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The unitary equivalence for normal operators is general-
ized for a large class of spectral operators on Banach spaces.
This generalization which is called quasi-similarity coincides
with the semi-similarity introduced by Feldzamen in the
particular case of Hubert spaces and for it the Weyr charac-
teristic forms a complete set of invariants.

The spectral representation theorem for normal operators asserts
that every Hubert space admits a spectral representation relative to
an arbitrary bounded normal operator defined in it. This means that
every normal operator on a Hubert space can be represented, through
a unitary transformation (similarity), as the "multiplication" operator
on an appropriate direct sum of L2~spaces (e.g. see [4] X-5). An
immediate consequence of this result consists in the possibility of
dividing the normal operators into classes of unitarily equivalent
operators.

The case of spectral operators on Hubert spaces is more compli-
cated and it was studied by Feldzamen in his laborious paper [5]. He
has defined the Weyr and Segre characteristics for spectral operators
of finite multiplicity and shown that they are similarity invariants but
not a complete set of invariants. By introducing a generalization of
the similarity called semi-similarity (roughly, it is a decomposition of
the identity, by means of projections in the respective resolutions of
the identity, into similar parts) he has obtained an equivalence relation
for spectral operators of finite multiplicity on Hubert spaces for which
the Weyr (or Segre) characteristic provides a complete set of invariants.

The purpose of this paper is to construct a quasi-similarity theory
for spectral operators on Banach spaces which coincides with the usual
similarity for normal operators or with Feldzamen's semi-similarity in
the case of the spectral operators of finite multiplicity on Hubert
spaces. One of the basic properties of quasi-similarity is the fact
that for it as well as for semi-similarity, the Weyr characteristic is
a complete set of invariants. The multiplicity of the projections in
the resolution of the identity (defined by Bade in [2]) is also an
invariant of quasi-similarity.

A beginning in this direction was done by Bade [2] Theorem 9.2
who has shown that a spectral operator of scalar type on a separable
Banach space whose resolution of the identity contains no projections
of infinite uniform multiplicity, can be represented, through a densely
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defined closed linear map with densely defined inverse, as the "multi-
plication" operator on a suitable direct sum of I^-spaces. It should
be mentioned that our results will be proved under the same re-
strictions concerning the underlying space and the multiplicity of the
projections.

2* Quasi-similarity, The similarity equivalence in the sense of
the afore-mentioned theorem of Bade consists in essence in the ex-
istence of a densely defined closed linear map having a densely defined
inverse (instead of a unitary transformation in the Hubert case).
Since such a similarity seems to be insufficient in order to insure the
existence of a large set of natural invariants we should add some
supplementary conditions which, of course, are satisfied by the map
defined in Bade's theorem.

In this section Ai and A2 will be two bounded linear spectral
operators of finite type on the separable Banach spaces X1 and X2

whose resolutions of the identity are Eλ( ) and E2( ) respectively.
Since in most cases we are dealing in fact only with spectral

operators for which there are no projections of infinite uniform
multiplicity in their resolutions of the identity, it follows from [10]
Theorem 4 that separability is only a slight restriction equivalent
with the countable chain condition (for details concerning the multi-
plicity theory for Boolean algebras of projections on Banach spaces
see [2]).

DEFINITION 1. We shall say that A2 is quasi-similar to A, if
there exists a densely defined closed linear map τ: Xγ —» X with
densely defined inverse (D(τ) and D(τ~ι) will denote the respective
domains of τ and r-1) such that:

( i ) zA{u~ly = A2y; y e D(τ-1)
(ii) For every Borel set δ on the complex plane there is a

constant M(δ) such that

(2.1) i| τE^τ-'yW £ M(o) \\y\\;ye D(τ~ι) .

Let us remark that in view of (i) and (ii), A^iτ) S D(τ) and
also jB1(δ)D(r) £ D(τ) for every Borel set δ.

LEMMA 2. If A2 is quasi-similar to AL, then there is a constant
M such that

(2.2) ^ M || y \\ E, ~ ess sup | /(λ)

for every bounded Borel function f and
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Proof. Let us denote

(2.3) F(δ)y = T-'y; y e ^(τ- 1 ) , δ e Borel sets.

Then F(δ) is a bounded idempotent operator densely defined on X2.
Thus F(δ) can be extended in a unique way on the whole space X2

such that it will be a bounded projection. Evidently, F( ) forms a
Boolean algebra of projections and Eλ(δ) ^ E^δ) if and only if F(δ) S
F(σ) for every pair of Borel sets δ and σ. Consequently, F( ) is a
Boolean algebra of projections, ^-complete as an abstract Boolean
algebra and by [1] Theorem 2.2 it is bounded, i.e. there exists a
constant Mo such that

(2.4) || F(δ)y || - || τE(δ)τ^y \\ ̂  Mo \\ y ||; y e D(z'1); δ e Borel sets.

Now, let / be a bounded Borel function and {fn} a sequence of
finitely valued functions converging uniformly t o / o n σ(A^ (the spectrum
of Aι is the support of Ex{ ) and F( )). Then

(2.5)

and

lim (

(2.6) lim τ \

y = \ f(X)E1(dX)τ^y; y e D

-^ = ( f(X)F(dX)y; y e

Jσ(^41)

Since τ is closed it follows that

(2.7)

for every bounded Borel function / and by [3] p. 341

(2.8) τ\f(X)Eι(dX)τ~1y f(X)F(dX)y

^ 4M01| y || E, - ess sup |/(λ) |; y e

(we have used the fact that EL(δ) — 0 if and only if F(δ) = 0 for
some Borel set δ).

THEOREM 3. Let Aι = Sι + Nu A2 = S2 + N2 be the respective
canonical decompositions of Aι and A2 (see [3] p. 334). // A2 is
quasi-similar to Aι then:

( a ) τE^τ-'y = E2(δ)y; y e D(τ-ι)\ δ e Borel sets.
( b ) Aγ is quasi-similar to A2, i.e. quasi-similarity is a sym-

metric relation.
(c ) Si and S2 are quasi-similar.
( d ) Nt and N2 are quasi-similar nilpotents of the same order.
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( e ) /(SJ and f(S2) are quasi-similar for every bounded Borel
function f.

Proof. We have observed in the proof of the previous lemma
that the family of projections F{ ) defined by (2.3) forms a bounded
Boolean algebra of projections. Moreover, it is ^-complete as an
abstract Boolean algebra of projections. Obviously, it commutes with
A2 and therefore with E2( ).

Now, let us denote

(2.9) S3y = TS{U-1V) Nzy = τN^y; y e D(τ~ι) .

The definition of S3 and N3 is possible in view of (2.7) and it is easy
to see that Ns is a nilpotent of the same order as Λ^ and

S3 = \\F(dX) .
J

Hence

A% = S2 + N2 = S 3 + N3

and all these operators commute. Thus S3 is a spectral operator and
σ(S9) = σ(S2) = σ(A2). C o n s e q u e n t l y ,

σ(A2/F{B)Zz) = σ(S3/F(B)x2) ^δ δe B o r e l s e t s ,

i.e. F( ) is a nonnecessarily countably additive "resolution of the
identity" for the spectral operator A2.

By [3] Theorem 4, for every closed set δ

E2(δ)X2 = {y\yeX2, σφj) g 8}

where σA2(y) denotes the spectrum of y with respect to A2 (see [3]
p. 327). One can easily see that in order to prove the inclusion
E2(δ)X2 S {y I y e X21 σA2(y) s δ}, Dunford does not use the countable
additivity of the resolution of the identity. Thus

F(δ)X2 Q{y\yeX2, σΛ2(y) G δ}

and further F(δ)X2 s E2(δ)X2 which implies

(2.10) F(δ) ^ E2(δ)

for every closed set δ.

Let σ be a Borel set, σf its complement and dσ its boundary.
Suppose that E2(dσ)y = 0 for some Borel set a and y e X2. Then, by
(2.10) we have F(dσ)y = 0 since dσ is a closed set. Hence,

y = E2(σ)y + E2(σ')y = F(σ)y + F(σ')y
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and by (2.10)

E2(σ)y = E2(σ)F(σ)y + E2{σ)F{σ')y = F(σ)y .

In conclusion we get

(2.11) E2(σ)y = F(σ)y .

Let 8 be a closed set and define

σv = {μ I j μ — λ | < v for some λ e δ}; 0 < v .

In view of the separability of X2 one can find a sequence {y%} dense
in X2. By [1] Theorem 3.1, to every yn there is a linear functional
yt e X2 for which ytE2{σ)yn ^ 0; σ e Borel sets and yζE2{σ)yn = 0 for
some σ implies E2(σ)yn ~ 0. Let us put

gn(v) = y:E2(σv)yn; 0 < v n - 1, 2, . . . .

Evidently, gn(v) is an increasing function of v whose set Dn of
discontinuities is at most countable. Therefore, the set D = (JΓ=I Dn

is also at most countable. If v0 £ D, then

lim yZE2{σv)yn = yϊE2(σVQ)yn n = 1, 2, . . .

and further y*E2(σPQ)yn = ytE2{σv)yn. Thus, it follows

E2(σUQ) = E2(σUQ)

which implies E2{dσv) = 0; v g i). Let us consider a decreasing sequence
{vk} such that vΛ -^ 0 when k —> co and vk £ D. By (2.11) we have

(2.12) E2(σn) = F(σUk) k = l,2, .

Observe that ΠΓ=i o»k = δ which implies

A E^k) = Etf); A E2(σn) = E2(δ) .
k—l fe=l

Now, using the fact that Eγ{ ) and E2{ ) are strongly countable
additive spectral measures and (2.12) we shall have

~ly = lim E^σ^τ^y y e

E2(§)y = lim E,(an)y = lim F(σ,Jk)y = lim τE^σ^τ-'y y e

Then, since r is closed, we can conclude

E2(δ)y = zE^)z-ly - F(δ)y 2/ e

and further
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(2.13) E2(δ) = F(δ)

for every closed set δ in the complex plane and, consequently, for
every open set δ.

Finally, we shall use the regularity of the spectral measure E2( ).
Let Ύ] be a Borel set; for every y eX2 there is a sequence of closed
sets {δn} and a sequence of open sets {σn} such that δn £ η £ σn; n =
1, 2, and

lim #2(<7n - δn)y = 0 .
n—>oo

By (2.13)

lim F(σ» - δjj, = 0

and therefore i ^ ) = i£2(^) which proves the first part of the theorem.
The part (b) follows from the fact that

\\τ-Έ2(δ)τx\\ = \\Etf)x\\ ^K\\x\\; xeD(τ)

where if is a bound for the resolution of the identity of Aλ.
Furthermore, the part (e) follows from (2.5), (2.6) and part (a) of
this theorem. Then (c) and (d) are trivial consequences.

COROLLARY 4. The spectrum and its fine structure are quasi-
similar ity invariants (for spectral operators of finite type).

Proof. By the previous theorem Eλ( ) and E2( ) have the same
support, therefore σ(Aι) = σ(A2). Let us point out that Foguel [6]
Theorem 1, p. 56, has proved that a spectral operator of finite type
has no residual spectrum and a point λ belongs to its point spectrum
if and only if E({X}) Φ 0. Then, the last statement follows from the
fact that in our case Eλ({X}) Φ 0 whenever E2({\}) Φ 0.

The concept of multiplicity as used in what follows was introd-
uced by Bade in [2], For convenience we shall summarize here some
notations and results concerning the theory of multiplicity for Boolean
algebras of projections on Banach spaces.

Let 33 be a Boolean algebra of projections and remark that it
may be considered as a spectral measure E( ) on its own Stone space
Ω. The cyclic subspace ϊΰl(x) generated by a vector x is elm {Ex | E e S3}.
For each x the projection C(x) = Λ{E\ Ex = x} will be called the carrier
projection of x. If the underlying space is separable then every
complete Boolean algebra of projections is countably decomposable,
i.e., every family of disjoint projections in S3 is at most countable.
In this case the multiplicity of Ee^d will be defined as the smallest
cardinal power of a set A of vectors such that EX = elm {Wl(x) \ x e A}.
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We say E e 33 has uniform multiplicity n if the multiplicity of F e S3
is equal to n whenever 0 Φ F <̂  E.

In order to prove the invariance of the multiplicity under quasi-
similarity we should use the notion of independence of vectors with
respect to a Boolean algebra of projections which was introduced by
Feldzamen in [5]. A finite family of nonzero vectors {xu •••,#„} will
be called independent if there is a family of vectors {zi9 , zm} such
that

( a ) %Jl(xJ £ 3Jϊ(̂
( b ) C(zi) = I

m r r

( c ) Σ \fi(o))E(dω)Zi ~ 0 implies \ fAω)E(dω) — 0

for ί — 1, 2, , m.
Finally, let us remark that in our case when the underlying space

is separable the multiplicity of a projection cannot be greater than ^ 0 .

THEOREM 5. The multiplicity is a quasi-similarity invariant
i.e. the 'Multiplicity of Eγ(δ) is equal to the multiplicity of Ez(δ)
for every Borel set δ in the complex plane.

Proof. First, assume that the identity in X1 has finite uniform
multiplicity n and consider all the finite families of independent (with
respect to the Boolean algebra E2(-)) vectors {yu ' *,yp};

VieD(z-*)SX2, A C W ^ O ; i = 1, -- ,p.

F o r s u c h a f a m i l y d e n o t e x{ — T~ly{; i = 1, « , p . Obvious ly ,
C(Xi)x = τ~1C(yτ)τx; x e D(τ) which implies Λf-i C{Xi) Φ 0. Assume that

- 0

for some bounded Borel functions /,; i = 1, , n. Then, by applying
τ and using Theorem 3 part (e) we get

J

and by [5] Lemma 2

^fτ(X)E2(d\)yi = 0; i - 1, -, p .

Thus, by Theorem 3 part (e) we have

(X)E1(d\)xi = 0; ΐ = 1, - . . , 2 )
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and then, by [5] Theorem 8, the family {x19 , xp} will be independent
(with respect to the Boolean algebra of projections -EΊ( )) I*1 view
of [5] Theorem 6 this is possible only if p <̂  n.

Let {yίf — ,yp} be a family of independent vectors; ^ eZ^r" 1 ),
E2(δ0) = Ai=i C(Vi) Φ 0; i ~ I, - - , p for which p is maximal. By [2]
Lemma 4.1, for every yeD(τ~ι) there exists a maximal projection
l£2(cr) such that

E2(σ)E2(δ0)y e V 3JΪ(#2(S0)τ/,)
i = l

and

(2.14) V mE2(δ0)iM) Π 2ίl((J - E2(σ))E2(δ0)y) = {0} .
ΐ = l

In view of the definition of quasi-similarity and Theorem 3

y o = (I- E2(σ))E2(δQ)y e D(τ-1)

a n d if y 0 Φ 0 t h e n A L o C(y%) = C(yQ) Φ 0 a n d b y (2 .14) {y0, y l 9 - - , yp}
will be an independent family of vectors from D{τ~ι) which contradicts
the maximality of p. Hence y0 =• 0 and consequently

E2(δQ)y = E2(σ)E2(δ0)y e \[m{E2{δQ)yi)

for every yeD(τ~ι). Since D^- 1 ) is dense it will follow that the
multiplicity of E2(δ0) is at most n. By [2] Theorem 3.4 there is a
set δx £ δQ such that the multiplicity of E2(δ1) is uniform and equal
to that of E2(δ0). By applying the first part of the proof to the
sub-space E2(δ1)X2 we will be able to find a Borel set δ2 £ δλ such that
Eι(δ2) Φ 0 and its multiplicity is not greater than that of E2(δQ).
Since the multiplicity of jEί(52) must be equal to n the multiplicity
of E2(δQ) will be exactly n.

Let us denote

E2(J0) = V {E2(σ) I E2{σ) has uniform multiplicity n} .

Obviously, E2(A0) has uniform multiplicity n and if i?2(A) =£ J, then,
by repeating the arguments already used in the first part of the
proof, one shall find a set σ0 such that E2(σ0) has multiplicity n and
# 2 « ) ^ I — E2(Λ0). Further, by [2] Theorem 3.4 there is a set σ, g σ0

such that .E^i) has uniform multiplicity n. Hence E2(Λ0) = I and the
identity on X2 would have uniform multiplicity n.

Assume that EJ^η) has infinite uniform multiplicity for some Borel
set ΎJ (as we have already remarked, it must be equal to ^ 0 ) . If
E2(η) has not infinite uniform multiplicity then, by [2] Theorem 3.4,
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one can find a projection 0 Φ E2(τ]1) g E2{rj) having finite uniform
multiplicity. By the previous part of the proof EJj]x) will also have
finite multiplicity which contradicts the uniformity of the multiplicity
of EAvh

In order to prove the general assertion of the theorem, let us
consider the decomposition of the identity (given by [2] Theorem 3.4)
I = Vis»£κ0 Ei(σn) into disjoint projections such that if E^a*) Φ 0, E^σ,)
has uniform multiplicity n. It follows that 1= V i ^ ^ o ^ K ) is the
similar decomposition of the identity on X2 (since this decomposition
is unique). In conclusion the multiplicity of E^δ) is equal to that of
E2(δ) for every Borel set δ since

EXδ) = V EWEXσJ E2(δ) = V E2(δ)E2(σn)

and E^E^σJ and E2(δ)E2(σn) have the same uniform multiplicity;
1 ^ n ^ Ko.

Let A be a spectral operator whose resolution of the identity is
E('). By Foguel [6], the opeartor A has a unique decomposition

A = \(lfkX)E(dX) + i \(3m\)E(dX) + N

where N is the generalized nilpotent part and R = 3ΐe A = I (3ίe X)E{dX)

and J = ^m A = (§ntλ)ί?((ίλ) are called the real, respective, imaginary

part of A (this decomposition is similar to that of a normal operator into
a sum of two commutative self-ad joint operators). Using these concepts
we shall give the following necessary and sufficient condition for
quasi-similarity.

THEOREM 6. The condition (ii) of Definition 1 can be replaced by

(ϋi) τR{ϋ~γy = R2y; τJ{c-γy = J2y ye Diτ-1)

where R{ and J{ denote the real, respective, imaginary parts of A{\
i = 1,2.

Proof. The implication (ii) => (iii) was proved in Theorem 3 part
(e). In order to prove the converse implication let us observe that
from (iii) it follows that

, X)E2(dX)y y e

for every polynomial p(X, λ).
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By the Stone-Weierstrass theorem, since τ is closed we get im-
mediately

τ^h(X)E1(dX)τ-1y = \^h{X)E2{dX)y y e D(τ~ι)

for every function h continuous on a compact set A containing the
spectra of Aι and A2m

Let σ S A be a closed set. By Urysohn's lemma (e.g. see [4]
1-5-2) there exists, for each m ^ 1, a continuous function um with
0 ^ um{\) ^ 1; um(λ) — 1 for Xeσ and um(λ) = 0 when

min I λ — μ | ^ .

Obviously, {um(X)} converges to the characteristic function χσ(λ) of
the set σ. Hence, by [4] IV-10-10, since τ is closed we have

τEγ(σ)τ-γy = E2(σ)y y e D(τ-1)

for every closed set σ. If δ is a general Borel set, one can find a
sequence of closed set {σn} which increases to <5. In view of the
strong additivity of both resolutions of the identity we shall obtain

y = E2(δ)y yeD(τ^)

which implies (ii).

COROLLARY 7. Let Aλ and A2 be two spectral operators with real
spectrum. Then they are quasi-similar if and only if there exists
a densely defined closed linear map r: Pλ —* P2 with densely defined
inverse such that τA{ϋ~γy = A2y\ yeD{τ~ι).

3. The Weyr characteristic* In this section we shall deal only
with spectral operators whose resolutions of the identity contain
no projections of infinite uniform multiplicity. This restriction is
necessary in order to define the Weyr characteristic (after E. Weyr
[11]). In fact, the Weyr characteristic was defined by Feldzamen
in [5] for nilpotent operators commuting with Boolean algebras of
projections of finite uniform multiplicity but his definition and the
related results can be obtained without difficulties for nilpotent oper-
ators commuting with Boolean algebras of projections which contain
no projections of uniform multiplicity.

We shall start by reproducing briefly (in our more general context)
some definitions and results from [5] which concern the Weyr char-
acteristic.

Let 33 be a countably decomposable complete Boolean algebra of
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projections on a Banach space X containing no projections of infinite
uniform multiplicity. It is well known that 33 can be considered as a
spectral measure E(-) on its own support space Ω. A Borel set δ of
Ω will be called negligible if E(δ) = 0.

Let us consider a nilpotent operator Q commuting with 33.
A family of vectors {xa \ a e A} will be called a kth index system

over d, for an integer k and nonnegligible set δ, if

( a ) Qkxa = 0 aeA

(3.1) (b) C(Qk~ιxa) ^E(δ); aeA

( c ) {Qιxa I i = 0,1, , k — 1, a e A} is independent.

By [2] Theorem 3.4 every nonnegligible set δ contains a non-
negligible subset σ such that E{σ) has finite uniform multiplicity.
Then {E{σ)Qixa | i = 0,1, , k — 1, a e A} is an independent family
of vectors from E(σ)X and hence, by [5] Theorem 6, it is finite.

Repeating the proof of [5] Theorem 16 we can show that for
each integer k and nonnegligible Borel set δ g Ω, two maximal kth

index systems over δ have the same cardinality.

The Weyr characteristic of Q with respect to 33, written
5^(ζ), <5, k), will be defined as the cardinality of a maximal kth

system over δ if δ is nonnegligible and zero whenever it is negligible.

Another result of Feldzamen which can be easily adapted in our
case asserts that if δ is the disjoint union of a countable family {δ{}
of nonnegligible sets, then

(3.2) 5^(Q, δ, k) = min {W\Q, δi9 k)}
i

for each k.
This theorem together with [2] Theorem 3.4 will be our basic

tools. They will allow us to pass from the finite uniform multiplicity
case to the general case by using Feldzamen's results from [5] with-
out modifications.

THEOREM 8. The Weyr characteristic is a quasisimilarity in-
variant, i.e., if Ai and A2 are quasi-similar spectral operators, then

(3.3) Ύ^(NU δ, k) = Ύ^{N2, δ, k)

for each integer k and Borel set δ on the complex plane.

Proof. In view of the previous remark and Theorem 5 it is
enough to prove (3.3) for sets δ for which E^δ) and E2(δ) have the
same finite uniform multiplicity n. In order to simplify the notations
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we shall assume that both resolutions of the identity of Ax and A2

are Boolean algebras of projections of finite uniform multiplicity n.
For every nonnegligible set δ and integer k we shall consider the

family of all kιh index systems over δ (with respect to Nλ and Ex( ))
which contain only vectors from D(τ) where τ is the map defining the
quasi-similarity between Aι and A2. By repeating the proof of [5]
Theorem 16 one can show that two such maximal systems (composed
from vectors of D(z)) have the same cardinality. Hence, we can
define the Weyr characteristic with respect to D(τ) as the cardinality
of a maximal kth index system containing only vectors from D(τ).
It will be denoted by W^(NU δ, k). In the same way one can define
(for N2 and E2( )) the Weyr characteristic with respect to D(τ~ι)
which will be denoted by Wl(N2, δ, k). Evidently,

(3.4) ^(Ni, δ, k) ^ ΎΠN,, δ,k); i = l,2.

for every Borel set δ and integer k. Let us also remark that if
{x19 - -, xa\aeA, xae D(τ)} is a maximal kth index system over δ
with respect to D(τ) then, by Theorem 3 part (e) {τxu •• ,τa?α} is a
kth index system over δ with respect to D(τ~1) i.e. W^(Nlf δ,k) ^
C3^(N2, <5, k) and by means of symmetry the reverse is also true.
Consequently,

(3.5) 3 r o ( ^ , δ, k) = W~o(N2j δ, k)

for every Borel set δ and integer k.
Let δ0 be a set of uniform characteristic for Nx i.e. c%f~(N1, δ0, k) =

W^{NX1 Ύ], k) for k — 0,1, , n and every nonnegligible set η c δ0.
We shall prove that there exists a nonnegligible set σ aδ0 such that

(3.6) Σ Ύ^(NU σ,k) = n .
k=i

First, let us observe that by [5] Corollary 20 and (3.4)

for every nonnegligible set η S δ0. Hence, we can define

(3.7) I = max Σ W ^ , V, k) .
0=έJ?cί0 k=i

If I = n the proof is finished; thus we can assume that I < n and
choose a nonnegligible set σ ξΞ= δ0 such that

(3.8)
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Suppose that m; m ^ n is the maximum integer for which

» σ, m) Φ 0,

and let {sj | z™e D(τ)y ae Am} be a maximal m th index system over σ
with respect to D(τ) for which C(z™) = J5Ί(^) for each α e i m . Since
{iV^? I a e Am) is a (m — l) t h index system over σ with respect to D(τ)
(see, e.g., Theorem 3 and [5] Theorem 17 (a)) there is a maximal
(m — l) t h index system over σ with respect to D(τ) containing
{ΛΓ,c I a e Am}, say {zr 11 C " 1 e Z?(r), a e AW_J with C(C" :) - E,(σ) for
each α e Am_ι. Continuing so, we shall get a family of vectors
{zk

a I zk e D{τ), a e Ak, k = 1, , m}, whose cardinality is I. This family,
which will be called a complete index system over σ with respect to
D(τ) is independent (the proof of [5] Theorem 19 for general complete
index systems over σ can be immediately adapted in our case). Let
us remark that the set E^Diz) cannot be contained in

V{m(zk

a)\aeAk, k = 1, . . . , m }

otherwise the multiplicity of E^σ) will be equal to I < n. Thus,
there is a vector ze D(τ), C{z) = E^σ,) Φ 0; σγ g σ such that the
family {2, ^ | a e Ak, k = 1, , m) is independent. Let j be such
that JV/2 = 0; Ni~ιz Φ 0 and suppose that the family

{N%zk

a\aeAky k = 1, ...,;/, i = 0,1, . . . , y - 1}

is independent. Then the vectors {2, zί j a e Aj) form a j t u index
system over σι with respect to Z>(r) and therefore

Ύ^INU σlf j) > W\{N,, σ, j) .

Since ^ ( J V ^ σl9 k) ^ ^(N,, σ, k); k = 1, - , m we have

(3.9) Σ ^oίJVi, σlf k) > I
k = L

which contradicts the maximality of I. Hence the set

{N'z, z\ I a e Ak, k = 1, -, j , ί = 0,1, . . . , j - 1}

is not independent. From this point we can follow the arguments
used in the proof of [5] Theorem 21 where, instead of obtaining a
contradiction to the uniformity of the Weyr characteristic we shall
contradict the maximality of I. Thus I — n and (3.6) holds for the
set σ which satisfies (3.8).

Let us assume that there is a set 0 and an integer k0 for which
(3.3) does not hold. With no loss of generality we can suppose that

W{NU δ, k0) < W(N2, δ, k0) .



210 L. TZAFRIRI

By [5] Theorem 18 there is a partitioning of δ, δ=\Js

j=1δά as a
disjoint finite union of sets of uniform characteristic ^^(Nly , •).
By [5] Theorem 17 (c)

W(NU δ, k0) = min 7^{N{, δjy k0) i = 1, 2 .

Thus, there is a set δ0Qδ having uniform characteristic W~{Nλ, , •),
for which

(3.10) <^(iV1, o0, k0) < W(N2, δfc, k0) .

But, by the previous part of the proof (3.6) there exists a set σ c δQ

such that

n

Σ 5^(iVi, σ, k) = n

and further, by (3.4) and [5] Theorem 21

(3.11) ^(JVi, ί7, fe) = ^^"(JVΊ, σ, A) Λ = 1, , w .

On the other hand, using (3.5), (3.4) and [5] Corollary 20 we have

n = Σ ^ " o W , a, fe) ̂  Σ ^\N2, σ,k)^n
k-l k=l

i.e.

(3.12) 5Γo(^, ^, fe) = 5 ^ (ΛΓ2, σ, fc) fc = 1, , n .

In conclusion, by (3.5), (3.11) and (3.12) we shall get

1^(Nlf σ, k0) = %^(N2,'σ, k0)

and further, in view of the uniformity of δ0 and [5] Theorem 17 (b)

W\Nλ, δG, h) ^ ^-(AΓ2, δ0, k0)

which contradicts (3.10).

LEMMA 9. Let S3 be a countably decomposable complete Boolean
algebra of projections having finite uniform multiplicity n and
{xu •••, xk} a set of k; 1 ^ k ^ n independent vectors such that
C(Xi) = /; i — 1, , k. Then, there are n — k vectors xk+1, , xn

such that

(3.13) x = V 2R(ίt\)

Proof. Let us consider all the independent families of vectors
{xl9 , .τ&+1, yk+1, , yp} for which Af=^i C(^) Φ 0. By [5] Theorem 6
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we have p ^ n; hence we can find such a system {xί9 , xk, yk+ly , yp}
with p maximal. Let us denote Eo = Λ?=*+i C(y{) and

m = elm {VJKEoXi), HR(Eoy,) I 1 ^ i ^ k, k + 1 ^ j ^ p} .

If there is x o e l such that EQx0 £ 2Ji then by [2] Lemma 4.7 one can
find a maximal projection Ete^d such that EJEQXQ e 9JI and

271 Π 2»((7 ~ ^j&oίCo) - {0} .

Evidently, yp+1 = (I - EJEQXQ Φ 0 and 0 ^ C(yp+1) ^ £70 i.e. in the
family {.EX, , jEΌa?̂  JSΌl/Λ-hi, , Eoypf EQyp+ι} the lower bound of the
carrier projections is different from zero and by [5] Theorem 8 this
family will be independent. This fact contradicts the maximality of
p, thus EQX — 3Jί and further p = n since EQ has multiplicity n.

Let S30 be the set of all the projections 0 Φ E G 33 for which
there are vectors zk+1, •• ,zw such that

EX = elm

By the previous part of the proof 33O is not \7oid. Let us put

F=

and consider families of disjoint projections in S3 each member of
which is bounded by a projection Eef80, and order these families by
inclusion. By Zorn's lemma there exists a maximal family which
must be countable since 33 is countably decomposable. Obviously, the
union of this maximal family is F i.e.

F= V F,

and Fv e S o since it is bounded by a projection Ev e 33G. Thus there
exist vectors zk%, , ^iv); i; = 1, 2, such that

v = 1,2,

If we denote

then it is easy to see that

F X = e l m { M i F x , ) , ••-, m ( F x k ) , Wl{Fzk+1), ••-, M ( F z n ) }

i.e. FeSS0.
If F Φ I, then by applying the first part of the proof on the
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subspace (I — F) X we shall find a projection Q Φ FO e 23O; FQ g / — Fo

which constitutes a contradiction since Fo ^ F.

LEMMA 10. // W^(NU δ, k) = <%f~(N2, δ, k) for each integer k and
Borel set d then the multiplicities of -EΊ(S) and E2(δ) are equal for
every Borel set δ.

Proof. First, let us consider a set η such that both E^η) and
E2{ΎJ) have (finite) uniform multiplicity. By [5] Theorem 18 rj may
be decomposed as a union

of a disjoint finite family of sets each of them having uniform
characteristic (with respect to the Weyr characteristics C7/^{NU , •)
and W~{N2, , •)). In order to simplify the notation we shall denote
both multiplicity functions by m( ). Then, by [5] Theorem 21

& = 1 1 J 1 fc = i fc==1

V1 ^///^i AT *r> M — ΎVίi Ί71 in \\ ό — 1 . . c?
— 2-k Sr \^y'2lEo(.V - )Λ'2> Vi> ^ z — rrL\-Lj2\/Jj)) 9 J — -1- y > ύ t

and further, by [2] Lemma 3.3 miE^η)) = m(E2(η)).
For every set δ, let

be the decompositions of δ as a union of disjoint countable family of
sets given by [2] Theorem 3.4 (for the Boolean algebras of projections
i?i( ) and E2( ), respectively). Then a set o^ n <5̂ 2) either is negligible
or it has uniform multiplicity with respect to both multiplicity
functions. Hence, by the first part of the proof m(Ey$™ Π (^2))) =

U δ™)) which implies m(Etf)) = m(E2(δ)).

LEMMA 11. Assume that JEΊ( ) and E2(') have the same finite
uniform multiplicity n and c%f~(Nι, o, k) = Ύ/^(N2, δ, k) for each
integer k and Borel set o. Then Aι and A2 are quasi-similar.

Proof. By Lemma 10 £Ί( ) and E2(-) have the same support A.
First, let us suppose that A is a set of uniform characteristic with
respect to W~(N19 , •) and therefore to W(N2f , •) too. Let m be the
maximum integer for which the Weyr characteristics are not zero and
{xk

a I xk

a e X ; a e Ak; k = 1, - -, m) and {yl \ y\ eX2;ae Ak;k = 1, , m}
complete index systems over A for NΣ respectively N2 (see [5] after
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Theorem 18). In view of our hypotheses and [5] Theorem 21 both
these systems have n vectors. By [5] Theorem 19 and our Lemma 9

X1 = V {Wί(xka); a e Ak; k = 1, , m}

X 2 - V {Wl(yla); oc e Ak; k = 1, , m} .

The principal property of these complete index systems consists in
the fact that

α G AA; k = 1, - m

and thus, we can arrange them as follows:

and in the same way for the second complete index system. Let
{x19 , a;Λ} and {y19 •••,!/„} be the new order of those complete index
systems given by the previous arrangements. Then

x, = v mad ^ = V mvd .
1=1 i=l

For every set of n Borel functions {f19 •••,/„} for which #<

belongs to the domain of the operator \/ί(λ)£'1(dλ) and y{ to that of

f i = 1, , 7i let us put

(3.16) r Σ (Λ(λ)^(dλ)^ = Σ \fi^)E2(dX)yi .
ι = l J £ = 1 J

By [2] Theorem δ.2 the operator r: JCΊ— > X2 and its inverse are closed
densely defined. Further, it follows directly from the definition that
zE^z'hj = E2(σ)y; σ e Borel sets and y eDiτ-1) which imply

where M2 is a bound of the resolution of the identity of A2. In
view of (3.14) and (3.15) we have

τNιτ~ιyi = N2Vi i = 1, , n .

and consequently zNγz-}y = N2y; y eD(z~l). Since

zS1z-1y = S2y;yeD(z-ί)

we can conclude that
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τA{c~γy = A2y yeDir'1)

and the proof is complete in the case when A has uniform character-
istic. In the general case we can finish the proof by using [5]
Theorem 18.

We shall proceed to prove the converse of Theorem 8, i.e., we
will show that the Weyr characteristic forms a complete set of in-
variants for quasi-similarity.

THEOREM 12. If the respective Weyr characteristics for A1 and
A2 are equal, i.e.

(3.17) W(NU δ, k) = ΎΛ{N2, δ, k)

for each integer k and Borel set o, then Aι and A2 are quasi-similar.

Proof. As before, let A be the support of E^ ) and 2?2( ) By
[2] Theorem 3.4 there is a unique decomposition of A (for Eγ{-)),

(3.18) A=0*n

into disjoint Borel sets such that if δn is not negligible, E^oJ has
uniform multiplicity n. By Lemma 10, E2(δn) has also uniform mul-
tiplicity n. In view of Lemma 11, let

τn: E^n)XY > E2(on)X2 n = 1, 2, . . .

be the map defined in (3.16). Let us denote

D(z) = {x\xe Xi; E,(δn)xe D(τn)

n — 1, 2, and Σ τnE1(on)x; converges}
W = l

and

τz = Σ TnEtfn)x .
71 = 1

Obviously, r is a one-to-one densely defined map from XL into Xz

with densely defined inverse. Let xpe D(τ), p = 1, 2, and

lim xv = x lim τxv = y .

Then,

lim Etfn)x9 - EL(δn)x; lim E2(δu)τx9 = E2(δn)y n = 1, 2, . . .

and further, l i n v ^ τnEL(δn)xp = E2(δn)y. Since τTO is closed,
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Etfjx e D{τn) and znEtfn)x = E2(δn)y n = 1, 2,

which insures the convergence of Σ»=i TnE1(δn)x = y. Using the
definition of r we will obtain τx — y i.e. τ is a closed map. Finally,
the fact that τ defines a quasi-similarity between At and A2 follows
immediately from Lemma 11.

COROLLARY 13. Quasi-similarity is an equivalence relation for
spectral operators whose resolutions of the identity contain no
projections of infinite uniform multiplicity.

Using the previous results and [5] Theorem 30 we have,

COROLLARY 14. For spectral operators of finite multiplicity on
Hilbert spaces, quasi-similarity coincides with Feldzamenys semi-
similarity (see [5]).

From this corollary and [5] Theorem 27 (or [7] Theorem 3.1) we
shall get

COROLLARY 15. For normal operators of finite multiplicity on
Hilbert spaces, quasi-similarity coincides with unitary equivalence.

COROLLARY 16. Let S1 and S2 be two scalar operators tvhose
resolutions of the identity Eλ{-) and E2( ) respectively, contain no
projections of infinite uniform multiplicity. Then Sx and S2 are
quasi-similar if and only if the multiplicities of E^δ) and E2(δ)
coincide for each Borel set δ.

Proof. It is enough to observe that for scalar operators ^ (0, δ, 1)
is equal with the maximal number of independent vectors whose
carrier is E(δ) while ^"(0, δ, k) = 0 for k > 1. Then, the proof can
be finished by Theorems 8 and 12, Lemma 9, [5] Theorems 18 and
21, and [2] Theorem 3.4.

COROLLARY 17. Let St and S2 be tivo self-adjoint operators on
Hilbert spaces tvhose resolutions of the identity contain no projections
of infinite uniform multiplicity. Then Si and S2 are unitarily
equivalent if and only if there exists a densely defined closed linear
map τ: Xx —> X2 with densely defined inverse such that τS^y =

Proof. It follows from Corollaries 7 and 15.
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Finally, Bade's basic result [2] Theorem 9.2 can be reproduced
as follows.

THEOREM 18. Let X be a separable Banach space and S be a
scalar type operator in X. Suppose that the resolution of the identity
E(') of S contains no projections of infinite uniform multiplicity.
Then S is quasi-similar to the "multiplication" operator on a suitable
direct sum of LLspaces.

Following [5] we can introduce another characteristic, the Segre
Characteristic, written ά*(8, k). It is defined to be the difference
W~{δ, k) - ^"(S, k + 1) for each integer k and Borel set δ. One can
easily see that S^(δ, k) completely determine the values of Ύ/^(p, k).
Hence the Segre characteristic (after C. Segre [9]) forms a second
complete set of invariants of quasi-similarity.

Added in proof. An open question concerning the definition of
quasi-similarity is whether condition (ii) in Definition 1 is redundant.
We are indebted to Charles A. McCarthy for the following example
showing that this condition is not superfluos.

Consider the £2-space of all doubly-infinite sequences {αjί°°-oo with
ΣίΓ-oo I an\

2 < + co and define

τ{an} = {αn2»}; N{an} = {αn+1} .

Obviously, τ is a densely defined closed linear map with densely
defined inverse and N is a normal bounded operator satisfying TNT~L =

2 AT. But N and 2N are not quasi-similar because they do not have
the same spectrum (see Corollary 4).
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