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This paper studies ordinary differential operators of the
form

( — l ) m D 2 m + Qzm-iD2™-1 + + Qo,

over a finite interval /. The coefficients Qj are bounded
operators in L2(/) This operator is treated as a perturbation
T + A of the operator T, which is generated by the leading
term (—l)mD2m plus suitable boundary conditions. The main
hypothesis is that Q2m-i can be written as the sum of a compact
operator and a bounded operator of sufficiently small norm.
Given that T is a discrete spectral operator, with eigenvalues
{λn}9 it is shown that T + A is also a discrete spectral operator,
with eigenvalues {λ'n} satisfying \λf

n - λn \ = O(\ λn \ k / 2 m ) , where
k is the largest integer ^ 2m — 1 for which Qk Φ 0. Proofs
are based on the method of contour integration of resolvent
operators.

If A and T are given, closed operators in a Hubert space ξ>, with
®(A) Z) S)(T), we say that A is bounded relative to T if there are
constants clf c2 such that

The infimum of numbers cγ such that (1.1) holds for some c2 is called
the T-bound of A, | A \τ. If | A \τ = 0, then for any ε > 0 one can
find a constant Cε such that

(1.2) \\Au\\£ε\\Tu\\ + Cε\\u\\ , (ue ®(T)) .

Operators A and T with | A |Γ = 0 arise in the theory of differ-
ential operators, both ordinary and partial of elliptic type, T being
generated by the highest order derivative terms, and A by the lower
order terms.

In this paper we consider differential operators of the form

(1.3) (-l)wZ>2w + "Σ! QάD
j (D - d/dx)

i=o

over a finite interval /. The Qk are bounded operators in L2(I); with
the exception of Q2m-U they can be completely arbitrary. The operator
(1.3) is treated as a perturbation of an operator T generated by the
leading term ( — \)mD2m together with suitable boundary conditions;
T will be assumed to be a spectral operator in the sense of Dunford.
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(See Kramer [6] and Dunford-Schwartz [2, Part III] for classification
of boundary conditions under which ( —l)mD2m becomes spectral.) The
perturbing operator A, given by

2m—]

(1.4) Au = Σ QjDju (w

is bounded relative to T and satisfies (1.2) with

(1.5) Cε = O(e-*'(2m-fc)) (ε—0) ,

where the integer k is defined by

(1.6) Qk+1 = Qk+i = . . . = Q2.-i = 0, QΛ Φ 0 .

Now suppose that the coefficient Q2m-i can be written in the form

(1.7) G 2 W _ 1 = B, + B2

where 5L is a bounded operator of sufficiently small norm, and B2 is a
compact operator. Under certain mild hypotheses about the eigenvalues
of T, we will show that then

(1) The eigenvalues X'ά of T + A are related to the eigenvalues
λy of T by

= 0(\χj\
kl2m) 0 ' - - )

where k is determined by (1.6),
( 2 ) Γ + A is α spectral operator.

The first of these results seems to be new; the second has been
obtained recently by R.E.L. Turner [11]. Special cases were treated
by J. Schwartz [9] and H. P. Kramer [6]. Our method is a natural
extension of the method used by Schwartz; it differs considerably
from the method of Kramer, and bears virtually no resemblance to
that of Turner. What we do is to construct a family of disjoint
circles {Cj} in the complex plane, centered at the original eigenvalues Xj
(for large j), and such that each Cό also contains exactly one eigen-
value λ' . We therefore have the formula

E) - # , = * ( [Rλ{T + A) - R;(T)]dX

for the spectral projections E'5 and Eά of T + A and T respectively,
corresponding to the eigenvalues λj and λi# The proof that T + A is
a spectral operator depends on suitable estimates of these contour
integrals, and is based on a new perturbation theorem due to T.
Kato [5].

Section 2 is devoted to perturbation theorems of a general nature,
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without reference to differential operators; the latter are treated in § 3.

2* Relatively bounded perturbations• If A is an arbitrary linear
operator in the (complex) Hubert space ξ>, we denote by p(A) the
resolvent set of A, that is the set of all complex numbers λ for which
Rλ{A) = (XI — A)-1 exists as a bounded operator in φ. The complement
of p(A) in the complex plane is the spectrum σ(A). A closed operator
A in ξ> is called regular if for some X e ρ(A), the resolvent operator
Rλ{A) is completely continuous. The spectrum of a regular operator
consists of a sequence {λJ of eigenvalues of finite multiplicity, having
no accumulation point in the complex plane.

The definition of spectral operator is given for example in Schwartz
[9], where the following result is proved [9, Lemma 3].

LEMMA 1. Let T be a regular spectral operator in the Hilbert
space ξ). Assume that all but a finite number of the eigenvalues
of T are simple poles of the resolvent, and also that Σ^(^;) — 1>
where E(Xi) are the spectral projections of T. Then there exists a
constant c such that for any point Xep(T) not in a fixed neighbor-
hood of the exceptional multiple eigenvalues, we have

(2.1) \\Ri(T)\\^c[dist(X,σ(T))]-1.

LEMMA 2. Let T and A be closed linear operators in §, with
3)(A)D25(JΓ), and suppose that \ A\τ = 0. Define the operator T + A,
with ®(Γ + A) = ®(Γ), by (T + A)u = Tu + An. Then T + A is a
closed operator, and moreover

(i) if Xeρ(T) Π ρ(T + A) then

(2.2) Rλ(T + A) - Rλ(T) = Rλ(T + A)-ARλ(T)

(ii) if Xe ρ{T) and \\ AR?{T) \\ < 1, then X e ρ(T + A) and

(2.3) Rλ(T + A)- Rλ(T) = Rλ(T)[I - ARλ(T)}~"ARλ(T) .

The assertions of this lemma are easily verified. Note also that
if A is T-bounded then for Xep(T), ARλ{T) is a bounded operator
in ξ>:

|| ARλ{T)u || ^ Cl || (T + XI - Xl)Rλ(T)u \\ + c2 \\ Rλ{T)u \\

^{{oΛM +c2)\\Rλ(T)\\ + ^} | | u | | (ue&).

THEOREM 1. Let T be a regular spectral operator in ξ>, and
assume that its eigenvalues {Xn} satisfy

Xn — ana (n —> oo)
(2.5) V ' '

K+i -K = a(n)na-1 ,
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for some constants a > 0, a > 1, where

0 < d < α(w) < c2 (large

Assume also that
Lei A δe α cϋosed operator in φ, wiίfe ®(A) Z) S)(JP), having the

following property: for each ε, 0 < ε < 1, £/ιere exists a real number
Cε such that

(2.6) || Au|| g ε || Γu| | + Cε \\u

(2.7) C£ = 0(s-Γ) as ε -> 0 + ,

/or some number r, O ^ r ^ a : — 1. For values of n for which
Xn > 0, let Γn{μ), μ > 0, δtf ίλe cΐrcie ^ΐίfe centre Xn and radius
μ Kla+τ).

Then the operator T + A (with ®(Γ + A) = ®(Γ)) is a cZosed
regular operator in § . 1/ r < a — 1 ί/̂ ê  /or sufficiently large
μ, the eigenvalues λ̂  o/ T + A ca?ι 6e enumerated so that X'n lies
inside Γn(μ), with the possible exception of finitely many values
of n. In case τ = a — 1, ί/̂ ere exists μQ > 0 suc/̂  ίΛaί ίλβ same is
ίr^e provided the constant involved in (2.7) is sufficiently small, i.e.
provided

= sup
0<ε<l

is sufficiently small.

Proof. We will consider the case in which T is self-ad joint. The
proof in the general case involves only slight modifications to cover
the possibility of complex eigenvalues and non self-adjoint eigenprojec-
tions.

By Lemma 2, T + A is closed. Since T is regular, Rλ{T) is
completely continuous for any Xeρ(T). Identity (2.3) will then imply
that T + A is regular, provided we know that || ARλ(T) || < 1 for some
X e ρ(T). By (2.6) and (2.7) we have, for u e ξ>, 0 < ε < 1 and X e p(T),

\\ARλ(T)\\ <Z (e\\\ + Cε-η\\Rλ(T)\\ + e

(cf. (2.4)). Choosing ε so as to minimize the expression in parentheses,
we obtain

|| ARλ(T) W^cΛX I-1"-™ + c21 λ |*/<*+« II

(λeo(Γ), |λ > c r ) ;

here the constants c^ c% depend only on r; for r = 0we can take d = 0.
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Since by Lemma 1, ||22^(Γ)|| ^ (Imλ)-\ we see that | |ARj(Γ)| | ^
const. |λ|- 1 / ( r + 1 ) for purely imaginary λ, so that || AR^T) || < 1 for
suitable Xeρ(T). This ensures that T + A is regular.

Consider now the case τ < a — 1. Then λ^/(1+T) = o^""1) =
o(min(λ%+1 — λw, λΛ — λΛ - 1)). It follows that for any μ > 0, the circles
Γn(μ) lie outside each other for n ^ Nλ(μ)f and the only point of
σ(T) lying inside Γn(μ) is λn. Using (2.5), (2.8), and Lemma 1, we
find that, for some N(μ) >̂

(2.9) || ARλ(T) || £ ct | X \~^^ + c[μ~ι ^ c ^ (λ e Γn(μ), n ^ N(μ)) .

Henceforth let μ satisfy

Let E(Xn) denote the eigenprojection of T corresponding to λΛ,
and let E'n>μ denote the sum of the eigenprojections of T + A corre-
sponding to eigenvalues of T + A lying inside Γn(μ). Since 11 ARλ( T) \ \ < 1
on Γn(μ), n ^ N(μ), Lemma 2 (ii) shows that T + A has no eigenvalues
on Γn(μ), so that

El „ - E(Xn) = - J L ί [Rλ(T + A) - i2A(Γ)]rfλ .
2πi jrn(M

Hence by (2.1), (2.3) and (2.9),

1 - c3/^-L 2

Therefore ([2, p. 587]) the ranges of EitfL and j&(λn) have the same
dimension, namely 1; i.e. each circle Γn(μ), n ^ N(μ), contains one
simple eigenvalue λ^ of T + A.

Next we construct a contour Γo containing the eigenvalues
\, λ2, , λ^_x only, such that the integral of || JB^Γ + A) - Rλ{T) \\
over Γo is small provided N ^ N(μ) is sufficiently large. This will
show that T + A has N — 1 eigenvalues (counting possible multiplicities)
inside /V Since also Rλ{T + A) exists for λ outside Γo and all Γn(μ),
n ^ N(μ), the assertion of the theorem about the eigenvalues λ^ will
be established.

For Γo we take the rectangle with sides formed by the lines
L,: Re λ = ζN = (l/2)(λiv_1 + λiY), some N ^ N(μ); L2: Re λ = - ζ 0 < 0;
L3: Imλ = 37O > 0; L4: Imλ = — ηQm Consider first

dλ ^
-~l(x2

(iF+ δ2

Nyιm J ' (x2 +
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where δN = (l/2)(λv — λΛ-_1). The integral of the first term is easily
estimated; the second does not exceed

+
N

Treating separately the ranges (ί | <£ 1 and 11 ( > 1 in the latter
integral, we readily verify that its value is small for large N. As
for the rest of Γ09 simple calculations show, for suitable choices of
ζ0, τ]o, first that the contribution of L2 is small, and then that the
contribution from the sections L3, L4 lying between Lι and L2 is also
small. Thus Γo has the required property.

For the case τ = a — 1, notice that the constants cu c2 in (2.8)
are small provided ξ0 is small. Thus this case can be dealt with in
the same way as above, and the proof is complete.

For our next result, the hypotheses about the perturbation A are
of a slightly different nature than in Theorem 1. We will suppose
that A = BT{a-1)la where B = Bt + J32, the sum of a bounded operator
J?! of sufficiently small norm, and a compact operator B2. Perturbations
of this sort have been considered by Turner [11], From Lemma 3
below we see that such an operator A is T-bounded, and satisfies
(2.6) and (2.7), with τ = a - 1.

The operator Tθ (θ real) is defined by means of the functional
calculus. Suppose T is a spectral operator with spectral family {Ej},
such that E3 is one-dimensional for j >̂ 1, and EQ = Σo Eoi, each EQi

being a finite dimensional projection corresponding to an eigenvalue
λoi. If / is a sufficiently smooth function which is uniformly bounded
on the spectrum σ(T), then f(T) is defined by the formula (cf. [9])

(2.10) /(Γ) = Σ Σ J VoJ (T - XoiTE0. + Σ f(Xj)Es

i=o m=o γγι\ j=i

where μι is the algebraic multiplicity of λoί. In this expression, the
first sum, being finite dimensional, plays a rather trivial role in analytic
arguments, and we will generally omit details. The following is
derived by a simple calculation.

L E M M A 3. Let T satisfy the above conditions, and let 0 rg θ rg 1.

Then there exists a constant C — C{θ) such that

\\Tθu\\ ^e\\Tu\\ + Cε-Θl{1-Θ) \\u\\

for all u e S)(TΘ) and 0 < ε g 1.

We also require the following recent result of Kato [5] concerning
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perturbation of spectral families. By a p-sequence we mean a sequence
{Pj} of (not necessarily self-adjoint) projections in a Hubert space ξ>,
satisfying the orthogonality conditions

A p-sequence {E3) is self-adjoint if Ef = E3 for all j . A self-ad joint
^-sequence is complete if Σ Ej = £

LEMMA 4 (Kato). Let {Pj} be a p-sequence and {Eά} a complete
self-adjoint p-sequence. Assume that

( i ) dim Po = dim Eo = m < co ,

(ϋ) ΣAll^ (^ -^>H 2^c 2 | |u | | 2

/or αϊϊ w e ξ>, where c is a constant, 0 ^ c < 1. TT̂ ew {P,-} is similar
to {Ej}, i.e. there exists a nonsingular linear operator W such that
for all j ^ 0, P3 = W~ΈSW.

The proof of this lemma is fairly simple: set W = Σ A ^ ί ^ ; one
shows that W is well-defined and bounded, and using standard theorems
about the index, that nullity W = defect W — 0. We refer to [5]
for details.

THEOREM 2. Let T be a regular spectral operator in ξ), and
suppose the eigenvalues of T satisfy the hypotheses (2.5) of Theorem
1. Let A — (B1 + B2)T{a~1)la where Bx is a bounded operator in φ,
of sufficiently small norm, and B2 is a compact operator. Then
T + A is a regular spectral operator; moreover the eigenvalues {λ'J
of T + A can be enumerated so that X'n lies inside the circle Γn(μ)
(defined in Theorem 1) for large n.

Proof. Expressing ARλ{T) by means of the functional calculus,
we obtain

ARX(T) = B(\) + (B, + Bt) ^
7=1 Xj — X

where ||J3(λ)|| = Odλl"1) as λ-^ co. (We are assuming, without loss
of generality, that no Xj vanishes.) We will express the sum in two
parts, Σf + Σ/ίi I n the second of these, we can replace (Bt + B2)
by {Bx + B2)EP where Ep — Σp+i^(^ ) Since B2 is a compact operator
we have 11B2EP11 = εp —> 0 as p —• co. The sum Σf c a n b e combined
with B(X), and we reach the following estimate:

(2.11) || ARλ(T) ||2 ^ c(|| ̂  || + ε,)2 ± ±±±^
\Xj-X\

+ cp\χ\->.
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For X G Γn(μ), the sum in (2.11) is bounded independently of p (a more
detailed estimate for this sum appears below). Hence with || Bγ || + εp

sufficiently small, we can choose N so that || ARλ{T) || ^ δ < 1 for
XeΓn(μ), n^N. By (2.3) this implies that \\Rλ(T + A) \\ < const.
r~\ Therefore (with the notation of Theorem 1) we have

- E(Xn))u || == || _L \

^ c sup II ARλ(T)u\\ ^
λeΓn(μ)

Thisprovided ||J?i|| is sufficiently small and n sufficiently large,
proves the assertion about the eigenvalues λ .̂

We pass now to the proof that T + A is spectral. If Eo,
E(X2), ' are the spectral projections for T (E(\i) being one-dimensional),
then according to the theorem of Lorch-Mackey-Wermer [12], this
family is similar to a complete self-adjoint p-sequence {Ed}. There is
no loss of generality in supposing the similarity to be the identity
transformation. By taking άimE0 large enough we may also suppose
that the circles Cn = Γn(μ), n > 0, are separated, and that their radii
satisfy rn ^ c na~ι (with c > 0).

Let Pn denote the eigenprojection of T + A corresponding to X'n.
We wish to verify that the hypotheses of Kato's lemma are satisfied.
First we can show that dim Eo = dim Po provided sufficiently many of
the eigenprojections Έ5 are included in Eo. The proof is the same as
in Theorem 1, modified to utilize the compactness of B2 in the same
way as above.

Next, it is obviously sufficient to show that for some integer N
we have

Σ II En(P« ~ En)u i|2 ^ c2 !| u ||2 (c2 < 1) .

Using (2.11) we have for any integer p > 1

^c Σ
N

2J
k=p+l

2(αr-l)/α

Σ

+ Σ r-
n=N

2-2/a Λ Λ 1 - 2 II Z p / j / 112

Λ,k — Λ,n I II JlιkU ||
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The three sums here (from JV to ^) are fairly easily estimated.
Assume that p has been chosen, and IIBJI + ε,, is suitably small.
Since \k ~ aka, the first sum in square brackets can be approximated by

const. J Σ fc-f Σ 11 ~ (n/ky |~2Ί \\Eku |[2} ̂  const. Σ II Eku ||2 ,
U = l YΛ &nφk J J fc=l

because by an elementary calculation, the sum in the square brackets
here is O(k2). Since the first and last sums above are trivial to
estimate, we finally obtain

where e2 < 1 provided jjiVil is small and N large. This completes
the proof.

COROLLARY. Suppose that A and T satisfy the hypotheses of
Theorem 1, and that τ < a — 1. Then T + A is a spectral operator.

Proof. It follows from (2.6) and (2.7) that

(2.12) || Au || ^ C !| Tu ||Γ/(r+1) || u ||1/(r+1) , u e 3>(T) .

If we assume, as we may without loss of generality, that o(T) lies
entirely in the open right half-plane, we can apply a theorem of
Krasnoselsky and Sobolevsky [7, Th. 5] to conclude that AT"0 is a
bounded operator, for any σ > τ/(τ + 1). In particular, we can choose
a such that r/(τ + 1) < σ < (a — l)/a, and write

A = BT{a~1)la with B = (AT-a)(Ta~l{a-1)la) .

Since Tμ is compact for any μ < 0 (see [7]), we see that B is a
compact operator. It follows from the Theorem, therefore, that T + A
is spectral.

REMARK. If r < α — 1 is given, the proof of Theorem 1 will
yield explicit constants C(τ) and N(τ) such that

for n ^ i\Γ(r). The same information cannot be derived via the above
Corollary, since || AT~° || may approach infinity in an unspecified fashion
as σ —• r/(τ + 1)+. The case τ = a — 1 is, of course, not covered at
all by the Corollary.

3* Application* Let I = [x0, Xχ\ be a finite closed interval, x0 < x19

and consider the Sobolev space Hm{I) consisting of all feL2(I)
having generalized derivatives Djf also in L2(I)y for j <̂  m. The norm



68 COLIN CLARK

in Hm(I) is given by

i=o Ji

We denote by Ho

m(I) the closure in Hm(I) of CΌ~(/°), the space of
infinitely differentiate functions whose support is a compact subset
of the open interval (x0, xλ). If W is any closed subspace such, that

we define an operator Tw in ξ> = L2(I) by

SXΓ,) = IT

Explicit forms of boundary conditions determining W have been studied
extensively, cf. [2, Ch. XIII]. In particular, it is known that under
quite general conditions Tw is a regular spectral operator, with
eigenvalues satisfying (2.5) for a = 2m; see [2], [6], and [8] for details.

The perturbing operator A is now defined as the closure of the
operator Ao:

(4>) = W
(3.2) 2*-l

A>/ = Σ Qu(Dkf),

the QΛ denoting arbitrary bounded operators in ξ>.

LEMMA 5. Let j , k be nonnegative integers, j < k, k ^ 2.
ί/̂ βrβ exists α constant C — Ciλ; si6c/̂  ί/̂ αί for all e, 0 < ε < 1, cmci
αϊί feHk(I),

(3.3)
^ ε|\ I i)&/(α;) |2 dx\ + Cε^/^-^jI | f(x)

This result can be proved by elementary but tedious calculations;
a complete proof (in n dimensions) is given in [1, pp. 17-25]. The
following is obvious.

COROLLARY. There exists a constant C, independent of the
operators Qky such that for 0 < ε{ < 1 (i = 1, 2, , 2m — 1) andfe W,

(3.4)

+ C(Σ
\k=o
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THEOREM 3. Let Tw and A be given by (3.1) and (3.2) respectively,
and assume that Tw is a spectral operator, with eigenvalues {kn}
satisfying (2.5). Let {λ«} be the eigenvalues of the regular operator
Tw + A. Assume that Q2w,-i = B1 + B2 where \\B1\\ is sufficiently
small and B2 is a compact operator, and that the remaining coefficients
Qj are bounded operators. Then for large n,

(3.5) \K-K\^c\Xn\
k'2m ,

where k is defined by (1.6). Moreover Tw + A is a spectral operator.

Proof. Suppose first that k ^ 2m — 2. Letting ε0 = βj = =
ε < 1 in (3.4) we obtain

\\Af\\Scxs\\Tf\\ + c ^ - * ' ^ - * ' | | / H

for / G S ) ( 7 V ) . Hence the hypotheses of Theorem 1 are satisfied, with
τ — k/(2m — k), i.e. r + 1 ^ m = a/2 <Ξ a — 1. Hence the results in
this case are immediate consequences of Theorem 1 and the Corollary
to Theorem 2.

For the case k = 2m — 1, let us write AQ = Q2m_ίD
2m~1 and A =

AQ + Alm By the first part of the proof, Tw + Aλ is a spectral operator
with eigenvalues {Xnl} satisfying (3.5) for k — 2m — 2. The eigenvalues
{Xnl} therefore satisfy the hypotheses (2.5) of Theorem 1.

Now we can write Ao = (B[ + B'2)T{2m-l)l2m, where

~Dr ~D J~ί2m—lfTi — (2m, — l)/2m

Since τ~ ( 2 m~1 ) / 2 m is a continuous linear map from L2(I) to H2m~\I) (cf.
[2, Ch. XIII]) and D2m~ι is continuous from H2m-\I) to L2(/), we see
that B[ is a bounded operator in L2(I) with || B[ || ^ c \\ Bx ||; also B'2
is compact. An application of Theorem 2 to the operator Tw + A —
(Tw + Aj) + Ao then yields the desired conclusions, and the proof is
complete.

The author wishes to thank Professor Tosio Kato for several
valuable suggestions. The general idea of the proof of Theorem 2 is
due to him.
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