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This paper studies ordinary differential operators of the
form

(__l)mDZm + (;.,)Zm—ll)zm_1 + e+ QO s

over a finite interval I, The coeflicients @; are bounded
operators in L,(I). This operator is treated as a perturbation
T + A of the operator 7', which is generated by the leading
term (—1)"D*" plus suitable boundary conditions. The main
hypothesis is that Q.,—; can be written as the sum of a compact
operator and a bounded operator of sufficiently small norm.
Given that T is a discrete spectral operator, with eigenvalues
{2n}, it is shown that T + A is also a discrete spectral operator,
with eigenvalues {1} satisfying |1, — 1,| = O(| 4, |*/*), where
k is the largest integer =< 2m — 1 for which @, + 0. Proofs
are based on the method of contour integration of resolvent
operators,

If A and T are given, closed operators in a Hilbert space 9, with
DA) D NT), we say that A is bounded relative to T if there are
constants ¢, ¢, such that

(L.1) NAull = e[| Tull + e llull, (wedDT)) .

The infimum of numbers ¢, such that (1.1) holds for some ¢, is called
the T-bound of A, |Al,. If |A|, =0, then for any ¢ > 0 one can
find a constant C. such that

(1.2) NAu|l = el Tull + C.llull,  (ueDT)).

Operators A and T with |A|, = 0 arise in the theory of differ-
ential operators, both ordinary and partial of elliptic type, T being
generated by the highest order derivative terms, and A by the lower

order terms.
In this paper we consider differential operators of the form

(1.3) (=1)y"D* + mg QD¢ (D= djdz)

over a finite interval I. The @, are bounded operators in L,(I); with
the exception of @,,_,, they can be completely arbitrary. The operator
(1.3) is treated as a perturbation of an operator T generated by the
leading term (—1)"D*™ together with suitable boundary conditions;
T will be assumed to be a spectral operator in the sense of Dunford.
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(See Kramer [6] and Dunford-Schwartz [2, Part III] for classification
of boundary conditions under which (—1)"D*" becomes spectral.) The
perturbing operator A, given by

(1.4) Au="5 QDu  (wed(T)),

is bounded relative to 7' and satisfies (1.2) with
(1.5) C. = O(g*eEm=h) (e—0),
where the integer % is defined by
(1.6) Qris = Qrie=++* =@, =0,  Q,#0.
Now suppose that the coefficient @,, , can be written in the form
(1.7) Qu_ = B, + B,

where B, is a bounded operator of sufficiently small norm, and B, is a
compact operator. Under certain mild hypotheses about the eigenvalues
of T, we will show that then

(1) The eigenvalues N of T + A are related to the eigervalues
N; of T by

(1.8) NG — x| = O N, [*5m) (7 — =)

where k 1is determined by (1.6), and

(2) T+ A is a spectral operator,
The first of these results seems to be new; the second has been
obtained recently by R.E.L. Turner [11]. Special cases were treated
by J. Schwartz {9] and H. P. Kramer [6]. Our method is a natural
extension of the method used by Schwartz; it differs considerably
from the method of Kramer, and bears virtually no resemblance to
that of Turner. What we do is to construct a family of disjoint
circles {C;} in the complex plane, centered at the original eigenvalues \;
(for large j), and such that each C; also contains exactly one eigen-
value \;. We therefore have the formula

B~ B, = 1| [R(T + 4) - R(T)an
21y Jey

for the spectral projections E; and E; of T+ A and T respectively,
corresponding to the eigenvalues \; and A;. The proof that 7'+ A is
a spectral operator depends on suitable estimates of these contour
integrals, and is based on a new perturbation theorem due to T.
Kato [5].

Section 2 is devoted to perturbation theorems of a general nature,



ON RELATIVELY BOUNDED PERTURBATIONS 61
without reference to differential operators; the latter are treated in § 3.

2. Relatively bounded perturbations. If A is an arbitrary linear
operator in the (complex) Hilbert space O, we denote by p(4) the
resolvent set of A, that is the set of all complex numbers A for which
R;(A) = (\] — A)~* exists as a bounded operator in . The complement
of o(A) in the complex plane is the spectrum o(A4). A closed operator
A in © is called regular if for some \ € p(A4), the resolvent operator
R;(4) is completely continuous. The spectrum of a regular operator
consists of a sequence {\,} of eigenvalues of finite multiplicity, having
no accumulation point in the complex plane.

The definition of spectral operator is given for example in Schwartz
[9], where the following result is proved [9, Lemma 3].

LEMMA 1. Let T be a regular spectral operator in the Hulbert
space . Assume that all but a finite number of the eigenvalues
of T are simple poles of the resolvent, and also that SE(\;) =1,
where E(\;) are the spectral projections of T. Then there exists a
constant ¢ such that for any point xe€ o(T) not in a fixed neighbor-
hood of the exceptional multiple eigenvalues, we have

(2.1) |BAT) || = eldist (x, o(T)] .

LeMMA 2. Let T and A be closed linear operators in D, with
D(A)DODNT), and suppose that | A|, = 0. Define the operator T + A,
with D(T + A) = DXT), by (T + Ayu = Tu + Au. Then T + A is a
closed operator, and moreover

(i) ef veo(T)yn o(T + A) then

(2.2) R(T + A) — B(T) = R(T + A)-AR(T) ;
(i) if neo(T) and || AR(T)|| < 1, then ne o(T + A) and
(2.3) R(T + A) — R(T) = R(T)[I — AR(T)|7'AR(T) .

The assertions of this lemma are easily verified. Note also that
if A is T-bounded then for e p(T), AR)T) is a bounded operator
in O:

NAR(T)ull = e, [(T + M — MDE(T)u || + ¢, || BT )u ||

2.4 =
&9 < (@7 + ) [RAD) | + e llull wes).

THEOREM 1. Let T be a regular spectral operator in 9, and
assume that its ergenvalues {\,} satisfy

Ny ~ an® (m— o),
(2.5) s
7“fn—(»l - )\’n = a/(/n)n ’
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for some constants a >0, a > 1, where
0<e<an)<e, (large n) .

Assume also that >, E(\;) = 1.
Let A be a closed operator in 9, with D(A) D DN(T), having the

following property: for each €, 0 < ¢ < 1, there exists a real number
C. such that

(2.6) lAu|l = el Tull + C.llul], (weD(T))
and
2.7 C,=0E") as e¢—0%,

for some number v, 0 <t =<a—1. For values of m for which
N, >0, let I'(p), >0, be the circle with centre \, and radius
#.)\‘;I(Hr)'

Then the operator T + A (with (T + A) = (T)) is a closed
regular operator in . If T <a—1 then for sufficiently large
Y, the eigenvalues N, of T + A can be enumerated so that N\, lies
inside I',(), with the possible exception of finitely many values
of m. In case T = a — 1, there exists p, > 0 such that the same 1s
true provided the constant involved in (2.7) is sufficiently small, .e.
provided

&, = sup e“*C,

0<e<l

18 sufficiently small.

Proof. We will consider the case in which T is self-adjoint. The
proof in the general case involves only slight modifications to cover
the possibility of complex eigenvalues and non self-adjoint eigenprojec-

tions.

By Lemma 2, T + A is closed. Since T is regular, R,T) is
completely continuous for any \e o(T). Identity (2.83) will then imply
that T + A is regular, provided we know that || AR,(T)|| < 1 for some
rve o(T). By (2.6) and (2.7) we have, forue 9, 0 < e < land e o(T),

NAR(T)|| = (e |N] + Ce™) [| R(T) || + ¢

(cf. (2.4)). Choosing ¢ so as to minimize the expression in parentheses,
we obtain
HAR(T) || < o [N [T 4oy [N [FIH || B(T) ||

(2.8)
e o(T), IN] > cT) ;5

here the constants ¢, ¢, depend only on 7; for 7 = 0 we can take ¢, = 0.
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Since by Lemma 1, ||R(T)|| £ Im\)™, we see that || AR(T)|| =
const. |\|7M"+Y for purely imaginary X\, so that ||AR,(T)|| <1 for
suitable A € o(T). This ensures that 7 + A is regular.

Consider now the case 7< a—1. Then A/ = o(n*?) =
o(min(\y1; =N,y Ny — N,—y)). It follows that for any g > 0, the circles
I' (1) lie outside each other for n = N,(¢), and the only point of
o(T) lying inside I",(¢) is »,. Using (2.5), (2.8), and Lemma 1, we
find that, for some N(z¢) = N,(p),

(2.9) [[AR(T) || s e [ N[ + o S ey (e l(¢), n = N(p)) .
Henceforth let z satisfy

et S <

Let E(\,) denote the eigenprojection of T corresponding to X\,,
and let E!, denote the sum of the eigenprojections of 7 + A corre-
sponding to eigenvalues of 7'+ A lying inside I",(z). Since ||AR(T)|| <1
on I°,(¢#), n = N(u), Lemma 2 (ii) shows that 7 + A has no eigenvalues
on I',(u), so that

Blp— Bv) = 5| [RAT + 4) = R(T)ldn.
271 Ty (1)
Hence by (2.1), (2.3) and (2.9),

1
5 -

A

1Bl — B || = S
1 — ¢
Therefore ([2, p. 587]) the ranges of E, , and E(n,) have the same
dimension, namely 1; i.e. each circle 7I',(y¢), » = N(y), contains one
simple eigenvalue N\, of T + A.
Next we construct a contour I°, containing the eigenvalues
My Ng, o, My_, only, such that the integral of ||R(T + A) — R(T) ||
over I', is small provided N = N(y) is sufficiently large. This will
show that T + A has N — 1 eigenvalues (counting possible multiplicities)
inside I',. Since also R,(T + A) exists for ) outside I, and all I",(x),
n = N(p), the assertion of the theorem about the eigenvalues A\, will
be established.
For I, we take the rectangle with sides formed by the lines
Li:Re: = {y = (1/2)(Ay_s + M\y), some N = N(p); L:Rex = —(, < 0;
Li:Imx =%, >0; L:Imx = —»,. Consider first

1
(xz + C}%V)l/(rﬂ)
n (@ + C3)weicen } y dzx
@ + 63)7 @ + 03"

[, 1T+ 4) - By an = of
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where 6, = (1/2)(Ay — Ay_;). The integral of the first term is easily
estimated; the second does not exceed

oo (tz + 1)(1/2)1/(T+1)dt
o0 4+ ¢- N7

—1/(t+1) “ (t2 + 1)(1/2)T/(T+1)dt ‘1/(T+1)S
G| =G
Treating separately the ranges |[¢| <1 and |[¢| >1 in the Iatter
integral, we readily verify that its value is small for large N. As
for the rest of I',, simple calculations show, for suitable choices of
Lo Mo, first that the contribution of L, is small, and then that the
contribution from the sections L,, L, lying between L, and L, is also
small. Thus I, has the required property.

For the case 7 = a — 1, notice that the constants ¢, ¢, in (2.8)
are small provided &, is small. Thus this case can be dealt with in
the same way as above, and the proof is complete.

For our next result, the hypotheses about the perturbation A are
of a slightly different nature than in Theorem 1. We will suppose
that A = BT« %/« where B = B, + B,, the sum of a bounded operator
B, of sufficiently small norm, and a compact operator B,. Perturbations
of this sort have been considered by Turner {11]. From Lemma 3
below we see that such an operator A is T-bounded, and satisfies
(2.6) and (2.7), with 7 = a — 1,

The operator T° (6 real) is defined by means of the functional
calculus. Suppose T is a spectral operator with spectral family {E}},
such that E; is one-dimensional for j = 1, and E, = 3¢ E,;, each E;
being a finite dimensional projection corresponding to an eigenvalue
No;e If f is a sufficiently smooth function which is uniformly bounded
on the spectrum o(7T), then f(T) is defined by the formula (cf. [9])

(2.10) AT) = gi; ":z: % (T — No))" By, + 2 SOVNE;

where ¢, is the algebraic multiplicity of \,;. In this expression, the
first sum, being finite dimensional, plays a rather trivial role in analytic
arguments, and we will generally omit details. The following is
derived by a simple calculation.

LEmMMA 3. Let T satisfy the above conditions, and let 0 < 0 < 1,
Then there exists a constant C = C(0) such that

ITull < el Tull + Ce=®=% [ u ||

for all ueD(T% and 0 < ¢ <1,

We also require the following recent result of Kato [5] concerning
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perturbation of spectral families. By a p-sequence we mean a sequence
{P;} of (not necessarily self-adjoint) projections in a Hilbert space 9,
satisfying the orthogonality conditions

PP, =0 (4, k=0).

A p-sequence {E;} is self-adjoint if E}f = E; for all j. A self-adjoint
p-sequence is complete if >\ E; = I.

LeEmMMA 4 (Kato). Let {P;} be a p-sequence and {E;} a complete
self-adjoint p-sequence. Assume that

(i) dm P, =dmE, = m < o ,

(i) Sz B(P; — Bull < ¢[lulf
for all we D, where ¢ is a constant, 0 < ¢ < 1. Then {P;} is similar
to {E,}, t.e. there exists a nonsingular linear operator W such that
for all 3 =20, P, = W'E; W,

The proof of this lemma is fairly simple: set W = 3,2, E;P;; one
shows that W is well-defined and bounded, and using standard theorems
about the index, that nullity W = defect W = 0. We refer to [5]
for details.

THEOREM 2. Let T be a regular spectral operator in 9, and
suppose the eigenvalues of T satisfy the hypotheses (2.5) of Theorem
1. Let A= (B, + By)T"!* where B, is a bounded operator in 9,
of sufficiently small morm, and B, is a compact operator. Then
T+ A s a regular spectral operator; moreover the eigemvalues {\,}
of T + A can be enumerated so that N, lies inside the circle I', (1)
(defined in Theorem 1) for large n.

Proof. Expressing AR,(T) by means of the functional calculus,
we obtain

AR(T) = BO) + (B, + B) £ 2 Fv),
where || B(\) || = O(| A7) as A — co. (We are assuming, without loss

of generality, that no A\, vanishes.) We will express the sum in two
parts, > + >.,%;. In the second of these, we can replace (B, + B:)
by (B, + B,)E, where E, = 3,2, E(\;). Since B, is a compact operator
we have ||B,E,|| =¢,—0 as p— . The sum Y7 can be combined
with B(\), and we reach the following estimate:

B R

+ C, N[,
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For n e, (y), the sum in (2.11) is bounded independently of » (a more
detailed estimate for this sum appears below). Hence with || B, || + ¢,
sufficiently small, we can choose N so that ||AR(T)|| <£4é < 1 for
xel, (), n = N. By (2.3) this implies that ||R(T + A)|| < const.
7', Therefore (with the notation of Theorem 1) we have

By = BOu | = [l o | RAT + AL~ AR(T)“AR(Tyud |

<o sup |[AR(T)u|l = L1 jju]
ielp(p) 2

provided || B,|| is sufficiently small and = sufficiently large. This

proves the assertion about the eigenvalues \J.

We pass now to the proof that T + A is spectral. If E,, E(\,),
E(\,), - - - are the spectral projections for T (E(\;) being one-dimensional),
then according to the theorem of Lorch-Mackey-Wermer [12], this
family is similar to a complete self-adjoint p-sequence {¥;}. There is
no loss of generality in supposing the similarity to be the identity
transformation. By taking dim E, large enough we may also suppose
that the circles C, = I",(¢), » > 0, are separated, and that their radii
satisfy r, = ¢-n*' (with ¢ > 0).

Let P, denote the eigenprojection of T + A corresponding to \J.
We wish to verify that the hypotheses of Kato’s lemma are satisfied.
First we can show that dim E, = dim P, provided sufficiently many of
the eigenprojections F; are included in E,. The proof is the same as
in Theorem 1, modified to utilize the compactness of B, in the same
way as above.

Next, it is obviously sufficient to show that for some integer N
we have

S IEP, — EyulP<¢llulp  (¢<1).

n=N

Using (2.11) we have for any integer » > 1

3 | BAP, — Eulf

A

¢ 3 sup (I B, | + (B + &)
n=N 2€C,
)y
k=p+1

P P = B )
<, (S ) ule

B+ S B P = v B

n=N p+1=<k

+ 5o Bl
n=N
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The three sums here (from N to o) are fairly easily estimated.
Assume that p has been chosen, and || B,|| + ¢, is suitably small.
Since N, ~ ak®, the first sum in square brackets can be approximated by

107k

const. {g k—ﬂ[ S 1 — (n/k)" 1~2]-[1Eku 1;2} < const. kﬁ:; Bl

because by an elementary calculation, the sum in the square brackets
here is O(k?). Since the first and last sums above are trivial to

estimate, we finally obtain
S IB(P. — Bulf = ¢ |ulP?

where ¢* < 1 provided || B,i| is small and N large. This completes
the proof.

COROLLARY. Suppose that A and T satisfy the hypotheses of
Theorem 1, and that = < «a — 1., Then T + A is a spectral operator.

Proof. It follows from (2.6) and (2.7) that
(2.12) NAul| = Cl| Tw ([ [lu [V, wed(T).

If we assume, as we may without loss of generality, that o(T) lies
entirely in the open right half-plane, we can apply a theorem of
Krasnoselsky and Sobolevsky [7, Th.5] to conclude that AT~ is a
bounded operator, for any ¢ > t/(z + 1). In particular, we can choose
o such that z/(z + 1) < ¢ < (¢ — 1)/, and write

A = BTV« with B = (AT~o)(T°/«-le)

Since T'* is compact for any g < 0 (see [7]), we see that B is a
compact operator. It follows from the Theorem, therefore, that 7' -+ A

is spectral.

REMARk. If 7 <« —1 is given, the proof of Theorem 1 will
yield explicit constants C(z) and N(r) such that

Ny = N | < €@ [ [0

for n = N(zr). The same information cannot be derived via the above
Corollary, since || AT~° || may approach infinity in an unspecified fashion
as 0 —7/(t + 1)*. The case 7 = a — 1 is, of course, not covered at

all by the Corollary.

3. Application. LetI = [, «,] be a finite closed interval, z, < x,,
and consider the Sobolev space H™(I) consisting of all fe L,(I)
having generalized derivatives D?f also in L,(I), for j < m. The norm
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in H™~(I) is given by

£l ={E | 1Dr@ #da}”

We denote by Hp(I) the closure in H™(I) of Cg(I°, the space of
infinitely differentiable functions whose support is a compact subset
of the open interval (z,, «,). If W is any closed subspace such that

Hy™I)c Wc H™),
we define an operator T, in $ = LyI) by

DATw) =W

3.1
@D Tyf=(=1)"D*™f.

Explicit forms of boundary conditions determining W have been studied
extensively, cf. [2, Ch, XIII]. In particular, it is known that under
quite general conditions T, is a regular spectral operator, with
eigenvalues satisfying (2.5) for a = 2m; see [2], [6], and [8] for details.

The perturbing operator 4 is now defined as the closure of the
operator A,:

D(A) =W

(3.2) -
Af =3, QDY) ,

the Q, denoting arbitrary bounded operators in 9.

LEMMA 5. Let j,k be nonnegative integers, j < k, k = 2. Then
there exists a constant C = C;, such that for all ¢, 0 <e <1, and
all fe H¥I),

{| | D@y aar} ™

o =<{| 1D @ raa}” + ceea{| g s

1/2

This result can be proved by elementary but tedious calculations;
a complete proof (in n dimensions) is given in [1, pp. 17-25]. The
following is obvious.

COROLLARY. There exists a constant C, independent of the
operators Q,, such that for 0 < e, <1(1=1,2,---,2m — 1)and fe W,

1Ari = (3 e @)1 Tr 1l
(3.4) -

+ (3 I Qulles =) 1 £l
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THEOREM 3. Let Ty and A be given by (3.1) and (3.2) respectively,
and assume that T, 1s a spectral operator, with eigenvalues {\,}
satisfying (2.5). Let {\,} be the eigenvalues of the regular operator
Ty + A, Assume that Q,,_, = B, + B, where ||B,|| is sufficiently
small and B, is a compact operator, and that the remaining coefficients
Q; are bounded operators. Then for large n,

(3-5) 17\'; - x’nl é ¢ I )\’n Ik/2m ’

where k is defined by (1.6). Moreover Ty, + A is a spectral operator.

Proof. Suppose first that k¥ < 2m — 2. Letting ¢, =¢, = -+ =
€ <1 in (3.4) we obtain

HASI = e[| TS| + ce™ =0 [ 1]

for fe ®(T,). Hence the hypotheses of Theorem 1 are satisfied, with
T =k/@Cm — k), ie. T+1=<m=a/2<a—1. Hence the results in
this case are immediate consequences of Theorem 1 and the Corollary
to Theorem 2,

For the case &k = 2m — 1, let us write 4, = @,,_, D*™" and A =
A, + A,. By the first part of the proof, T, + A, is a spectral operator
with eigenvalues {\,,} satisfying (3.5) for £k = 2m — 2. The eigenvalues
{\,.} therefore satisfy the hypotheses (2.5) of Theorem 1.

Now we can write A, = (B, + B)T®" " where

r_ 2m—1 77— (2m—1)/2
B, = B, DT mnin

Since T—#"~1Y™ g a continuous linear map from L,(I) to H* '(I) (cf.
[2, Ch. XIII]) and D*' is continuous from H**7'(I) to L.(I), we see
that Bj is a bounded operator in L,(I) with ||B}|| < ¢|| B,||; also Bj
is compact. An application of Theorem 2 to the operator T, + A =
(T, + A) + A, then yields the desired conclusions, and the proof is
complete.

The author wishes to thank Professor Tosio Kato for several
valuable suggestions. The general idea of the proof of Theorem 2 is
due to him.
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