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REPRODUCING KERNELS IN SEPARABLE
HILBERT SPACES

HAyYRr! KOREZLIOGLU

A theorem on the existence of a reproducing kernel in a
separable Hilbert space of functions is proved. As an appli-
cation of this theorem, a method of interpolation of the func-
tions in a separable Hilbert space with a reproducing kernel
is given, This method is used to construct the elements of
the Hilbert space generated by a second order stochastic
process, in case this space is separable,

Theorems 2,3 and 4 of this paper, which were motivated by
Parzen’s work [2], [3], were originally proved in somewhat different
form in collaboration with J. Ricatte [4]. In this paper it will be
shown that these three theorems are the consequences of a more
general statement given in what follows as Theorem 1.

1. Preliminaries. Let © be a Hilbert space of real or complex
functions defined on an arbitrary set T. The scalar product of any
ordered pair of functions f, g in © will be denoted by <{f, ¢> and the
norm of a function fe 9 by || f|l. A two variable function K defined
on the product set T x T = T* is the reproducing kernel of 9, if it
satisfies the following two conditions:

(A) K(t,-)eD,vteT.

(B) <f, K(t,-))=f(t),vte T and Ve .

The last property is called reproduction property of K.

K is self-reproducing, i.e. K(¢, 7) = <K(¢, -), K(z, -)>. It is posi-
tive-semi-definite, i.e.

> MK ) =
I

i,je

S K(t:, )“ >0,meC, v,eCN.
i1el

(where C is the set of complex numbers, I an arbitrary finite subset
of the set N of positive integers and X\; the conjugate of ;). In
particular, K has the Hermitian symmetry (K(t, 7) = K(z,t), vt,ce T)
and

0= || K@, )P = K(t,t) < o,vteT.

If © has a reproducing kernel, this kernel is always unique, for
if K and K’ were two distinet reproducing kernels of 9, their repro-
duction property would imply

1 For a more general and detailed presentation of the Theory of Reproducing
Kernels, see the article by Aronzajn [1].
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K(t,7) = <K(t, -),K'(z, -)y = {(K'(z, "), K(¢, -)y = K'(r, ) = K'(t,7) .

The weak convergence (consequently the strong convergence) of
a sequence {f,} €9 to a function fe 9 implies its pointwise conver-
gence to the same function f, for

lim £,(t) = lim < £, K, ) = <F, K(t, ) = fib) .

If a topology is defined on T, then the continuity of K with
respect to the product topology on T? implies the continuity of each
function in . This is the consequence of the Schwarz inequality
applied to (B):

@) — ft) P =[S, K¢, +) — Kb, )) P
= [[FIPIKE, 6 — K(2, ) — K(£, t) + K, £)] .

Given a finite and positive-semi-definite function K on T2, there
exists a uniquely defined Hilbert space of functions on T, whose re-
producing kernel is K (Moore’s Theorem). This space is obtained in
the following way: Let L, be the linear set generated by {K(t, -),
teT,} i.e. the set of all finite linear combinations

Z >"4,K(tu ')y N € Cc ’

Let a scalar product of any ordered pair of elements f, g ¢ L, be de-
fined by

{frgp= % N K, T5)
where
f: ST‘.MK(% ')y g = ;/’!JK({;]! ') .

This scalar product induces a norm on L., so that L, is a pre-
Hilbert space. Obviously

At =<F, K(t, -)>,vte T and vfe Ly .

If {f,} is a Cauchy sequence in L, then {f,} converges everywhere to
a function f, for

[ fu(®) — @) P = 11 fw — fullP K2, 1) .

If the norm of f is defined by || f|| = lim,_. || f. ]|, the space obtained
by the adjunction to L of pointwise limits of Cauchy sequences in
L, is a Hilbert space and K reproduces all functions of this space.
The space generated by {K(¢,-),t € T} will be denoted by 9.

Let © be any Hilbert space whose reproducing kernel is K. Then
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the class {K(t, -),te T} is a basis for 9, so that  coincides with 9.
Consequently, if a closed subspace $ of a Hilbert space ) of functions
on T has a reproducing kernel K, then for any function hecb, the
scalar product <&, K(t, -)> gives the projection of - onto ©. Also, if
<~ is a closed subspace of ., then the reproducing kernel of &~ is
the projection K(¢, -) of K(t, -) onto .<~.

2. The case of separable Hilbert spaces. The following theorem
gives a necessary and sufficient condition for a separable Hilbert space
of functions to have a reproducing kernel.

THEOREM 1. Let © be a separable Hilbert space of fumnctions
defined on T and let {e,} be a countable class of linearly independent
Sunctions in O forming a basis for . Let {K,} be the sequence
defined by

(1) K.(t,7) = 3 @lt) 715,04(0)

where (Vijuhi<i,jsu 1S the inverse of the matrix (Ke;, €;))i<i,i<n.

(C) If vteT,{K,(,1)} converges as n— oo, then any Cauchy
sequence {3\°, a, .e;} C D converges everywhere on T.

(Cy) If, moreover, pointwise limits of such Cauchy sequences
coincide with their limits in norm,

then K(t, 7) = lim,_.. K,(t, 7), which exists vt, 7€ T, ts the reproducing
kernel of D.

Conversely, 1f O has a reproducing kernel K, then the conditions
C, and C, are fulfilled and vt,ze T, K(t, 7) = lim,_.. K,(t, 7).

Proof. To avoid all trivialities, £ can be supposed to be infinite
dimensional.

Sufficitency of C, and C, Consequences of C,. Let 9, be the
subspace generated by {e;, 1 <1 < n}. K,(t, -) is obviously an element
of , and it reproduces all functions in . Moreover, 9, D, for
m > n. Then K,(t, -) is the projection of K, (¢, -) onto ,. Conse-
quently, the relations

(2) <Km(t’ ')7 Kn(fy ')> = Kn(ty T)y m>n,
(3) Kt +) — Ka(t, ) [P = Ku(8, 1) — Ko (¢, ), m >n,

hold. By the last relation, it can be seen that {K,(¢, t)} is an increasing
sequence which converges by hypothesis, so that {K,(¢, -)} is a Cauchy
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sequence in  for every te T. Let K(t, -) be the limit of this sequence.
For a given function fe 9, the function f, defined by

(4) Fulty = A Kty N> = 3 Boviin es(t), B = {f, 0>

is the projection of f onto ©,. Thus, the relations

(5) W= Full = L fa P = I 1?
(6) W Fm = Fult = I P = IFullf, m>n
(7) A= IFS0Al,  m>n.

hold. Consequently, {|| |} is a nondecreasing sequence bounded by || £||,
therefore it converges. Then, according to (6), {f,} is a Cauchy
sequence in 9.

Let us suppose that
(8) f,,,/ = ’%an,iei

is a sequence converging to f. Since f,€9,, the relation

<f9fn>:<f_fn +fnyf%>:<fnyfn>

holds. Then, lim,...<{f,, fo> = lim,..{f.f.> = || f|’, and according to
(7,
0 S Tml|Fy — £l = B (17 — <o £ = Fur P> + 1£211)
= }Li_'IEanHZ —|IflF=0.
Consequently, lim,_, .||/, || = |[f|l. Then the relation (5) shows that
{f.} converges to f in norm.

Since the strong convergence of {f,} implies its weak convergence,
one has

lim 7,(t) = lim {f,, K(¢, *)>
= <fy K(t, ')> = g(t) .

Thus, {f.} converges everywhere. From this, it is easy to see that
any Cauchy sequence of the type (8) also converges everywhere. In
fact,

(9)

Falt) = £ult) = <F — fur Kult, )
By applying the Schwarz inequality and taking into account the fact
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that K,(¢, t) < K(t, t), one can write
1Fult) — U P S NI f — HIP KL D) S I F— L IPKE, ) .

Since { f,,} converges to f in norm, it is seen that lim,_.| Falt) — Ful(®)] =0.
Finally, the inequality

l9(t) — fu8) | < [9@®) — Fu®) | + | F2lt) — ()|

shows that {f.(t)} converges to the same limit g(¢) as { Fa(®))

Consequences of C,. In case the pointwise limit and the limit in
norm of Cauchy sequences of the type (8) coincide, then by (9) the
reproduction property g(t) = f(t) = {f, K(t, -)> is obtained. Also, the
sequence {K,(t,7)} converges to K(t,7),vt,ze€T. Hence, K(t, 7) =
lim,_., K,(¢, 7) is the reproducing kernel of 9.

Necessity of C, and C,. Suppose that © possesses a reproducing
kernel K. The relation (3) which is still valid, together with the

relation
K@, ) — K¢, ) [IF = K, 1) — K.(, 1),
obtained from (5) by replacing f(-) by K(t, -), imply that
K, (1) < K,(t,t) < K(¢, 1) for m > n .

Thus, {K,(t,t)} is an increasing sequence bounded by K(t,t) < oo,
Hence, it converges, so that the condition C, is fulfilled. On the
other hand, since O possesses a reproducing kernel, the condition C,
is automatically fulfilled.

Consequently, lim,_.. K,(f, 7) is a reproducing kernel of . Repro-
ducing kernel being always unique, one has K(¢, 7) = lim,_.. K,(¢, 7).

REMARK. If only the condition C, holds, then the space $ can
be made isomorphic to a Hilbert space whose reproducing kernel is
I, ) =<K, -), K(z, +)> with K(t, -) as the strong limit of {K,(¢, -)}
in . In fact, any Cauchy sequence of the type (8) converging to
fe D converges everywhere in T to a function g. As in the theorem
of Moore, if the set of all linear combinations of the functions {¢;} is
completed by the adjunction of pointwise limits of Cauchy sequences
of this set with respect to the topology of 9, and if the limit of the
norms for each sequence is assigned as the norm of the pointwise
limit of the sequence, then a Hilbert space 9, is obtained. The re-
producing kernel of 9, turns out to be I". This latter space is obviously
isomorphic to . This isomorphism can be represented by
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g(t) :<ny(ty °)>,Vt€ T;fe'b and gef@r.

It can be proved also, that the class of functions {K(¢, -),te T}
generates 9, in the sense that it is a basis for , that is, any func-
tion fe$ for which {f, K(¢, -)> = 0 for all te T, has its norm equal
to zero. In fact, let f be such a function. Then the function g€,
corresponding to f in the isomorphism between $ and $, is the null
function in ,. Consequently, its norm and the norm of f equal zero.

It is worth mentionning that in view of this remark and the
following theorem, there exists a countable subset S of T such that
K=TIonboth S x T and T x S.

In what follows, a separable Hilbert space D, of functions on
T, with reproducing kernel K, will be considered. Since the class
{K(t, -),te T} generates D,, there exists a countable subset S of T
such that {K(,, +),t;€S,7¢€ N} is a class of linearly independent func-
tions forming a basis for $,. The matrix (v;;.)ic: ;<. Will denote the
inverse of the matrix (K(¢;, £,)).<: ;<. and S, will denote {¢,,¢,, - --,¢,}CS.

THEOREM 2. For any function fec Dy, the sequence of functions
defined by

(10) Fal) = 3 Fyv K, *)
converges to f, as n— oo, (both in norm and everywhere).

Proof. To prove the theorem, it suffices to replace e¢; by K(¢;, *)
in the preceding theorem. Then K, (¢, 7) becomes

(11) K (t,7) = 3 Kt t)7:,K(t, 7)

and the function (4) reduces to (10).

Notice that K, coincides with K on S, x T and T x S,, and con-
sequently, f, = f on S,. According to the second part of Theorem 1,
K,(t, ) converges to K(t, -) in norm and everywhere, and the first
part of the proof of the same theorem shows that the sequence (10)
converges to f in norm and everywhere.

So, it appears that f, gives an approximation of f in norm and
everywhere in terms of the values taken by f on the finite subset
S, of S.

COROLLARY. The scalar product of any pair of functions f, g € Ox
18 given by
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(12) fy 0> = lim 3 f6)rsad(t,) -
Consequently, the norm of any function fe 9y, is given by
(13) 718 = Yim 35 ftayrssn (e

THEOREM 3. Let f be an arbitrary function defined on T, such
that

(14) lim 33 Aty fit) < oo, ti, ;€ S, vi,je N

© i,5=

Then the sequence of fumnctions defined by
(15) File) = 35 St 755. Kt )
18 a Cauchy sequence in ., whose limit f' coincides with f on S.

Proof. The relation

W = LlF =l = Il m>n
holds for the sequence (15), with

1l = 35 Ftrssn (e -

It is then seen that || f,||* is a nondecreasing sequence converging to
(14), so that {f,} is a Cauchy sequence in $,. Let f’ be its limit.
Since f’'e g, according to Theorem 2, the sequence

Fue) = 3 760K, +)

is also a Cauchy sequence converging to f’ and therefore {f, — 7/}
converges to the null function in .. Since the relation

X A= Falle X
N (fo —Sn) = (Lo =P =fn =Sl = fa = Falf, m>n
holds, one has
0<|(|fe ~Fill Slim || fo — fiIl =0
so that vee N, || f. —f,{ ||=0. Consequently vte T'and yre N, f,(t)=

Fu®). Inparticular vi < m, f(t;) = fu(t:) = Fu(t:) = f(t:). Thus, f(t) =
7'(@), all teSs.

1 This extension was suggested to the author by Professor H.L. Royden.
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It follows from the last theorem that the set &% of all functions
satisfying the condition (14) is a Hilbert space in which the scalar

product of f by ¢ is given by

(16) lim Z SEveng(t) ,  ti,t;€8,Vi,5eN .

n~eoo §,75=1

In this space all the functions coinciding on S belong to the same
equivalence class defined by the relation

f~g=Ilim Z L) — 9@ il F(E) — Gt)] = 0.
n—oo §,j=1
In particular, the function fe & and the function f’ e , correspond-
ing to f as the limit of the sequence (15) are equivalent.

3. Hilbert Space generated by a second order random process.
Let (2,2, P) be a probability space, where 2 is a sample space, 3 is
the o-algebra generated by a class of subsets of 2 and P a proba-
bility measure defined on ¥. Let {X,,te T} be a class of complex
valued random variables defined on 2 and measurable with respect to
Y. The symbol E will denote the mathematical expectation with respect
to the probability measure P, It will be supposed that vte T, E(X,) =0
and E(| X, ) < . The covariance function E(X,X.) of thus defined
second order stochastic process will be denoted by K(t, 7).

Let L, be the linear set of all finite linear combinations

SnX,teTy,neC.

A scalar product on L, can be defined for any ordered pair of elements

Y == 2 NiXtiy Z = Z ﬂth

by the bilinear form
E(YZ) = Z Nift; K (i, 85)

which induces, for any element Y € L, a norm whose square is defined
by

E(Y[) = 3 MNK(E ) .

The Hilbert space which is the closure of L, in the topology induced
by this norm will be denoted by $, and will be said to be generated
by the process {X,,te T}.

The theorem of Moore says that there exists a uniquely defined
Hilbert space D of functions on 7, admitting K as its reproducing
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kernel. The construction of £, and of 9, shows that these two
spaces are isomorphic if K is the covariance function of {X,,¢e T}.
Under this isomorphism, the random variable X, corresponds obviously
to K(t,-). Consequently, the two spaces are simultaneously separable
and if {K(t;, ), t; € S} is a basis for O, in the sense given in Theorem
1, then {X,,t;€ S} is a basis for D,.

Given an element Z in 9y, the element f, in O, corresponding to
7 is given by

fut) = < fz, K(¢t, )y = B(ZX)) .

For separable . (or equivalently $,) the following theorem gives a
representation of the element of $, corresponding to any given func-
tion f in .. The symbols have exactly the same meaning as in the
two preceding theorems.

THEOREM 4. For any function f ey, the stochastic element
X(f) e Dy corresponding to f under the isomorphism between i and
Dy, 18 given by the limit in the quadratic mean of

(17) X(f) = 3 e X,,
as n-— co,

Proof. By replacing X(t;) by K(t;, -) in (17), it is seen that X(f,)
is the element of $, corresponding to (10). Since {f.} is a Cauchy
sequence in 9, converging to f. Then {X{( f”)} is a Cauchy sequence
converging to X(f).

In view of the analogy between (12) and (17), the element X(f)
can be represented, following Parzen, as {f(+), X.,>. But this is not
really a scalar product because, almost surely, X, does not belong to

Dx.

The author would like to thank Professor H. L. Royden, who
visited METU in 1966, for helpful discussions.
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