER)E? .
Let
(€%, h) = efuh, + €lshy + +++ + €hh, .

Then the first component of (4.18) becomes
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(4.21) Uiz, 2) = Bi(z, 2) + 91(2, 2) — {Rl%, Z; ¢, c]h(0)}is: component

where

@22) B0 =@ - GO 5 | @it — DEONe, he)dt

with
GI(C) = G(C) - G(C)
and
woy FEO=00 -~ 93, | asie - AG0) - GO

X G'(0)(ef,9(0))do .

Note that hj(z,{) is analytic for (z,{) on 2 X;Q and e C"[(A.Q Uk) X ({2U £)]
and that g (z,¢) is analytic for (2,) on £ x 2 and € C*[(2U k) X (L UK)].
With the aid of Lemma 1, the boundary conditions can be written:
k
£ = 3 @y {3 axl@ @1 DD} UGz, 2)
+ terms of order I + m <k — 1 in D!D;U* .

(4.24)

Apply the boundary conditions to (4.21), evaluate on the boundary «,
remembering that on k£, z = Z, and substitute the new functions
hi(z, 2) and §;(z,2), (0 < j < 2n — 1) where

(4.25) hiz, &) = Déhi(z,0), G2 C) = Dig¥@z, )

with D°f = f, D°9 = g. Thus the boundary conditions become, since
k=n—1, for z on &

70 = 5 p@er{S + Sart@ @ DG 0],

+ terms of order I + m < k — 1 in D!h,(z, ?)

n—1 k
(4.26) + 3 w@0{S + Sanl@@r-DeE 0],
+ terms of order I +m <k — 1 in D}§,(z, 2)
Yy —= 1, 2’ e, n

(2’ indicates we sum when &k = n),

where f,(z) is known and analyticin 2UxU£. It should be remembered

that the first two terms (involving only %, and their derivatives) are

analytic functions of z for 2z in 2 and that the last two terms (involving

only §, and their derivatives) are analytic functions of z for z in &
Rearranging terms in (4.26) yields for z on «:
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S BDIE @ DIz, O]
(4.27) + 5 B E@T D2, 0) |

= A2) + A,2) + F.(?)

=2

where

AE) = =3 BDIG @I DIz 0|

(4.28) + terms of order [ + m <k — 1 in D}h,(z, C)]

=2
with coefficients analytic in QU kU 2 .

A = =3 Bu @G @I DE T2, 0],

+ terms of order I + m < k — 1 in D{§,.(z, C)]g_
with coefficients analytic in QU kU 2 .

(4.29) (@) = ) +Z=. iy 5 (&)(2) e

with A,(z) analytic in 2, A,(z) analytic in @, and B%.(2) and F.(2)
analytic in QU k U 2.

Our next goal is to convert (4.27) into a system of Volterra
integral equations for the n functions D"k, (z,2), 0 <m < n — 1.
On k, the system is to be satisfied and we shall see that they also
have an analytic solution for z in @ U x. With this in mind we state
and prove two lemmas.

LEMMA 4. Let k= n

(430) @ W) = DD 0| = DI 0] 0=msk
and the hypotheses (H1), (H2), and (H3) of the theorem hold. Then

@3) a @)= ngk_m,At, D (Ot + Conle), n=m<h

r=0
where K,_,...\t, 2) are analytic for t and z in QU kU 2 and C,_.(?)
18 analytic for z in QU kU Q.
Proof. Since the a;(0) occuring in (4.22) are entire functions,

the following Taylor’s expansion with remainder is valid:

APt — 2)Gi] = Duolt — 2) + R;,uslt, 7)
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where p, (o) is a polynomial of degree n — 2 in ¢ and

RMJa@:zfﬁgﬁﬁt—wwmwmr-@awa.

Introducing this into (4.22) and interchanging the order of integration
for the remainder yields:

B 0 = @) — GO S, a0 e, hie)at
— GO 3 ap ()| (¢ — o), (et
- G0 Zap O ¢ — 2tet, hitndt — ---

1 n—1 Sy (n—1 i _ n—2( 7
_(n——?)!—Gl (C)%ai >(O)Sc(t 2)"~*ef, h(t))dt

1 ” n—1 (z . B
e @OF (@l - 26,01

.(S:(o — 8)" (e, h(o‘))do->ds )
Next let

B(2) = —L S ain(0)ei, hiz) 1<r<n—1
(r — 1)! i=o

Bo(z) = hl(z) .
Then, since by assumption
1 Qeecene 0

(e
%f) =0, 0<j<n-1

det
af=(0)
we can invert the system of equations and get

(4.31.A) (¢f, h2) = 3,b,,B,(2)

where (b;,) is a constant matrix. Thus the expression for A} can be
written:
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hi(z, 0) = Biz) — Gl(C)SjBl(t)dt
— G| ¢ - 2Bwat - -

(432 - 6@ ¢ - 9B, e

= T
om0 8 [aie - 260

- (g(o - s)"“nghBr(a)dcf}ds )
Next we let
Fi(2) = By(2)
Fo) = —|'¢ - o B.wat
and thus
(4.324) Fi"@) = (—=D"(r — D! B,(2) .
Introducing these into (4.32) gives
1 ©) = Fi(@) + GOF(R) + GAOF@) + -+ GO F,.(2)

1 . n—1 n—1 (__1)7 N
00 5 S b [l — 96,01

(n —2)
. (S:(a — s)"—2F,<”(a)do>ds .

Consider now for 0 < m < k

DIDER@, )], = . F¢—(@) + DAGEIFS™@)

+ DMGIRIF ™ (2) + -+ + DG ()]F5™(2)

LSS, I e Drar

(m—2) == 7" (r — 1))
s — DGON(| Frio)o — o-ao)as],

=z

(4.33)

where 0,, is the Kronecker delta. Since

Ek—m+r—m—2)—2k—-m+mn—-1)—m—2)—2
=k-m-—-1<k—-—m,
Ek—m—-—r+nm—-2)+1Zk—-m—-—(n—-1)+n—-2)+1=k—m,

the last term involving the integrals is of the form:
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n—1

(4.34) S K@ 2R 0dt + Cou@

=0

where the K,(¢,z) are analytic for ¢t and z in QU £ U 2 and C,_.(2)
is analytic for 2z in QU £ U 2. This follows since r <n — 1 and 1.

ﬁg:mn(a)(a — s)"do

— (— 1)r—k+m SSF(k—-m) . k—m—r+n—2d C £
| L ) 7+ CX(6)
if k—m>0 or, if t—m=0 and »r <n — 1, where CX(s) is a
polynomial in s. The only difference in the case k —m =0,r =n —1

is that the integral on the right side is replaced by F,_.(s). And
since 2.

S:K*(s, z)(S:FT"“”’”)(G)(a — s)‘da)ds = S:K**(s, 2)F =™ (0)do

where K**(s,z) is an analytic function of s and z (since K*(s, z) is)
for s and z in QU kU Q. The last integral follows from integration
by parts I + 1 times.

Thus by the definition of «,_,(2), (4.30), (4.33), and (4.34) we get
for0=m=<k

U n(?) = 0, F*(2) + DI[GL(R)]F*™(2)
+ DPGARNFF™(2) + - -+ + DP[Gr@)|F ™ (2)

(4.35) + ”E—f S L, nlt, ) F=m(t)dt
r=0 Je¢

+ Co_n(?)

where for ¢,z2e QUEU 2, L, w(t, 2) and C,_.(2) are analytic.
Next we consider for 0 <=m <n —2<k

Af(2) = mg(z — tymt, (f)di

= 0P "(2) + DI[G.(2)]F* ()
(4.36) + DM GHR)FF=0(2) + «
+ DrGI(@)IF ()

+ ”Z_l Ssz-—-'m.r(t’ z)F;k—(n—-l))(t)dt + Rk—_m(z)
r=0 Je

where we have integrated by parts # — m — 1 times. R,_,(2) and

L, ... are functions analytic for z,¢ in QUxsU 2. For consistency let

A w(?) = _(u(?) and Ry, = Cy_ny(3), Lk—(l»——l),r = Ly j—(n-u-
Since by hypothesis we have for z in QU kU L
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1 G, -+ G

0
|4 =] lsmsn—-1,1sv<n-1

=0,
DGy (2)
0

the above system, coupled with «,_,_,(2) in (4.35) can be written as:

Fl=n=)(2) = A74(2) A*(2) — A;l(z)SzL(t, ) F =1 (t)dt

(4.37)
— 47(2)R(2)

with:

(Fo(k—(n—l))(z) \
Fl—o-0)g) — | F{F=00(z) |
\ i) )
* ( 1 ? — n—=2 \
(45 T KO
A*(z) = | Ai(?) = ﬁg(z — )", (t)dt

\ A;f.—m—m(z) \ ak—(;—l)(z) }

0 r<n—1 columns
L(t: Z) - (Lk-m,r(t5 Z)) { k (

n—1)=Zk—m<Ek rows
R(z) = (Bi(2), Bis(2), =+, B ()" .

We consider (4.37) as a system of Volterra integral equations and
obtain its solution in the form:

FU—=0(z) = A742)[A*(2) — R(2)]
(4.38) — 40\ 1, 24P O1A% @) — Rt

where I'(t,z) is the resolvent matrix which is an analytic function
of t and z for ¢t and 2z in QU x U 0.

Now we are in a position to express a;,_,(2), » < m < k in terms
of a,_,(2),0=m<n—1. To this end we consider (4.35), which is
valid for 0 < m <k and combine with it the integrated expression
of (4.38):



REFLECTION LAWS OF SYSTEMS OF SECOND ORDER ELLIPTIC 563

Fi-m(z) = S’r:_ma, DA*(t)dt + R*@) , n<m=<k

where I'} .(t,2) is analytic for ¢ and 2z in QUkUL and R*(z) is
analytic for z in QU £ U 2. This combination gives:

439)  a. @) =3 S sx (6, DAL(0)dt + Ri%@), n=m=k

r=

where R}*,(z) is analytlc for z in QUEUQ and "% (¢, 2) is analytic
for t and z in 2UkUQ. But from the definition of A} () in (4.36)
for 0<r<n-—2and 4}, 1,(?) = &4_._)(?), we get the result upon
integrating (4.39) by parts if necessary.

Thus Lemma 4 is proved.

With the notation and assumptions of Lemma 4, we next state
and prove:

LEMMA 5. Forl+m=<k—1
(4.40) DU, c)]g =5 SZK’,:ﬂ_m,j(t, D (0)dt + Tk ()
=z =0 Je¢

where Ki .. i(t,2) are analytic for t and z in QU KU Q and Cx,.(2)
are analytic for z in QU £ U 2.

Proof. In the notation of Lemma 4, since I +m <k — 1

DD s = 3 (F 7 5T ") DEDE D, O

3=0 J 2=8=t
. bl=m e _ ] _ fm i ]
—_ =] < .7 >Dz Jhm+j(za C) ==t
e — 1 —m
= < J )ak—m—j(t) :
Thus
N — 1 S k—l—m—1
zlh'm [} z=0=t — t —
D (ZC)gt k—1Il—m — 1)1 ( s)

k—l—m _ _
LS ™Mo |is
J=0 .7
+ polynomial in (¢ — ¢)
= 5 [ Binis, (o)t + Catt
with Ci,.(2) analytic for z in QU £ U @, K¥.,. ,(t, 2) is analytic for ¢

and z in QU kU2 and where we have made use of Lemma 4 and
the fact that if » = 0 then
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det(z . t)TStK(s, t)at,_y(s)ds = — S'(z — 8y 1K, ()t
¢ ¢ r + 1 ¢
for the case when m + j = n. Thus the Lemma is proved.
We are now in a position to continue the proof of the theorem.
Combining (4.28) with the results (4.31) of Lemma 4 yields:

n—1

4.6) = $ [ Kz, 9 tyat

=0

(4.41) 4 terms of order Il + m <k —1 in
Dih,(z, ()., With coefficients analytic in QU kU2,

where K}*(t, z) are analytic for ¢ and 2 in QU k U 2. With the aid
of Lemma 5 applied to the second term on the right we get:

(4.42) Az = mz:) S:K,,,,(t, 2, (t)dt + C.(2)

\Ehere K,,(t,2z) are analytic in ¢ and z for ¢ and z in QU £ U 9, and
C,(?) is analytic for z in QU £k U Q.
Finally, we combine (4.27) and (4.42) and get for z on «:

(4.43) B2 = | Rt 20t + 972,

where g*(2) is an analytic vector function for z in £ and in C(2 U &)

K, 2) = (K.nlt, 2) ,
D(2) = ((?), A1(R), = * +, Appa(R))”
By2) = (BLG()]™) ,
m designates the column, v the row.
0msn—-1,1sv<n.

But from (4.29) we see that

3 0@, S Erarp e 3 0 el
r4s= r+s= r+8=
S, 0apE@) , B @, e, 3 () aty
| BEe) | = |

r+s=k

S rervie), S @ arp, e, S () et
where by definition of aj*

r+s
(@ + b)"(@a — b = a;’a””‘f‘bf‘

£=0

and by definition
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Puz, &) = 3. PR .

Thus if £ =& + in, L = & — ip then
P.(z,&,7) = 2“"TZ. @R + O(C - Q)

+s=k
and
DiPu(z, &,7) Iy = 41277 3, (iyaynii(a) .

Pu(z3 Ey 77)7 (De - ?:Dﬂ)Pll(zy é: 77): Tty (De - iD??)nF‘lPll(z’ E) 77)
- C P21 (z, Ey 77): (De - 'iDv)Pm(zy E: 7])9 tt Ty (De - iD,y)n—lpm(z, Ey 77)
Pm(z) E’ 77)! (De - ?:DW)PM(Z’ S: 7]), Ty (DE - ’I;Dﬂ)n_l nl(z) 5’ 77) 5::

with C, = 112! ... (n — 1)!
Since P,,(z, &, ) are homogeneous polynomials in (&, %) of degree
k, we see from Euler’s formula that

(éD; + nD,)'P,(2, &, 1) = K'P,(%, &, 7)) .
Thus
| BE(2)| = (k)m"=2C, | (6D + 7D,)* " ¢D, — 7D,)'P,.(2, &, 7) 152 # 0

if and only if 4.2, & %) |ez1,»=: # 0. This follows immediately upon
writting the determinant as a sum of determinants. Thus we have

| Bo(2) | = [G'()] " —032 | Blu(z) | = OF
for z in 2U £ U 2 by assumption (4.16). Thus

(449 06) = 67| B(t, 900) + 670" (@) -

We now consider (4.43) as a system of Volterra integral equations in
&(z) for z in QU k. As such, this system has a unique solution
vector @,(z) which is analytic for z in 2 and continuous for z in @ Uk
and moreover agrees with @(z) for z on k. Thus @,z) furnishes the
analytic continuation of @(z) into 2 Ux. Thus @(2) is analytic for z
in 2U kU Q. From the definition of @(2) in (4.43.A) we see this yields
the analytic continuation of @,(2), @, .(2), -+ -, A_,1.(2) Into QU K U Q.
But by (4.36), the definition of A*(z) and (4.38) we get the analytic
continuation of F%--(z) into QU U Q. By integration, we get
the analytic continuation of F(z) into 2 Uk UfQ. (We adjust the

8 Professor J. Leray pointed out to me the relation between ,B’jf, and 4x(z, &, 77)53.
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constants of integration to agree with F'(z) and its derivatives at
the point ¢ of the boundary; this gives uniqueness.)

Upon differentiating F;(z) and using (4.32A) and (4.31A) we get
the analytic continuation of (ef, h(z)) into 2U kU Q. However by
assumption (4.14)

4, =

1 0-..-
=0, 1<j<n—-1.

ef

!

Thus we get the analytic continuation of h,(z), h(2), -+ -, h,(2) into
QUEUSL.

In a completely analogous way, we can show how to analytically
extend ¢.(?), g:_.(2), *++, 9r—w(®) into QU kU 9, knowing initially
only that they are analytic in 2 and continuous on £ U x. In this
direction we first note that we have:

LEMMA 4-B. Let k=n
(4.30B) ai_,(2) = DETDrgi(z, ) = D "Ga(z, 2) 0<msk

and the hypotheses of the theorem hold. Then

(4.31B) ar =3 g R (t, Dar(t)dt + Co_(2)

=0

where I?,Mn,r(t, 2) are analytic for t and z in QU kU 0 and @k_m(z)
1s analytic for z in QU k£ U £2.

Proof. The proof of this lemma is the same as that of Lemma
4, with only obvious modifications. In place of the expression for the

Taylor’s expansion for a; about ¢ = z we start with the expression
for the Taylor’s expansion for a; about G,(¢) = G({) and integrate viz:

0 0) = 0.0) — (¢ — 2 5, 4P (0| Fo)et, a(0))do
~ (¢ - 7 Z O [60) - GOIFOE, 9o)do
- Lo 5 ap | 1660) — GOTC @)el, glo))do — -
g €~ 95, |6 — 6o — 2
- ({1660 - 616 @)el, g(@)do )ds .

In place of B,(z) we introduce:
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B.(0) = - 1), jgoa‘ '(0)(gi, e€)) ,

B0 = 0.0

and the expression (4.32) becomes replaced by:
6, 0 = B(Q) — (¢ - 9| Bio)G(0)do
- (¢ - | BI60) - 6016 (0)do
= (¢ = [ B(0)IG(0) - GOIG (0o - -
Also F,(z) is replaced by
70 = - {160 — 6016 B.0)s

50
F@ = (=1t = DHE OB
— ’Di16(0) - 606 (@)B (0)do .

Considering these as Volterra integral equations for B,(¢), we can
solve, since G'({) = 0 in QU £ U 2, and get:

B.(©) = (—1) [GOIF(©)

_ 1)1

+ (=1) [G'(OI S Q(0, OF;"(0)do

(r 1)'

where QA,(G, ¢) is the resolvent which is analytic for ¢ and ¢ in
QUkU Q. Thus

952, 0) = FQ) + (¢ — 2)F(Q) + (¢ — 20 FiQ)
+ . + (¢ — 2)"F,_(C)

RERE 1)
(’)’&-—2)' —?) Jz“o rz_.'o(fr_— 1)! ”

(4.33%) g W[(G(s) — GO))e — 2)]

e
- ({160 - 6r-16/@1=
{Fr) + [Ge, o) Fi@)ac)do)ds

and for 0 <m<=<n-1
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ato(5) = DDz )|

= (=1rml Fg (@) + (~pm " e — 9
m ( — 1)! Nl TgT (o) ( 2
1y 2 (¢ — Fieom
(4.45) AR T ©
+ S5 ‘Dg—mg dsD{(c — 2)"a{[(G(s) — GO)e — )]}

n

0 r=0

[G(U ) — GEI"*G (o)

""“Q?M

Fin (o) + ScQT(T’ G)FN’,(M(T)dT}dO']g:) .

Since
r—jn—-2)—(k—m—-—1]=k—m

the last term can be written

(4.46) s S:ﬁ:mxa)é:_m,xa, 2do

r=0

where Qp .,..(c,) are analytic functions of ¢ and ¢ for ¢ and ¢ in
QU kU 2. Introducing (4.46) into (4.45) gives an expression of the
same form as (4.35). We now proceed exactly as in Lemma 4 and
find that:

447y Feewg) = Szf?:_m(t, DA t)dt + B*@) , n<m<k,

where
Fo-m(z) = (Fp="), FE(2), -, P (@)
2@ = ([l = trazoat, { ¢ = or-ap.dt, -, at- o)

and I7*(t, 2) is an analytic function of ¢ and z for t and z in QU £ U 0
and R*(z) is an analytic function of z for z in QU U Q. But for
nEm=k0Zr<n-—1, we have r—[(n—-2)—-(k—m—-1)] =
Ik — m, thus (4.45) becomes replaced in this case by

at-(2) = DE"Drgi(z, c>]

=5 S om0\t (0, 2)do n<m=<k,

where Q,,_,,, A0,2) are analytic functions of ¢ and z for ¢ and z in
QU kU, Combining this with (4.47) gives the result.
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The condition 4,(2) = 0 is unnecessary in this lemma since the
corresponding condition is:

4, = (=1)ne=0122181 eee (m — 1) £ 0 .

Next we note that we have

LEMMA 5-B. For l+m<k -1

n—1 "z & =
@38 Digna 0] =3 | Kiwiie it + Cia@)
=z =0 Je

where I%;f_m,,-(z, t) are analytic for z and t in QU Kk U 2 and 5,’:‘_,,,(z)
1s analytic for QU kU L.

Proof. Same as Lemma 5 using Lemma 4-B instead of Lemma 4.

As in the case of (@.(2), a;_i(?), -+, ay_,.(2))", we get analytic
extension of (a}(2), af_(2), «+-, af_,..(2))" into 2 Uk UL which are
analytic initially only in £, and continuous on 2 U&%. The only
difference is that we use the fact that 4.(z, &, %) |i=,—: 0 on
2U £ U 2 whereas in the extension of the ats we used the fact that
AZ(Z, S’ n) |$=1,’7='5 + 0 on ‘Q Uk U Q- .

In an analogous way we get the analytic extension of F*—"%(z)
into QU £ U 2, which in turn gives the analytic extension of B.(2)
into 2 U £ U 2, which finally gives the extension of (¢f, g(z)). Since
by assumption 4, = 0 this system yields the analytic continuation of
9., 9:Q), + -+, ga({) into QU £ U 2.

Upon introducing the extended vector functions 4(z) and g(z) into
(4.18) we get the extension of U*(z, 2) for z in 2UxUQ2, which was
given originally only for z in 2QU«k. And thus, the solution of (4.13)
has been extended across the boundary conditions on £ into QUxU Q.
This completes the proof of the theorem.

5. Applications. (A.l) Consider the situation where we are
given a solution to the differential equations

1.1) Uyy + Uyy + AU, + Buy, + Cu =0

where (u,, u,, -+, u,)", A, B and C are pairwise commutative constant
n X n matrices in a simply connected open region £ of the type
described in 2, part of whose boundary is the analytic arc x, and on
£ satisfies

4 I/c = (q)l(z), @2(2), ) ¢7L(z))

where ®,(2), - -+, ®,(2) are functions analytic in QU £ U 2. Moreover
let e C'(QU k). Then by Theorem 1 we can uniquely extend the
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solution % into 2 U £ U £ so that it is a solution in this large region
and is the only one that satisfies the given conditions provided 0 ==
| M,,,| where

00 00 00
Dii Dz Din

In this case
0if 1#£7
P =_ ... ..
1lif =3

Thus | M,,| = 1 #+ 0 and reflection is possible.
(A.II) Theorem 2 is suitable for systems of equations of the form:

iPij(A)uj:O 1=1,2,--4,m
J=1
where the P;; are polynomials with constant coefficients and 4 is the

Laplacian, e.g.,

Au, + adw, + dbu, = 0
Luy + cdu, + ddu, = 0

for which if

(W1, Way Way, Wy, Wy)T = (Uy, AUy, Wy, AUy, L Uy)"

then
0-1 0 0 O
0 ¢ & 0 O
E=]10 0 0 -1 0
0 00 0-1
0 d 0 ¢ 0

(A.III) When the arc £ is a portion of the x axis, then condition
(H.1) of Theorem 2 is automatically satisfied since then G(z) = z and

-1 —2c—2) —8(c—2)t--- —(n —1)(c—2)"*

0 21 3:2(c—2) - (n — 1)(n — 2)(c — 2)"*

4z)=| 0 0 —3! coe(m— 1)(m — 2)(n — 3)(c — )~
0 0 0 +(n — 1)!

Ii

+112181 +ve (n — 1)1 £ 0 .
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(A.IV) When we consider systems of the form:

Auy = @y Uy + Gty
a;; constants
duy = aut; + AU,

—Qy  —Qyp
B- ( )
—0qy — Qg
and condition (H.1) of Theorem 2 becomes G’(z) == 0 for 2 U £ U £ which

is automatically satisfied because of our initial restrictions on G(z).
(A.V) Given that u, is a solution of the metaharmonic

then

equation
(5.1) A", + a, 4" u, A+ oo + a, AU, + a,u, = 0

in 2 where a,, a,, - - -, a, are constants and u,(x,y) is a single function,
e C" 2R UK)NC™(Q),n—1<k<2n,n=2 and u, satisfies on k:

(5'2) pa(D)ul = T_gaskpZi(z)D:D;ul = fa(z) a = 1’ 21 e, M

where the p7%(z) and f.(z) are analytic in QU # U 2. Assume that «
is sueh that (H.l) is satisfied. This equation can be written as a
system by letting w, = du,, u; = Lu, -+, u, = 4°*u, and equation
(5.1) is equivalent to the system

(" 0-1 0 0---0 O Uy
o 0-1 0.--0 O Uy

4+ =0
0 0 00 0 -1
L A, @y eeeee- a a u,
Thus

0 0 1 0 0--.0\"x" 0.0 (=1

0O 001 0-..-0 ta,ta, -+ ta,
E? = : R

—, —Q, - —a

and in this case (4.14) becomes.
1 00 0---0
0-10 0.--0
4=l0 01 0.-0]==x1

0 0.e. (=1y
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which means 4, = 0 is not a condition in the case of the metaharmonie
equation. Thus if 4, % 0 and 4, % 0 for z in QU K U 0, as given by
(4.16) and (4.17), and if the a; are such that (H.2) is satisfied then
we get that u, can be extended into QU £ U 2.

To get some idea of how we check condition (H.2) consider the
example

Au+ 34u + 2u =0,
To determine a,(s) and a,(s) of Lemma 3 where

p;(K, S) = ao(s) + a’l(s))' ’

note that
[E—=A|=N-=-3A+2x=Q—1)A —-2)
and thus
(1, 8) = ay(s) + a(s) = Jo[-l/—s-] ’
D2, 8) = ay(s) + 2a,(s) = J[1/2s] .
Thus
a(s) = J[V2s] — J[V 5],
ay(s) = 2J [V s | — J[V'2s] .
Thus

10
Rlz, G, 0] = ad(t — 2066 — GO, )

0 -1
+ et = 216@ - 65 )

and the representation of the solution (4.18) becomes:

U (2, 2) = hu(2) + 9:(2) — ai{(c — 2)[G(c) — G(R)]}hi(0)
+ af(c — 2)[G(e) — G(2)]ths(c)

— [6(0) — 6@ Ta'{(t — DU — GO
— af{(t — 2)[G(e) — G@hu(t)ldt
— (t = 2] la{(c — 26(0) - G@Da(o)
— a’{(c — 2IG(6) — G@NgA0)F(0)do .
In this case, the condition (H.2) becomes:

1

0 1
= a®(0) = —= =0,
WW)WWJ WO ==
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and is thus satisfied. Note that in this example (H.1) is also satisfied,
since as a special case of (A.IV) it is simply G'(z) = 0 for z in QU £ U £,
Note that the polyharmonic equation is a special case of the

metaharmonic equation.
(A.VI) It is of interest to note that in the case of the polyhar-
monic equation viz. 4"u = 0, E is of the form

0-1 0 0--- 0
0O 0-1 0.-- 0
m-|:
O 0 0 0.---1
o 0 0 0.-- 0

Thus £ = 0 and the Riemann function is only the finite sum:

R[Z, {2, (] = 2V E(z — 2')(G(C) — GC)],

where

q=I-9+ @& _ . L1 LA
J(,[l/Q] =1 o2 + 24(21) +(=1) 220[(n — DI )

Note that the a;(s) of Lemma 3 are given in this case by
ai(s) = (—1)y27%(5l) %7, 0=sj=n-1.

Thus condition (H.2) is clearly satisfied automatically. Thus for the
representation (4.20) of the first component

w(z, ) = (@) — 5, 160 — GEF| (¢ — Dby (t)dt

(5.3) B A
+ 0B — 5 dbe — 2| FO)NG0) — G@g;m (0o
where
bj = ; .
TGy

Let

P(2) = —jbjgz(t — 2y, (B)dE i=1,2e,m—1
(5.4) .

7,(2) = —3b,| G(ONG0) - GOV g,(0)do, §=1,2, 0,0~ 1
and

@0(2) = hl(z) ’ ZF(?) = gl(g) ’



574 JAMES M. SLOSS

then the representation (5.3) becomes:
(65 oD = 260 - 6@OFR) + 5, — HTR)

which is an equally good representation since the A’s and ¢’s can be
obtained simply by differentiation of the ¢’s and ¥’s if we utilize
(H.1). This is a generalization of the representation formula of the
author [8] for the biharmonic equation.

(A.VII) Next we shall check that the results of [8] for the
biharmonic equation are a special case of Theorem 2. In this case
Su=0,1<k<3,a=1,af = —k,ap* " = —(k—2), a¥** = —(k—4),
ar* = (k—2r) = r —s. Thus condition (4.16) and (4.17) become the
same; viz.:

Zk(i)spﬁ“(@ > () (r — s)pi(z)

r+8= r+s=k

044, =4, = . .
r+§—:‘:k (2)°pE(2) T+32:k (2)(r — 8)p5(?)

which is precisely the condition of [8]. As seen in (A.IV), (H.1) is
satisfied and as seen in (A.VI), (H.2) is automatically satisfied and as
seen in (A.V) 4, 0. And in this special case our theorem reduces to
the theorem of [8], but with the continuity requirements strengthened
by insisting that u e C**(Q U k) N C{Q) instead of only

ueCHRU k) U CH2) N CHL U k)

as in [8].
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