POINT NORMS IN THE CONSTRUCTION OF HARMONIC FORMS

Leo Sario and Mitsuru Nakai
POINt NORMS IN THE CONSTRUCTION
OF HARMONIC FORMS

Mitsuru Nakai and Leo Sario

Let V be an arbitrary Riemannian n-space, and V_1, a regular
neighborhood of its ideal boundary. Given a harmonic field
σ in V_1, necessary and sufficient conditions are known for the
existence in V of a harmonic field ρ which imitates the behavior
of σ in V_1 in the sense $\int_{V_1} (\rho - \sigma) \wedge * (\rho - \sigma) < \infty$. In the pre-
sent paper we give the solution of the corresponding pro-
blem for harmonic forms in locally flat spaces.

One aspect of our treatment which may have possibilities for
generalization is the use of the point norm defined by $|\varphi|^2 = \varphi \cdot \varphi$. Another approach to generalizations is discussed in [3].

1. Throughout our presentation the symbol V shall stand for a
locally flat Riemannian space. Since the curvature tensor vanishes
in V, there exists a covering $\{\tilde{U}_a | a \in V\}$ of V such that \tilde{U}_a is the
carrier of local coordinates $x_a = (x^1_a, \ldots, x^n_a)$ with $x_a(a) = 0$ and

$$|x_a| = \sqrt{|x^1_a|^2 + \cdots + |x^n_a|^2} \leq r_a \quad (0 < r_a < \infty)$$

in U_a with the following property:

$$g_{ij}(x_a) = \delta_{ij} \quad (x_a \in \tilde{U}_a).$$

We moreover require that V is parallel in the sense that the above
$\{U_a\}$ can be chose so as to satisfy

$$x^i_a = x^i_b + c^i_{ab} \quad (i = 1, \ldots, n)$$
in $\tilde{U}_a \cap \tilde{U}_b$ with constants c^i_{ab}. We call $\{\tilde{U}_a | a \in V\}$ a parallel coor-
dinate covering and each U_a a distinguished coordinate neighborhood.

2. The space of harmonic p-forms φ, defined by $d\delta\varphi + \delta d\varphi = 0$, will be denoted by H_p. For a set $E \subset V$, the notation $\varphi \in H_p(E)$ shall mean that φ is a harmonic p-form in an open set containing E.

Let \tilde{V}_1 be the complement in V of a regular subregion [4] of V. Suppose $\sigma \in H_p(\tilde{V}_1)$ is given. The problem is to construct a correspond-
ing $\rho \in H_p(V)$, to be called the principal form, characterized by the
existence of a constant M such that

$$|\rho - \sigma| < M < \infty$$
The space V is called hyperbolic or parabolic according as it does or does not possess Green's functions [4].

Theorem 1. If V is hyperbolic, then the principal form ρ always exists.

Theorem 2. If V is parabolic, then a necessary and sufficient condition for the existence of a principal form ρ is that

$$\int_{\beta} * d < \sigma, c > = 0$$

for every constant form c. The principal form is unique up to an additive constant form.

Here $\langle \phi, \psi \rangle = \phi_{i_1 \ldots i_p} \psi^{i_1 \ldots i_p}$, and β stands for the ideal boundary of V. For constant forms see No. 4 below.

The above theorems will be consequences of the main existence theorem for harmonic forms (No. 7), which we shall first establish.

Theorem 1 is known to be valid without the assumption that V is parallel ([3]).

3. Take a p-form ϕ on V:

$$\phi = \phi_{i_1 \ldots i_p} dx^{i_1}_a \wedge \cdots \wedge dx^{i_p}_a.$$

In $U_a \cap U_b$, $dx^i_a = dx^i_b$ and therefore

$$\phi_{i_1 \ldots i_p} = \phi_{i_1 \ldots i_p}.$$

For this reason there exists a global function $\phi_{i_1 \ldots i_p}$ in V such that

$$\phi_{i_1 \ldots i_p} = \phi_{i_1 \ldots i_p}$$

in \bar{U}_a. Conversely, given functions $\phi_{i_1 \ldots i_p}$, there exists a p-form $\phi = \phi_{i_1 \ldots i_p} dx^{i_1}_a \wedge \cdots \wedge dx^{i_p}_a$ with $\phi_{i_1 \ldots i_p} \equiv \phi_{i_1 \ldots i_p}$ in each \bar{U}_a.

4. We call ϕ a constant p-form if

$$\Delta \phi = 0,$$

$$|\phi| = \text{const.},$$

and we denote by K^p the class of constant p-forms. It is easy to see that

$$d\phi = 0, \delta \phi = 0$$
for $\varphi \in K^p$, i.e., constant forms are harmonic fields. If $\varphi \in H^p(V)$ and $|\varphi|$ is constant in some open set $D \subset V$, then $\varphi \in K^p(V)$. In fact, let

$$\varphi = \varphi_{i_1 \ldots i_p} dx^{i_1} \wedge \cdots \wedge dx^{i_p}.$$

Then $\Delta \varphi = (\Delta \varphi_{i_1 \ldots i_p}) dx^{i_1} \wedge \cdots \wedge dx^{i_p} = 0$, and we see that each $\varphi_{i_1 \ldots i_p}$ is harmonic. Consequently $(\varphi_{i_1 \ldots i_p})^2$ is subharmonic, and so is

$$|\varphi|^2 = \sum_{i_1 < \cdots < i_p} (\varphi_{i_1 \ldots i_p})^2.$$

Since $|\varphi|^2 = c$ (const.) in D, we have

$$c - (\varphi_{i_1 \ldots i_p})^2 = \sum_{j \neq i} (\varphi_{j_1 \ldots j_p})^2$$

in D. The left-hand member is subharmonic and superharmonic and the same is true of $(\varphi_{i_1 \ldots i_p})^2$. But $\Delta (\varphi_{i_1 \ldots i_p})^2 = |\text{grad } \varphi_{i_1 \ldots i_p}|^2$, and for this reason $\varphi_{i_1 \ldots i_p}$ must be constant.

Clearly K^p is an $\binom{n}{p}$-dimensional vector space.

5. Let L^p be the operator in the space of p-forms on $\alpha_1 = \partial V_1$ into the space of continuous p-forms in V_1, harmonic in V_1, such that $L^p \varphi |\alpha_1 = \varphi$ and

\begin{align*}
(7) & \quad L^p(\lambda \varphi_1 + \mu \varphi_2) = \lambda L^p \varphi_1 + \mu L^p \varphi_2, \\
(8) & \quad |L^p \varphi| \leq \sup_{\alpha_1} |\varphi|, \\
(9) & \quad \int_{\alpha_1} \ast d < L^p \varphi, c > = 0 \text{ for every } c \in K^p.
\end{align*}

We call L^p a normal operator.

A normal operator L for 0-forms induces one for p-forms:

$$L^p \varphi = (L \varphi_{i_1 \ldots i_p}) dx^{i_1} \wedge \cdots \wedge dx^{i_p}.$$

More interesting is the following. Let $i_1 < \cdots < i_p$. We define one for p-forms by setting

$$L^p = i_1 \ldots i_p L dx^{i_1} \wedge \cdots \wedge dx^{i_p},$$

that is

$$L^p \varphi = (i_1 \ldots i_p L \varphi_{i_1 \ldots i_p}) dx^{i_1} \wedge \cdots \wedge dx^{i_p}.$$

In particular, if $i_1 < \cdots < i_p$ for all $i_1 < \cdots < i_p$, we denote the corresponding L^p by L_0^p or L_i^p.

6. Given a compact set E in V let $F^p_E \subset H^p$ be the class of harmonic p-forms φ in V such that $\langle \varphi, c \rangle$ is not of constant sign in
E except for being identically zero for every \(c \in K^p \). Observe that \(F^p_E \) is closed with respect to uniform convergence in terms of \(| \cdot | \) on compact sets. In fact,

\[
| \langle \varphi_n, c \rangle - \langle \varphi_m, c \rangle | = | \langle \varphi_n - \varphi_m, c \rangle | \leq |c| |\varphi_n - \varphi_m|.
\]

We shall need the following generalization of the \(q \)-lemma for 0-forms [4]:

Lemma. There exists a constant \(q_E (0 < q_E < 1) \) such that

\[
\max_E |\varphi| \leq q_E \sup_{\varphi} |\varphi|
\]

for all \(\varphi \in F^p_E \).

We only have to consider forms \(\varphi \) with \(\sup_{\varphi} |\varphi| = 1 \). Suppose there existed a sequence with \(\max_E |\varphi_n| > 1 \). Then since \(\{\varphi \mid \sup_{\varphi} |\varphi| = 1\} \) is a normal family, we would have \(\varphi = \lim \varphi_n \) with \(\max_E |\varphi| = 1 \). By the subharmonicity of \(|\varphi|^2 \), \(\varphi \) would be a constant form \(c \) on \(V \). The contradiction \(\langle \varphi, c \rangle = \langle \varphi, \varphi \rangle = 1 \) completes the proof.

7. With the scene so set for \(p \geq 0 \), we can state the following generalization to \(p \)-forms of the main existence theorem known thus far for 0-forms only [4]:

Theorem 3. The principal form \(\rho \in H_p(V) \) characterized by

\[
L(\rho - \sigma) = \rho - \sigma
\]

exists if and only if

\[
\int_\beta *d\langle \sigma, c \rangle = 0
\]

for all \(c \in K^p \). The principal form is unique up to an additive constant form.

The proof is analogous to that for 0-forms [4] and we can restrict ourselves to a brief outline.

Let \(V_0 \subset V \) be a regular region with \(\partial V_0 \subset V_1 \) and \(\partial V_1 \subset V_0 \). Denote by \(L' \) the Dirichlet operator for \(V_0 \). We only have to establish the convergence of \(\varphi = \sum_{n=0}^\infty (LL')^n \sigma_n \), where \(\sigma_0 = \sigma - L \sigma \) and \(L = L^p \).

Observe that condition (11) means that \(\int_\alpha *d\langle \sigma, c \rangle = 0 \) for every \(\alpha \) homologous to \(\alpha_i \), since \(\langle \sigma, c \rangle \) is a harmonic function. We conclude that

\[
\int_{\partial V_1} \langle L'(LL')^n \sigma_0, c \rangle *dh = 0,
\]
where h is the harmonic measure of ∂V_0 in $\overline{V}_0 \cap \overline{V}_1$. For this reason $L'(LL')^n\sigma_0 \in F_{\partial V_1}(V_0)$, the lemma applies in V_0, and we have the convergence.

Theorem 2 is a consequence of Theorem 3.

8. To prove Theorem 1 suppose V is hyperbolic. The form $\sigma \in H^p(\overline{V}_1)$ may or may not satisfy (11). We set

$$\psi = \sum \left[\int_{\partial V_1} d\sigma_{i_1, \ldots, i_p} / \int_{\partial V_1} d\omega \right] \omega dx^{i_1} \wedge \cdots \wedge dx^{i_p},$$

where $\sigma = \sigma_{i_1, \ldots, i_p} dx^{i_1} \wedge \cdots \wedge dx^{i_p}$ is the global expression in \overline{V}_1 and ω is the harmonic measure of the ideal boundary β of V with respect to V_1. Clearly $|\psi|$ is bounded in V_1. Consequently, $\tilde{\sigma} = \sigma + \psi$ satisfies (11) and the solution ρ satisfies

$$\rho - \sigma = L^p(\rho - \tilde{\sigma}) + \psi$$
on V_1. We infer that $|\rho - \sigma|$ is bounded in V_1.

BIBLIOGRAPHY

Received July 25, 1966. This work was sponsored by the U. S. Army Research Office-Durham, Grant DA-AROD-31-124-G855, University of California, Los Angeles.

NAGOYA UNIVERSITY

AND

UNIVERSITY OF CALIFORNIA, LOS ANGELES
Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California 90024.

Each author of each article receives 50 reprints free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 105 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners of publishers and have no responsibility for its content or policies.
Martin Aigner, *On the tetrahedral graph* ... 219
Gregory Frank Bachelis, *Homomorphisms of annihilator Banach algebras* ... 229
Phillip Alan Griffith, *Transitive and fully transitive primary abelian groups* ... 249
Benjamin Rigler Halpern, *Fixed points for iterates* 255
James Edgar Keesling, *Mappings and dimension in general metric spaces* ... 277
Al (Allen Frederick) Kelley, Jr., *Invariance for linear systems of ordinary differential equations* ... 289
Hayri Korezlioglu, *Reproducing kernels in separable Hilbert spaces* 305
Gerson Louis Levin and Wolmer Vasconcelos, *Homological dimensions and Macaulay rings* 315
Leo Sario and Mitsuru Nakai, *Point norms in the construction of harmonic forms* ... 325
Barbara Osofsky, *Noncommutative rings whose cyclic modules have cyclic injective hulls* .. 331
Newton Tenney Peck, *Extreme points and dimension theory* 341
Jack Segal, *Quasi dimension type. II. Types in 1-dimensional spaces* 353
Michael Schilder, *Expected values of functionals with respect to the Ito distribution* .. 371
Grigorios Tsagas, *A Riemannian space with strictly positive sectional curvature* ... 381
John Alexander Williamson, *Random walks and Riesz kernels* 393