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ON THE TETRAHEDRAL GRAPH

MARTIN AIGNER

Generalizing the concept of the triangular association
scheme, Bose and Laskar introduced the tetrahedral graph the
vertices of which are the ( g) unordered triplets selected from
n symbols with two points adjacent if and only if their corres-
ponding triplets have two symbols in common. If we let d(zx, %)
denote the distance between two vertices z,y and 4(x, y) the
number of vertices adjacent to both x and y, then the tetra-
hedral graph possesses the following 4 properties:

(B0) the number of vertices is (g’)

(B1) it is connected and regular of degree 3(n — 3)

(B2) if d(z,y) =1 then glx,y)=n—2

(B3) if d(z, y) = 2 then g(z,y) = 4.

The question whether these conditions characterize tetra-
hedral graphs (no loops or parallel edges permitted) was an-
swered in the affirmative by Bose and Laskar for n > 16. In
the present paper characterizations of tetrahedral graphs are
derived by strengthening each one of (Bl), (B2), (B3) and these
results are utilized to prove the sufficiency of (B0)-(B3) for n=6.
(For m < 4 the problem is void, n = 4, 5 are trivial cases.)

All graphs considered in this paper are finite undirected without
loops or parallel edges. As is readily seen the line-graph G of the
complete graph with n vertices may be defined as a graph whose

vertices are the (g) unordered pairs taken from n symbols so that two

pairs are adjacent if and only if they have a symbol in common.
Letting d(x, y) denote the distance between x and y and 4(xz, y) the
number of vertices that are adjacent to both x and y, then G has the
following properties:

(A0) the number of vertices is (g)

(Al) G is connected and regular of degree 2(n — 2).

(A2) d(x,y) = 1 implies 4(z,y) =n — 2

(A3) d(x,y) = 2 implies 4(x, y) = 4.

Conner [2], Shrikhande [7], Hoffman [3, 4] and Li-chien [5, 6]
showed that (A0)-(A3) completely characterize linegraphs of complete
graphs except for n = 8 where 3 nonisomorphic graphs satisfying (A0)-
(A3) exist. Bose and Laskar [1] took up the similar problem concerning
unordered triplets chosen from » symbols we mentioned above.

For n > 16 (B0)-(B3) characterize tetrahedral graphs as was shown
by Bose and Laskar in [1].

For n < 4 the characterization problem is meaningless.
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For » =4 a graph G satisfying (B0)-(B3) is necessarily the
complete graph with 4 vertices and the vertices may be identified with
the 4 unordered triplets chosen from 4 symbols.

For n = 5 the conditions (B0)-(B3) are identical with (A0)-(A3)
hence a graph G satisfying (B0)-(B3) may be assigned as vertices the
10 unordered pairs of symbols taken from a set of 5 symbols with two
vertices adjacent if and only if their corresponding pairs share a
symbol. Replacing each pair by its complement in the set of the 5
symbols we obtain a graph G with triplets assigned to its vertices and
G is readily seen to be tetrahedral.

In the following we assume n = 6. K, will denote the complete
graph with ¢ vertices, S(x) the set of the vertices adjacent to x,
T(x,y) the set of the vertices adjacent to both z and y.

II. Characterizations of tetrahedral graphs.

LEMMA 1. For a graph G satisfying (B0)-(B3) the following
properties are equivalent:

(Cl) For all xe G the subgraph induced by S(x)' can be parti-
tioned into 3K, ;'s:

X = {xl! Loy =0y xn—-3}, Y = {yu Yoy =2,y yn——s}y Z = {zu Ry v 0y zn—S}

such that {x;, y,;, z;} induces a K, for 1 =1, «-+, n — 3%

(C2) For all z,ye G with d(xz,y) =1 the subgraph induced by
T(x, y) consists of a K, , and a K, such that no vertex in K,_, is
adjacent to either vertex in K,.

(C3) For all x € G the subgraph induced by S(x) can be partitioned
wnto 3K, _3’s such that for any pair y, z€ S(x) with d(y, z) = 2 there
are exactly 2 other wvertices v, w € S(x) which are adjacent to both y, z.

Proof. It is evident that property (Cl) implies both (C2) and (C3).
On the other hand assume (C2) and let z,e¢S(x). In T(x,z) let
Xy v+, X, 5 D& the vertices in K, , and let y,,z, be those in K,. It
follows from (C2) that in T(x, y,) the K,-part is constituted by =z, 2
and further that the n — 4 remaining vertices y,, ---, ¥,_, form the
K, ,part and are distinct from wx,, ---,2,_,. Similarly for the pair
x, 2, the set T'(x, z,) is made up by 2, ¥, as K,-part and by n — 4 vertices
2, ++, 2, s different from x,, y,(¢ =1, ---,n — 3). Hence S(x) has the
form displaved in Fig. 1. (B2) implies that each of x;,¥;,z:(1 =2, -+,
n—3) is adjacent to exactly 2 vertices in S(x) outside its own K, ..

! By the subgraph induced by a set S of vertices in G we mean the subgraph
which has S as vertex-set and includes all edges between any two points in S.

2 By (B2) it is clear that there exist no edges joining vertices of one Kn—3 to
another other than those of the specified Ks’s.



ON THE TETRAHEDRAL GRAPH 221
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If e.g. «; were adjacent to v;,y.(2 < j,k) then the subgraph induced
by T(x, y;) would consist of a K,_, and a K, with y,e K, ,, ;€ K, and
d(x;, y,) = 1, thus violating (C2). Hence each of x;, y;, 2; is adjacent to
exactly one vertex of the two K,_,’s not containing it—hence (C1) holds.

Next let us assume (C3). Let X, Y, Z be the 3 K, ;s of S(x) as
in (C1). Given z,€ X: In order to prove (Cl) we have to exclude the
following two possibilities:

(A) =, is adjacent to twoc vertices, say ¥, ¥.€ Y, lying in the
same K, ..

(B) x, is adjacent to say y, €Y,z cZ in different K, ;s but
d(yu zl) = 2.

Suppose (A): The set Y — {y,, ¥.} is nonempty (since n = 6) and by
(C3) no ye Y — {y,, ¥.} can be adjacent to any xzc X. Hence let us
assume y,€ Y — {y,, ¥,} is adjacent to z,,2,€ Z. Since z, is adjacent
to exactly two points in S(x) outside Z (one of them being y;) we
conclude there is at most one vertex in S(x) adjacent to both x, and
z,, thus contradicting (C3).

Suppose (B): By (C3) either y, is adjacent to some ze€ Z in which
case 2z, must be adjacent to some 2,€ X, or y, is adjacent to some
2, € X with z, adjacent to some y,€ Y or to «, also. Either possibility
brings us back to case (A) with 2, respectively v, playing the role of
x, in (A).

REMARK 1. In a graph G satisfying (B0)-(B3) condition (C1) implies
(C3'): For any pair of vertices z,, ¥, with d(x,, v,) = 2 the subgraph
induced by the 4 vertices x,, ., ¥,, ¥; adjacent to both z,, %, is a cycle.

Proof. In the subgraph induced by S(x.), «, and ¥, are in different
K, Js with x, adjacent to a vertex, say «,, in the K,_, containing v,,
and ¥, in turn adjacent to ¥, in the K, , containing x,, We have
d(x,, ¥,) = 2 and no other vertices in S(x,) are adjacent to both x, v,.
Now let us consider S(x;). There z,, %, are in the same K, ,, x, is in
another and y, is adjacent to a vertex ¥, in the K, , which contains
x,. Since y, evidently is different from y,, it must be the fourth point
adjacent to x,, y,; furthermore d(x;, y;) = 2, d(x.,y;) = 1. Similarly one
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gets d(y., ¥;) = 1; hence «,, @;, ¥,, ¥; induce a cycle.

REMARK 2. It can be shown with only a little difficulty that for
7 = 6 the converse of Remark 1 holds i.e. (C3') implies (C1) in a graph
satisfying (B0)-(B3). As we will not make use of this fact sub-
sequently the proof is omitted.

LEMMA 2. Let a graph G satisfy (B0)-(B3) and (Cl). Let X, Y,
Z be as in Lemma 1, t.e. S(x) = XU YUZ. Then

S(z:) = (T(x, z;) — {=;, v:}) U {z} U (T(w;, 2:) — {=, ¥:}) U {23}
U (T(ys, 2:) — {x, «}) U {y:} for all ¢

with each ome of the sets on the right hand side inducing a K, ;.
For S(x;), S(y;) the analogous statements hold.

Proof. Follows instantly from (C1).
Note that Lemma 2 implies that S(z;) is completely determined by
S(x), S(x:), S(¥s).

THEOREM 1. A graph G is tetrahedral if and only if G satisfies
(B0)-(B3) and any (and hence all) of the conditions (C1l)-(C3).

Proof. Necessity follows readily from the definition. To prove the
sufficiency let us first interpret tetrahedral graphs geometrically.

For n=6 let C, ={(1,7,k)|1=1,5,k =n;1,7, k integral} i.e.,
the set of all integral lattice points of the 3-cube with sides extending
from 1 ton. Let C, = {(4,7,k) |1 < 1,5,k <m;1#J # k +#1; 1,7, k integral}
then |C, | = n(n — 1)(n —2). Now it is evident that G is tetrahedral
if and only if its vertices can be identified with the lattice points in
C., (each vertex appears exactly 6 times in C)) such that two vertices
are adjacent if and only if they lie on a straight line parallel to a
coordinate-axis.

Thus in order to prove the theorem it suffices to show that the
vertices of a graph G satisfying (B0)-(B3) and say (C1) can be arranged
in C’ in the above fashion.

For simplicity let us denote the vertices of G by the natural numbers.

from 1 to (n)

3
Let
2,00, — 2

n—1,+++,2n —5
2n — 4, -+, 3n — 8

be the 3 K,_,’s constituting S(1) with numbers in the same colum induc-
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ing K,’s. Place 1 at the spots (8,2,1),(2,3,1),(,3,2) in C, and
{2, ---, m» — 2} on the lattice points {(,2,1) |4 < 7 < n} in this order,
{w—1,.--,20 — 5} on {(¢,3,1) |4 <7 <n}, and {2n — 4, ---,3n — 8}
on {(7,3,2) |4 <1 < n}.

Next we look at the set S(2). Besides {1,3, ---,n — 2} inducing a
K,_,, there are two more K, ,’s one headed by n — 1, the other by
2n — 4. (n—1,2n — 4 cannot be in the same K,_, since both are
adjacent to 1.)

Thus

1, 3, ,m—2
S(2) = n—1,3n—"T .--,4n — 12
2n — 4,4n — 11, .-+, 5n — 16

with numbers in the same column inducing K,’s.

Now place 2 at the spots {2,4,1} and (1,4,2) in C,, {n — 1,3n — 1,
««+,4n — 12} on the line {(,4,1) |3t < n}, {2n — 4,4n — 11, --- 5n — 16}
on the line {(7,4,2) |3 <7 <m}. Now the situation is as follows (Fig. 2):
We claim:

dn,3n — 7)) =d@2n — 3,4n — 11) =1
din+1,3n —6) =d@2n — 2,4n — 10) =1

dn,4n — 11) = d@2n — 3,3n — T) = 2
din +1,4n — 10) = d(2n — 2,3n — 6) = 2

It now follows from d(2,n) = 2 and Remark 1 that the fourth point
7 beside 1,3,n — 1 adjacent to both 2, n has to satisfy d(7, 1) = 2,
d(1,3) = d(t,n — 1) = 1. Hence ¢ must be 3» — 7 and furthermore
d(n,4n —11) = 2,d(2n — 3,4n — 11) =1,d(2n — 3,3n — 7) = 2. A similar
argument proves the other assertions. That no other points among
the ones introduced thus far are adjacent beside those already men-
tioned also follows easily with the help of Remark 1.

Next we consider S(3): {1,2,4, ---,n — 2} induce one K,_;; we have
already found that n,2n — 3,3n — 7, 4n — 11 are also in S(3). Since
n,2n — 3 are both adjacent to 1 they must be in different K, ,’s, and
so must 3n — 7,4n — 11 be in different K, _,’s. Hence

1, 2, 4,0, m — 2
S(3) = n,3n — 7,5n — 15, ---, 6m — 21
2n — 3,4n — 11,6n — 20, +--, Tn — 26

with elements in the same column inducing K’s.
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Fia. 2

Place 3 at (2,5,1) and (1,5,2) in C,,{n,3n — 7, .-, 6m — 21}
on the line {(7,5,1)|83<i<n}, {2n— 3, --+,Tn — 26} on the line
{(#,5,2) |3 =1 = n}

We claim:
(1) d(n + 1,5n — 15) = d(3n — 6,5n — 15) = 1
d(2n — 2,6n — 20) = d(4n — 10,6n — 20) = 1
(2) din +1,6n — 20) = d3n — 6,6m — 20) = 1

d(2n — 2, 5n — 15) = d(4n — 10, 5n — 15) = 1

and similarly for the lines parallel to the y-axis starting at =n + 2,
n+3,--- resp. 2n — 1,2n, ---. (1) follows as before by considering
3,n+1;3,3n—6;3,2n — 2,3, 4n — 10, and (2) is a consequence of (1).
Again we note that no other edges beside those already mentioned
exist between vertices 1 to 7Tn — 26.

In this way one considers all sets S(a) for 1 <a <n — 2 and fills
the lattice points {(¢,7,k) |1 <t <n,1<j=<m,k=1,2} in C, in the
same fashion, thus obtaining <n —2— 1) + (n g 2) = (n — 2)* vertices.

Now we turn to vertices corresponding to points {(¢,7,k)|j =3,k=1}
inC,. In S(n—1) two K,_,’s are already known: {1,n,n+1,.-+,2n—5},
2,3 — 17, ..+,4n — 12} with 1 =d(1, 2) = d(n, 3n — 7) = - .- and further
2n —4eS(n —1) Hence
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1, n, n+1 .-.,2n —5
S(n — 1) 2, 3n -1, 3n —6,---,4n — 12
2n —4,(n — 2+ 1,(m — 2+ 2, «--,(n — 2)* + (n — 4)

with numbers in the same colum inducing K,’s.

Placen — 1 at (1,4,3) and {2n —4,(n —2)° +1,---,(n — 2)* + (n — 4)}
on the line {(7,4,3)]|2 <1 =< n} in C,.
We claim:

d@n —3,(n — 20 + 1) =d@dn — 11, (n — 2 + 1) = 1
d@n — 2, (n — 2 + 2) = d(dn — 10, (n — 2)* + 2) = 1

This assertion is verified by considering the pairs 2n — 3, n — 1; 4n — 11,
n—1;2n—2,n—1;4n — 10, n — 1; --- and applying Remark 1.

In this manner we fill up all the lattice points {(7,7,%k) |1 <7 < m,
4 < j <m,k =3} thus obtaining (n "2_ 3> new vertices. By Lemma 2
the vertices adjacent to 2n — 4,2n — 3, --- i.e. to points on the line
{(4,7,k) |4 =1,3 =7,2 = k} have already been taken care of, so we
may turn to points on the line {(7,7,k) |7 =4,k =1}. We place 3n — 7
at (1, 5,4) and proceed in the usual manner.

Proceeding in the same fashion we gradually fill up all the lattice
points {(4,7, k) |j >k} in C obtaining finally

n—1 n— 2 3 2\ _ [(n
(") (") () (2) = (5)
i.e., all vertices of G.
It is easily seen that reflection about the plane y = z fills the

other half of C, and that by means of this construction one actually
arrives at a tetrahedral graph.

II1. The case n = 6.

LEMMA 3. Given a graph G which satisfies (B0)-(B3). Let
Dix) ={yeG|dz,y) =1} 1 = 1. Then

(3) | De)| = 3(n = 3)
~3

(4) D) =3("5°)
-3

(5) UD@=("3"%

for all vertice xeG.

Proof. (8) is condition (B1) of the hypothesis. (B2) implies that
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there are exactly 3(n — 3) — (n — 1) = 2(n — 4) edges joining an arbitrary
vertex in D,(x) with D,(x). Now since by (B3) any vertex in D,(x)
is adjacent to exactly 4 vertices in D,(x) we have the equality
2(n — 4)-3(n — 3) = 4| Dy(x) | and hence (4). (5) is now a consequence
of (3) and (4).

COROLLARY. For n <8 the diameter of G < 3.

(5) and the fact that (n 5 3) < 3(n — 3) for n <8 immediately

prove this assertion.

THEOREM 2. For n = 6 a graph G satisfying (B0)-(B3) s tetra-
hedral.

Proof. In the light of Theorem 1 we have to show that in this
case (B0)-(B3) imply any (and hence all) of the conditions (C1)-(C3’).
Let us prove that (C2) follows from (B0)-(B3).

Let « be any vertex, then by Lemma 3

| Di(@)| =9, [ Dy)| =9, | Dy(x)| = 1.
Furthermore let z be such that d(x, z) = 3 then for any
¥ € Dy(x) U Dy(x)(= Di(2) U Dy(2))
(6) dx,y) =1 = d(z,y) = 2.

For simplicity let us denote the vertices of G by 1,2, --.,20 and sup-
pose that

Dl(l) = {2y 3’ Tty 10}

D,1) = {11,12, ---, 19}

Dy(1) = {20}

with d(2,19) = d(3,18) = ... = d(10, 11) = 3.

By (B2) 2 is adjacent to 4 vertices in D,(1)—say 3,4,5,6. To
prove (C2) we have to show each one of 3,4,5,6 is joined to exactly
one other vertex of this set.

(6) now implies

A2, 11) = d(2, 12) = d(2, 13) = d(2, 14) = 1.

Case (A). 3 is adjacent to each one of {4,5,6}. Then by (B2)
d3,7) = d(3,8) = d(3,9) = d(3,10) = 2 and hence 1,4,5,6,11,12,13, 14
would all be adjacent to both 2 and 3, contradicting (B2).

Case (B). 3 is adjacent to two of {4,5,6} say 4,5. Then by a
similar argument 1,4, 5 and three vertices among {11, 12,13, 14} would
be adjacent to 2 and 3, a contradiction.

Case (C). 3 is adjacent to none of {4,5,6}. Then say d(3,7) =
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d(8,8) = d(3,9) = 1 and hence by (6) d(3,14) = d(3,13) = d(3, 12) = 2
leaving only 1 and 11 as vertices adjacent to both 2 and 3—thus again
contradicting (B2).

Hence the only possible case: 3 (and similarly 4, 5, 6) is adjacent
to exactly one among {3, 4, 5, 6}, thus proving the theorem.
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