Pacific Journal of Mathematics

NONLINEAR ELLIPTIC CONVOLUTION EQUATIONS OF WIENER-HOPF TYPE IN A BOUNDED REGION

BUI AN TON

Vol. 24, No. 3

July 1968

NONLINEAR ELLIPTIC CONVOLUTION EQUATIONS OF WIENER-HOPF TYPE IN A BOUNDED REGION

BUI AN TON

The existence of a solution of a nonlinear perturbation of an elliptic convolution equation of Wiener-Hopf type in a bounded region G of \mathbb{R}^n is proved. More explicitly, let Abe an elliptic convolution operator on G of order $\alpha, \alpha > 0; A_j$ the principal part of A in a local coordinate system and $\widetilde{A}_j(x^j, \xi)$ be the symbol of A_j with a factorization with respect to ξ_n of the form: $\widetilde{A}_j(x^j, \xi) = \widetilde{A}_j^+(x^j, \xi)\widetilde{A}_j^-(x^j, \xi)$ for $x_n^j = 0$. $\widetilde{A}_j^+, \widetilde{A}_j^-$ are homogeneous of orders $0, \alpha$ in ξ respectively; the first admitting an analytic continuation in $\text{Im } \xi_n > 0$, the second in $\text{Im } \xi_n \leq 0$. Let $T_k, \ k = 0, \cdots, [\alpha] - 1$ be bounded linear operators from $H_+^k(G)$ into $L^2(G)$ where $H_+^k(G), \ k \geq 0$ are the Sobolev-Slobo detskii spaces of generalized functions.

The purpose of the paper is to prove the solvability of: $Au_+ + \lambda^{\alpha}u_+ = f(x, T_0u_+, \cdots, T_{\lfloor \alpha \rfloor - 1}u_+)$ on $G; u_+$ in $H^{\alpha}_+(G)$ for large $|\lambda|$ and on a ray $\arg \lambda = \theta$ such that $\widetilde{A}_j + \lambda^{\alpha} \neq 0$ for $|\xi| + |\lambda| \neq 0$ and for all j. $f(x, \zeta_0, \cdots, \zeta_{\alpha-1})$ has at most a linear growth in $(\zeta_0, \cdots, \zeta_{\alpha-1})$ and is continuous in all the variables.

Linear elliptic convolution equations in a bounded region for arbitrary α and with symbols having the above type of factorization ($\lambda = 0$) have been considered recently by Visik-Eskin [3]. Those equations are similar to integral equations since no boundary conditions are required.

The notation and terminology are those of Visik-Eskin and are given in §1. The theorems are proved in §2.

1. Let s be an arbitrary real number and $H^{s}(\mathbb{R}^{n})$ be the Sobolev-Slobodetskii space of (generalized) functions f such that:

$$||f||_{s}^{2} = \int_{E^{n}} (1+|\,\xi\,|^{2})^{s}\,|\,\widetilde{f}(\xi)\,|^{2}d\xi < +\infty$$

where $\tilde{f}(\xi)$ is the Fourier transform of f.

We denote by $H^{s}(\mathbb{R}^{n}_{+})$, the space consisting of functions defined on $\mathbb{R}^{n}_{+} = \{x: x_{n} > 0\}$ and which are the restrictions to \mathbb{R}^{n}_{+} of functions in $H^{s}(\mathbb{R}^{n})$. Let lf be an extension of f to \mathbb{R}^{n} , then:

$$||f||_{s}^{+} = ||f||_{H^{s}(\mathbb{R}^{n}_{+})} = \inf ||lf||_{s}$$
 .

The infimum is taken over all extensions lf of f.

The $\overset{\circ}{H}_{0}^{+} = \{f_{+}; f_{+}(x) = f(x) \text{ if } x_{n} > 0, f \in L^{2}(\mathbb{R}^{n}), f_{+}(x) = 0 \text{ if } x_{n} \leq 0\}$

and similarly for \check{H}_0^- .

We denote by H_s^+ , the space of functions f_+ with f_+ in \check{H}_0^+ and $f_+ \in H^s(R_+^n)$ on R_+^n .

 \check{H}_s^+ is the subspace of $H^s(\mathbb{R}^n)$ consisting of functions with supports in cl (\mathbb{R}_+^n) . \widetilde{H}_s^+ , \widetilde{H}_s , \tilde{H}_s^+ denote respectively the spaces which are the Fourier images of H_s^+ , $H^s(\mathbb{R}^n)$, \tilde{H}_s^+ .

Let $\tilde{f}(\xi)$ be a smooth decreasing (i.e., $|\tilde{f}(\xi)| \leq M |\xi_n|^{-1-\varepsilon}$ for large $|\xi_n|$ and for some $\varepsilon > 0$) function. The operator Π^+ is defined as:

$$\prod^{+}\widetilde{f}(\xi) = \frac{1}{2}\widetilde{f}(\xi) + i(2\pi)^{-1} \operatorname{v.p.} \int_{-\infty}^{\infty} \widetilde{f}(\xi', \eta_n)(\xi_n - \eta_n)^{-1} d\eta_n$$

where $\xi' = (\xi_1, \dots, \xi_{n-1})$.

For any \tilde{f} , then the above relation is understood as the result of the closure of the operator Π^+ defined on the set of smooth and decreasing functions.

 Π^+ is a bounded mapping from \widetilde{H}_s into \tilde{H}_s^+ if $0 \leq s < 1/2$ and is a bounded mapping from \widetilde{H}_s into \widetilde{H}_s^+ if $s \geq 1/2$.

Set: $\xi_{-} = \xi_{n} - i |\xi'|$; $(\xi_{-} - i)^{s}$ is analytic for any s if Im $\xi_{n} \leq 0$ and:

 $||f||_{s}^{+} = ||\prod^{+}(\xi_{-}-i)^{s}l\widetilde{f}(\xi)||_{\scriptscriptstyle 0}$

where lf is any extension of f to \mathbb{R}^n (Cf. [3], p. 93 relation (8.1)).

Let G be a bounded open set of \mathbb{R}^n with a smooth boundary. $H^s(G)$ denotes the restriction to G of functions in $H^s(\mathbb{R}^n)$ with the norm:

$$||u||_s = \inf ||v||_{H^s(\mathbb{R}^n)}; \quad v = u \text{ on } G.$$

By $H^s_+(G)$, we denote the space of functions f defined on all of \mathbb{R}^n , equal to 0 on $\mathbb{R}^n/\mathrm{cl}(G)$ and coinciding in $\mathrm{cl}\,G$ with functions in $H^s(G)$.

DEFINITION 1. $\widetilde{A}(\xi)$ is in 0_{α} if and only if: (i) $\widetilde{A}(\xi)$ is a homogeneous function of order α in ξ . (ii) \widetilde{A} is continuous for $\xi \neq 0$. DEFINITION 2. $\widetilde{A}_{+}(\xi)$ is in 0_{α}^{+} if and only if: (i) $\widetilde{A}_{+}(\xi)$ is in 0_{α} . (ii) $\widetilde{A}_{+}(\xi', \xi_{n})$ has an analytic continuation with respect to ξ_{n} in the half-plane Im $\xi_{n} > 0$ for each ξ' .

Similar definition for 0_{α}^{-} :

DEFINITION 3. \widetilde{A} is in E_{α} if and only if: (i) \widetilde{A} is in 0_{α} . (ii) $\widetilde{A}(\xi) \neq 0$ for $\xi \neq 0$.

(iii) $\widetilde{A}(\xi)$ has, for $\xi' \neq 0$, continuous first order derivatives, bounded if $|\xi| = 1, \ \xi' \neq 0$.

DEFINITION 4. $\widetilde{A}(x, \xi', \xi_n)$ is in D^0_{α} if and only if:

(i) $\widetilde{A}(x,\xi)$ is infinitely differentiable with respect to x and ξ ; $\xi \neq 0$.

(ii)
$$A(x, \xi)$$
 is in 0_{α} for x in \mathbb{R}^n .

(iii)
$$a_{k2}(x) = \frac{\partial^k}{(\partial \hat{\xi}')^k} \widetilde{A}(x, 0, -1) = (-1)^k \exp(-i\alpha\pi) \frac{\partial^k}{(\partial \hat{\xi}')^k} \widetilde{A}(x, 0, 1)$$

in R^n ; $0 \leq |k| < \infty$; $k = (k_1, \dots, k_n)$.

DEFINITION 5. Let A be a bounded linear operator from H_s^+ into $H^{s-\alpha}(\mathbb{R}^n_+)$. Then any bounded linear operator T from H_{s-1}^+ into $H^{s-\alpha}(\mathbb{R}^n_+)$, (or from H_s^+ into $H^{s-\alpha+1}(\mathbb{R}^n_+)$) is called a right (left) smoothing operator with respect to A.

T is a smoothing operator with respect to A if it is both a left ane right smoothing operator.

Let $\widetilde{A}(\xi)$ be in 0_{α} for $\alpha > 0$. For u_+ in H_s^+ , $s \ge 0$, with support in cl (R_+^n) , set: $Au_+ = F^{-1}(\widetilde{A}(\xi)\widetilde{u}_+(\xi))$ where F^{-1} is the inverse Fourier transform. It is well defined in the sense of generalized functions. A is a bounded linear operator from H_s^+ into $H^{s-\alpha}(R^n)$.

Let $\widetilde{A}(x, \xi)$ be an element of E_{α} for each x in cl G and $\widetilde{A}(x, \xi)$ be infinitely differentiable with respect to x and ξ . Since G is a bounded set of \mathbb{R}^n , we may assume that G is contained in a cube of side 2pcentered at 0. We extend $\widetilde{A}(x, \xi)$ with respect to x to all of \mathbb{R}^n by setting $\widetilde{A}(x, \xi) = 0$ if $|x| \ge p - \varepsilon$ for $\varepsilon > 0$. We get a finite function, homogeneous of order α with respect to ξ .

We take the expansion into Fourier series of $\widetilde{A}(x,\xi)$:

$$\widetilde{A}(x,\,\xi) = \sum_{k=-\infty}^{\infty} \psi_{\scriptscriptstyle 0}(x) \exp{[(i\pi kx)/p]} \widetilde{L}_k(\xi) \;; \qquad \qquad k = (k_1,\,\cdots,\,k_n)$$

where:

x

$$\widetilde{L}_{k}(\hat{arsigma})=(2p)^{-n}\int_{-p}^{p}\exp{[(-i\pi kx)/p]}\widetilde{A}(x,\,\hat{arsigma})dx$$

 $\psi_0(x) = 1$ for $|x| \leq p - \varepsilon$; $\psi_0(x) = 0$ for $|x| \geq p$; $\psi_0(x) \in C_c^{\infty}(\mathbb{R}^n)$. We have: $|\widetilde{L}_k(\xi)| \leq C |\xi|^{\alpha} (1 + |k|)^{-M}$ for arbitrary positive M. Let u_+ be in $H_+^s(G)$, we define:

(1.1)
$$Au_{+} = \sum_{-\infty}^{\infty} \psi_{0}(x) [\exp\left((ikx\pi)/p\right)] L_{k} * u_{+}$$

where $L_k * u_+ = L_k u_+$ is defined as before since $\widetilde{L}_k(\xi)$ is independent of x.

Denote by P^+ , the restriction operator of functions defined on \mathbb{R}^n to G. We consider an elliptic convolution equation of order α , on G of the form:

(1.2)
$$P^+Au_+ = \sum_j P^+\varphi_j A\psi_j u_+ + Tu_+$$

T is a smoothing operator. The φ_j is a finite partition of unity corresponding to a covering N_j of cl *G* with diam (N_j) sufficiently small. The ψ_j are in $C_c^{\infty}(\mathbb{R}^n)$ with $\varphi_j\psi_j = \varphi_j$ and $\operatorname{supp}(\psi_j) \subseteq N_j$.

Suppose $\widetilde{A} \in D^{0}_{\alpha}$, then the operator $\varphi_{j}A\psi_{j}$ taken in local coordinates may be written as:

$$\varphi_j A \psi_j = \varphi_j A_j \psi_j + T_j$$

where A_j is a convolution operator of the form (1.1) and T_j is a smoothing operator (Cf. [3] Appendix 2).

2. The main result of the paper is the following theorem:

THEOREM 1. Let A be an elliptic convolution operator on G, of order $\alpha > 0$, and of the form (1.2). Suppose that:

(i) $\widetilde{A}_j(x^j, \xi) \in E_\alpha \cap D^0_\alpha$.

(ii) $\widetilde{A}_{i}(x^{j},\xi)$ has for $x_{n}^{j}=0$ a factorization of the form:

$$\widetilde{A}_{j}(x^{j},\xi) = \widetilde{A}_{j}^{+}(x^{j},\xi)\widetilde{A}_{j}^{-}(x^{j},\xi)$$

where $\widetilde{A}_{j}^{+} \in 0_{0}^{+}$; $\widetilde{A}_{j}^{-} \in 0_{\alpha}^{-}$ for all $x^{j} \in N_{j} \cap G$.

(iii) There exists a ray $\arg \lambda = \theta$ such that $\widetilde{A}_j(x^j, \xi) + \lambda^{\alpha} \neq 0$ for $|\xi| + |\lambda| \neq 0, x^j \in N_j \cap G$.

Let $f(x, \zeta_0, \dots, \zeta_{\lfloor \alpha \rfloor - 1})$ be a function measurable in x on G, continuous in all the other variables. Suppose there exists a positive constant M such that:

$$|f(x, \zeta_0, \cdots, \zeta_{\lfloor lpha
floor -1})| \leq M \Big\{ 1 + \sum_{j=0}^{\lfloor lpha
floor -1} |\zeta_j| \Big\}$$
 .

Let T_k ; $k = 0, \dots, [\alpha] - 1$ be bounded, linear operators from $H^k_+(G)$ into $L^2(G)$. Then for $|\lambda| \ge \lambda_0 > 0$; $\arg \lambda = \theta$; there exists a solution u in $H^{\alpha}_+(G)$ of:

$$P^{+}(A + \lambda^{\alpha})u_{+} = f(x, T_{0}u_{+}, \cdots, T_{[\alpha]-1}u_{+})$$
 on G.

The solution is unique if f satisfies a Lipschitz condition in $(\zeta_0, \dots, \zeta_{\lfloor \alpha \rfloor - 1})$.

To prove the theorem, we shall do as in [2]. First, following Visik-Agranovich [4], we establish an *a priori* estimate and show the existence and the uniqueness of a solution of a linear elliptic convolution

equation depending on a large parameter in a bounded region. Then we use the Leray-Schauder fixed point theorem to prove Theorem 1. We have:

THEOREM 2. Let A be an elliptic convolution operator, of order $\alpha > 0$, of the form (1.2). Suppose that all the hypotheses of Theorem 1 are satisfied. Let $f \in L^2(G)$; then there exists a unique solution u_+ in $H^{\alpha}_+(G)$ of:

$$P^+(A+\lambda^lpha)u_+=f \,\,on\,\,G;\,|\,\lambda\,|\geq\lambda_0>0\qquad rg\,\lambda= heta$$
 .

Moreover:

$$||u_+||_{lpha} + |\lambda|^{lpha} ||u_+||_0 \leq M ||f||_0$$

where M is independent of λ , u_+ .

Proof of Theorem 1. Let v be an element of $H^{\alpha}_{+}(G)$ and $0 \leq t \leq 1$. Consider the linear elliptic convolution equation:

$$P^+(Au_+ + \lambda^{\alpha}u_+) = f(x, tT_0v, \cdots, tT_{[\alpha]-1}v).$$

With the hypotheses of the theorem, $f(x, tT_0v, \dots, tT_{\lfloor\alpha\rfloor-1}v)$ is in $L^2(G)$. It follows from Theorem 2 that there exists a unique solution u_+ in $H^{\alpha}_+(G)$ of the problem.

Let $\mathscr{H}(t)$ be the nonlinear mapping from $[0, 1] \times H^{\alpha}_{+}(G)$ into $H^{\alpha}_{+}(G)$ defined by $\mathscr{H}(t)v = u_{+}$ where u_{+} is the unique solution of the above problem.

The theorem is proved if we can show that $\mathcal{N}(1)$ has a fixed point.

PROPOSITION 1. $\mathscr{H}(t)$ is a completely continuous mapping from $[0, 1] \times H^{\alpha}_{+}(G)$ into $H^{\alpha}_{+}(G)$.

Proof. (i) $\mathscr{A}(t)$ is continuous. Suppose that $t_n \to t$; t_n , t in [0, 1] $v_n \to v$ in $H^{\alpha}_+(G)$. Set: $u_n = \mathscr{A}(t_n)v_n$. Then from Theorem 2, we get:

$$\| u_n - u \|_{lpha} \leq M \| f(\cdot, t_n T_0 v_n, \cdots, t_n T_{[lpha] - 1} v_n) - f(\cdot, t T_0 v, \cdots, t T_{[lpha] - 1} v) \|_0.$$

It follows from Lemmas 3.1 and 3.2 of [1] that $u_n \to u$ in $H^{\alpha}_+(G)$.

(ii) $\mathscr{A}(t)$ is compact. Suppose that $||v_n||_{\alpha} \leq M$. Then from the weak compactness of the unit ball in a Hilbert space and from the generalized Sobolev imbedding theorem, we get:

 $v_{n_i} \to v$ weakly in $H^{\alpha}_+(G)$ and strongly in $H^{\alpha-\varepsilon}_+(G)$; $0 < \varepsilon, \alpha - \varepsilon \ge 0$.

Applying the argument of the first part, we get the compactness of $\mathscr{M}(t)$.

PROPOSITION 2. $I - \mathscr{A}(0)$ is a homeomorphism of $H^{\alpha}_{+}(G)$ into itself. If $v = \mathscr{A}(t)v$, for $0 < t \leq 1$; then: $||v||_{\alpha} \leq M$ where M is independent of t.

Proof. The first assertion is trivial. Suppose that $v = \mathscr{H}(t)v$. It follows from Theorem 2 that:

It is well-known that:

$$||v||_{[lpha]-1} \leq 1/2M \, ||v||_{lpha} + C \, ||v||_{\scriptscriptstyle 0}$$
 .

Taking $|\lambda|$ sufficiently large, we have: $||v||_{\alpha} \leq M_2$. $\mathscr{A}(t)$ satisfies the hypotheses of the Leray-Schauder fixed point theorem (the uniform continuity condition as in [2] is not necessary). So $\mathscr{A}(1)$ has a fixed point, i.e. $\mathscr{A}(1)u_+ = u_+$.

The uniqueness of the solution in the case $f(x, \zeta_0, \dots, \zeta_{\lfloor \alpha \rfloor - 1})$ satisfies a Lipschitz condition in $(\zeta_0, \dots, \zeta_{\lfloor \alpha \rfloor - 1})$ follows trivially from the estimate of Theorem 2. We shall not reproduce it.

Proof of Theorem 2. As usual, we consider first the case of the positive half-space R_{+}^{n} with the convolution operator A having a constant symbol.

LEMMA 1. Let $\widetilde{A}(\xi)$ be an element of E_{α} , $(\alpha > 0)$. Suppose that: $\widetilde{A}(\xi) = \widetilde{A}_{+}(\xi)\widetilde{A}_{-}(\xi)$ with $\widetilde{A}_{+}(\xi)$ in 0^{+}_{0} , $\widetilde{A}_{-}(\xi)$ in 0^{-}_{α} . Let P^{+} be the restriction operator of functions in \mathbb{R}^{n} to \mathbb{R}^{n}_{+} and A be the convolution operator with symbol $\widetilde{A}(\xi)$. Suppose there exists a ray $\arg \lambda = \theta$ such that: $\widetilde{A}(\xi) + \lambda^{\alpha} \neq 0$ for $|\xi| + |\lambda| \neq 0$. If f is in $H^{0}(\mathbb{R}^{n}_{+})$, then there exists a unique solution u in H^{+}_{α} of:

$$P^{+}(A+\lambda^{lpha})u_{+}=f \hspace{0.1cm} on \hspace{0.1cm} R^{n}_{+}; \hspace{0.1cm} | \hspace{0.1cm} \lambda \hspace{0.1cm} | \hspace{0.1cm} \geq \lambda_{\scriptscriptstyle 0}>0$$
 .

Moreover:

$$|| \, u_+ \, ||_lpha^+ + | \, \lambda \, |^lpha \, || \, u_+ \, ||_0^+ \leq M \, || \, f \, ||_0^+$$

where M is independent of λ , u_+ , f.

Proof. Set $\widetilde{A}(\xi, \lambda) = \widetilde{A}(\xi) + \lambda^{\alpha}$. It is homogeneous of order α in (ξ, λ) . Since $\widetilde{A}(\xi)$ is in E_{α} , we have the following factorization with respect to ξ_n , which is unique up to a constant multiplier:

582

$$\widetilde{A}(\xi) = \widetilde{A}_+(\xi)\widetilde{A}_-(\xi)$$

(Cf. Theorem 1.2 of [3], p. 95). The same proof with $\xi_+ = \xi_n + i |\xi'|$ replaced by $\xi_+^{\lambda} = \xi_n + i (|\lambda| + |\xi'|)$ and ξ_- replaced by:

$$\xi_{-}^{\lambda} = \xi_n - i(|\lambda| + |\xi'|)$$

gives:

$$\widetilde{A}(\xi,\lambda) = \widetilde{A}_+(\xi,\lambda)\widetilde{A}_-(\xi,\lambda)$$
 .

Moreover:

If $\widetilde{A}_+(\xi)$ is in 0_0^+ , then $\widetilde{A}_+(\xi, \lambda)$ is also in O_0 (is homogeneous of order 0 in (ξ, λ)). Similarly for $\widetilde{A}_-(\xi, \lambda)$.

Let lf(x) be an extension of f to R^n . Consider:

$$\widetilde{u}_+(\widehat{arsigma})\,=\,(\widetilde{A}_+(arsigma,\,\lambda))^{-1}\prod^+ l\widetilde{f}(\widehat{arsigma})(\widetilde{A}_-(\widehat{arsigma},\,\lambda))^{-1}$$
 .

For $|\lambda| \neq 0$, $\tilde{u}_+(\xi)$ has an analytic continuation in $\operatorname{Im} \xi_n > 0$ and:

$$\int |\, \widetilde{u}_+(\hat{arsigma}',\, {arsigma}_n\,+\, i au)\,|^{\scriptscriptstyle 2}\, darsigma' darsigma_n \leq C$$
 ,

 $C ext{ is independent of } \tau > 0. ext{ So: } \widetilde{u}_+(\xi) \in \tilde{H}^+_0. ext{ (Cf. [3], p. 91).}$ We get:

$$egin{aligned} &\|\, u_+\, \|^+_lpha \,=\, \|\, \Pi^+\, (\hat{arsigma}_-\, -\, i)^lpha \widetilde{u}_+(\hat{arsigma})\, \|^+_0\ &\leq\, \|\, (\hat{arsigma}_-\, -\, i)^lpha (\widetilde{A}_+(\hat{arsigma},\, \lambda))^{-1}\, \Pi^+\, l\widetilde{f}(\hat{arsigma}) (\widetilde{A}_-(\hat{arsigma},\, \lambda))^{-1}\, \|_0\ . \end{aligned}$$

Since $\widetilde{A}_+(\xi, \lambda)$ is homogeneous of order 0 in (ξ, λ) , we have:

$$\widetilde{A}_+(\hat{arsigma},\lambda)=\widetilde{A}_+(\hat{arsigma}/(||\hat{arsigma}||+||\lambda|),\lambda/(||\hat{arsigma}||+||\lambda|))$$
 .

Let $c = \operatorname{Min} |\widetilde{A}_+(\xi, \lambda)|$ for $|\xi| + |\lambda| = 1$, $\operatorname{arg} \lambda = \theta$. Then c > 0and is independent of λ .

So:

$$egin{aligned} &||\, u_+\,||^+_lpha &\leq c^{-1}\,||\, (\xi_-\,-\,i)^lpha\,\prod^+ l\widetilde{f}(\xi)(\widetilde{A}_-(\xi,\,\lambda))^{-1}\,||_{_0}\ &\leq C\,||\, l\widetilde{f}(\xi)(\widetilde{A}_-(\xi,\,\lambda))^{-1}\,||_lpha$$
 .

We may write:

$$\widetilde{A}_{-}(\xi, \lambda) = (|\xi| + |\lambda|)^{lpha} \, \widetilde{A}_{-}(\xi/(|\xi| + |\lambda|), \lambda/(|\xi| + |\lambda|))$$
 .

Let $C = \operatorname{Min} |\widetilde{A}_{-}(\xi, \lambda)|$ for $|\xi| + |\lambda| = 1$, $\operatorname{arg} \lambda = \theta$. Then C > 0and is independent of λ .

We obtain:

$$||u_+||_lpha^+ \leqq C ~|| ~ l\widetilde{f}(\hat{arsigma}) ~||_{\scriptscriptstyle 0} \leqq C_2 ~|| ~ f ~||_{\scriptscriptstyle 0}^+$$
 .

A similar argument gives:

$$|| u_+ ||_0^+ \leq C |\lambda|^{-lpha} || f ||_0^+$$
.

So:

$$||u_+||_{lpha}^+ + |\lambda|^{lpha} \, ||u_+||_0^+ \leq C \, ||f||_0^+$$
 .

C is independent of λ , f, u_+ .

A direct verification shows that u_+ is a solution of the equation. It remains to show that the solution is unique. Let v_+ be an element of H^+_{α} . Suppose that v_+ is also a solution of the equation. Then as in [3], $\tilde{v}_+(\hat{\varsigma})$, its Fourier transform is given by an expression of the same form as $\tilde{u}_+(\hat{\varsigma})$ with $\tilde{l}f(\hat{\varsigma})$ replaced by $\tilde{l_1f}(\hat{\varsigma})$. l_1f being an extension of f to R^n .

Set $l_2 f = lf - l_1 f$. Then $l_2 f \in H_0^-$, so $\widetilde{l_2 f} \in \overset{\sim}{H_0^-}$. $\widetilde{l_2 f}(\xi) (\widetilde{A}_-(\xi, \lambda))^{-1}$ is analytic in $\text{Im } \xi_n \leq 0$ for $|\lambda| \neq 0$ and moreover:

$$\int |\widetilde{l_2f}(\xi', \hat{arsigma}_n + i au)|^2 |\widetilde{A}_-(\xi', \hat{arsigma}_n + i au)|^{-2} d\xi' d\hat{arsigma}_n \leq C$$

where C is independent of $\tau \leq 0$.

Hence $\widetilde{l_2f}(\xi)(\widetilde{A}_{-}(\xi,\lambda))^{-1}$ is in $\mathring{H_0^-}$ (Cf. [3], p. 91), so:

$$\prod^+ \widetilde{l_2 f}(\xi) (\widetilde{A}_-(\xi,\lambda))^{-1})) = 0$$
 .

Therefore: $\widetilde{A}_{+}(\hat{\xi}, \lambda)(\widetilde{u}_{+}(\hat{\xi}) - \widetilde{v}_{+}(\hat{\xi})) = 0$. But $\widetilde{A}_{+}(\hat{\xi}, \lambda) \neq 0$ for $|\lambda| \neq 0$, we get $\widetilde{u}_{+} = \widetilde{v}_{+}$. Q.E.D. Set:

$$egin{aligned} A_{ ext{i}} u &= \sum\limits_{k=-\infty}^{\infty} \psi_{ ext{o}}(x) \exp{[(ik\pi x)/p]}L_k*u \ A_{ ext{o}} u &= \sum\limits_{k=-\infty}^{\infty} \psi_{ ext{o}}(x_{ ext{o}}) \exp{[(ik\pi)/p]}L_k*u \end{aligned}$$

where L_k , ψ_0 are as in §1.

LEMMA 2. Let A_1, A_0 be as above and $\psi(x)$ be in $C_o^{\infty}(\mathbb{R}^n)$ with $\psi(x) = 0$ for $|x - x_0| > \delta$; $|\psi(x)| \leq K$ where K is independent of δ . Then:

$$|| \psi(A_1 - A_0) u ||_{s-lpha}^+ \le C \delta || u ||_s^+ + C(\delta) || u ||_{s-1}^+$$

for all u in H_s^+ , $s \ge 0$.

Proof. Cf. Lemma 4.7 of [3], p. 119.

Proof of Theorem 2 (continued). (1) First, we establish an *a*-*priori* estimate of the solutions.

584

Consider:

$$P^+\varphi_jA\psi_ju_+ + \lambda^{\alpha}P^+(\varphi_ju_+) = P^+(\varphi_jf) - Tu_+$$

where T is a smoothing operator with respect to $\varphi_j A \psi_j$.

It has been shown in [3] (Appendix 2) that in a local coordinates system, the operator $\varphi_j A \psi_j$ becomes: $\varphi_j A_j \psi_j + T_j$ where A_j has for symbol $\widetilde{A}_j(x^j, \xi)$ and T_j is a smoothing operator.

So, we have:

$$P^+ \varphi_j A_j(\psi_j u_+) + \lambda^{lpha} P^+(\varphi_j u_+) = P^+(\varphi_j f) + T_j^2 u_+$$

where T_j^2 is again a smoothing operator.

Let A_{j_0} be the convolution operator with symbol $\widetilde{A}_j(x_0^j, \xi)$ evaluted at the point x_0^j . We write:

$$egin{aligned} P^+ arphi_j A_{j_0}(\psi_j u_+) &+ \lambda^lpha P^+(arphi_j u_+) = P^+(arphi_j f) \ &+ T_j^2 u_+ + P^+ arphi_j (A_{j_0} - A_j) \psi_j u^+ \ . \end{aligned}$$

Applying Lemma 4.D.1 of [3] (p. 145), we have:

$$P^+ arphi_j A_{j_0}(\psi_j u_+) = P^+ A_{j_0}(arphi_j u_+) + \ T^3_j u_+$$

where T_j^3 is a smoothing operator.

Therefore:

$$(A_{j_0}+\lambda^lpha) arphi_j u_+ = arphi_j f \,+\, T_j^4 u_+ \,+\, arphi_j (A_{j_0}-A_j) (\psi_j u_+)$$
 .

The symbols \widetilde{A}_{j0} satisfy the hypotheses of Lemma 1. Applying Lemma 1; 2, we obtain:

$$egin{aligned} &\|arphi_j u_+\|_{lpha}^++|\lambda|^{lpha}\,\|arphi_j u_+\|_{\mathfrak{0}}^+&\leq M\{\|arphi_j f\,\|_{\mathfrak{0}}^++\|\,u_+\|_{\mathfrak{0}}\ &+1/2M\,\|\,u_+\|_{lpha}+\|\,\psi_j u_+\|_{lpha}^++\|\,arphi_j u_+\|_{\mathfrak{0}}^+ \end{aligned}$$

where we have used the well-known inequality:

$$||\,u_+\,||_{lpha-1} \leq arepsilon\,||\,u_+\,||_{lpha}\,+\,C(arepsilon)\,||\,u_+\,||_{\scriptscriptstyle 0}$$
 .

On the other hand: $||\psi_{j}u_{+}||_{\alpha}^{+} \leq M ||u_{+}||_{\alpha}$. Summing with respect to j, we get:

$$egin{array}{ll} ||\, u_+\, ||_lpha\, +\, |\lambda\,|^lpha\, ||\, u_+\, ||_0 &\leq M \{||\, f\,||_0\, +\, 1/2M\, ||\, u_+\, ||_lpha \ +\, \delta\, ||\, u_+\, ||_lpha\, +\, K\, ||\, u_+\, ||_0 \} \ . \end{array}$$

Taking δ small and $|\lambda|$ sufficiently large, we have:

$$||\, u_+\, ||_lpha \,+\, |\, \lambda\,|^lpha\, ||\, u_+\, ||_{\scriptscriptstyle 0} \leq M\, ||\, f\, ||_{\scriptscriptstyle 0}$$
 .

So, if there exists a solution, then the solution is unique.

(2) It remains to show the existence of a solution. From Lemma 1, we know that $P^+(A_{j_0} + \lambda^{\alpha})$ has an inverse R_{j_0} . Let \hat{R}_{j_0} be the operator R_{j_0} expressed in the global system of coordinates of G. Consider:

$$Rf = \sum_j arphi_j \widehat{R}_{j0}(\psi_j f)$$
 .

R is a bounded linear mapping from $L^2(G)$ into $H^{\alpha}_+(G)$.

We show that: $\mathscr{A}Rf = P^+(A + \lambda^{\alpha})Rf = f + \mathscr{C}f$ with $||\mathscr{C}|| \leq 1/2$. We have:

$$\mathscr{A} R f = \sum\limits_j P^+ (A + \lambda^lpha) arphi_j \psi_j \widehat{R}_{j0}(\psi_j f)$$
 .

Applying Lemma 4.D.1. of [3], we may write:

$$\mathscr{A} Rf = \sum\limits_{j} P^+ arphi_j (A + \lambda^lpha) \psi_j \widehat{R}_{j0}(\psi_j f) + TRf$$

where T is a smoothing operator.

We express $\varphi_j(A + \lambda^{\alpha})\psi_j \hat{R}_{j0}(\psi_j f)$ in local coordinates. We get:

$$arphi_j(A_{j_0}+\lambda^lpha)\psi_jR_{j_0}(\psi_jf)+arphi_j(A_j-A_{j_0})\psi_jR_{j_0}(\psi_jf)+T_j^{1}R_{j_0}(\psi_jf)$$
 .

Using Lemma 4.D.1 of [3] again, we obtain:

$$egin{aligned} &arphi_j(A_{j0}+\lambda^lpha)R_{j0}(\psi_jf)+arphi_j(A_j-A_{j0})\psi_jR_{j0}(\psi_jf)+T_j^2R_{j0}(\psi_jf)\ &=T_j^2R_{j0}(\psi_jf)+arphi_jf+arphi_j(A_j-A_{j0})\psi_jR_{j0}(\psi_jf)=arphi_jf+\mathscr{C}_j(\psi_jf)\ . \end{aligned}$$

The T_j are all smoothing operators.

Applying Lemma 1, we have:

$$|| \ T_j^2 R_{j_0}(\psi_j f) \, ||_0^+ \leq C \, || \ R_{j_0}(\psi_j f) \, ||_{lpha - 1}^+ \leq arepsilon \, || \ f \, ||_0 \, + \, C \, | \, \lambda \, |^{-lpha} \, || \, f \, ||_0 \; .$$

From Lemmas 1 and 2, we get:

Taking ε , δ small, $|\lambda|$ large enough, we have:

$$|| \, {\mathscr C}_j(\psi_j f) \, ||_{\scriptscriptstyle 0}^+ \leq rac{1}{4N} \, || \, f \, ||_{\scriptscriptstyle 0} \; .$$

We obtain:

$$Rf = f + TRf + \sum_{j} \hat{\mathscr{C}}_{j}(\psi_{j}f) = f + \mathscr{C}f$$

where $\hat{\mathscr{C}}_{j}$ is the operator \mathscr{C}_{j} expressed in the global coordinates system of G. We obtain: $||\mathscr{C}f||_{0} \leq 1/4 ||f||_{0} + 1/4 ||f||_{0}$ for large $|\lambda|$.

Hence $|| \mathscr{C} || \leq 1/2$; therefore $(I + \mathscr{C})^{-1}$ exists. We define:

$$\mathscr{A}^{-1} = R(I + \mathscr{C})^{-1}$$
 .

The writer wishes to thank the referee for his remarks.

BIBLIOGRAPHY

1. F. E. Browder, Nonlinear elliptic boundary value problems II, Trans. Amer. Math. Soc. 117 (1965), 530-550.

2. B. A. Ton, On nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc. 72 (1966), 307-313.

3. M. I. Visik and G. I. Eskin, *Equations in convolution in a bounded region*, Uspehi Mat. Nauk. **20** (1965), No. 3, 90-153; Russian Math. Surveys 20 (1965), 85-157.

4. M. I. Visik and M. S. Agranovich, *Elliptic problems with a parameter and parabolic problems of general type*, Uspehi Mat. Nauk. **19** (1964), 53-161; Russian Math. Surveys, No. **3** (1964), 53-157.

Received March 20, 1967.

UNIVERSITY OF BRITISH COLUMBIA VANCOUVER, CANADA

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. ROYDEN

Stanford University Stanford, California J. DUGUNDJI Department of Mathematics Rice University Houston, Texas 77001

RICHARD ARENS

University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN F. WOLF

K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIASTCALIFORNIA INSTITUTE OF TECHNOLOGYUNUNIVERSITY OF CALIFORNIAUNMONTANA STATE UNIVERSITYWAUNIVERSITY OF NEVADAUNNEW MEXICO STATE UNIVERSITYAMUNIVERSITY OF OREGONCHOSAKA UNIVERSITYTRUNIVERSITY OF SOUTHERN CALIFORNIANA

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON * * * *

AMERICAN MATHEMATICAL SOCIETY CHEVRON RESEARCH CORPORATION TRW SYSTEMS NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California 90024.

Each author of each article receives 50 reprints free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published monthly. Effective with Volume 16 the price per volume (3 numbers) is \$8.00; single issues, \$3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues \$1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners of publishers and have no responsibility for its content or policies.

J. P. JANS University of Washington Seattle, Washington 98105

Pacific Journal of Mathematics Vol. 24, No. 3 July, 1968

Duane W. Bailey, On symmetry in certain group algebras	413
Lawrence Peter Belluce and Surender Kumar Jain, Prime rings with a	
one-sided ideal satisfying a polynomial identity	421
L. Carlitz, A note on certain biorthogonal polynomials	425
Charles O. Christenson and Richard Paul Osborne, <i>Pointlike subsets of a</i> <i>manifold</i>	431
Russell James Egbert, <i>Products and quotients of probabilistic metric</i> <i>spaces</i>	437
Moses Glasner, Richard Emanuel Katz and Mitsuru Nakai, Bisection into	
small annuli	457
Karl Edwin Gustafson, A note on left multiplication of semigroup	
generators	463
I. Martin (Irving) Isaacs and Donald Steven Passman, A characterization of	
groups in terms of the degrees of their characters. II	467
Howard Wilson Lambert and Richard Benjamin Sher, Point-like	
0-dimensional decompositions of S^3	511
Oscar Tivis Nelson, Subdirect decompositions of lattices of width two	519
Ralph Tyrrell Rockafellar, Integrals which are convex functionals	525
James McLean Sloss, Reflection laws of systems of second order elliptic differential equations in two independent variables with constant	
coefficients	541
Bui An Ton, Nonlinear elliptic convolution equations of Wiener-Hopf type in a bounded region	577
Daniel Eliot Wulbert, Some complemented function spaces in $C(X)$	589
Zvi Ziegler, On the characterization of measures of the cone dual to a	600
generalized convexity cone	603