NONCOMMUTATIVE RINGS WHOSE CYCLIC MODULES HAVE CYCLIC INJECTIVE HULLS

BARBARA OSOFSKY
NONCOMMUTATIVE RINGS WHOSE CYCLIC MODULES HAVE CYCLIC INJECTIVE HULLS

B. L. Osofsky

A ring R is called hypercyclic if every cyclic R-module has cyclic injective hull. If R is hypercyclic and R/J artinian, then R is a ring direct sum of matrix rings over local hypercyclic rings. The structure of local hypercyclic rings is studied.

In [1] and [2] Caldwell has characterized rings R (with 1) such that

(i) R is commutative, and

(ii) Every cyclic R-module has cyclic injective hull. In particular, every such ring has the property

(iii) R/J is artinian, where J is the Jacobson radical of R.

In § 1, the commutativity condition (i) is dropped, and it is shown that rings satisfying (ii) and (iii) are direct sums of matrix rings over local rings satisfying (ii). In § 2 local rings satisfying (ii) are studied. These are, with one possible exception, almost commutative in the sense that $xR = Rx$ for all $x \in R$. For such rings, Caldwell’s description in the commutative case goes through. The possible exception would imply the existence of a simple radical ring (without 1 of course) which is not nil and whose right ideals and left ideals are linearly ordered. This is why the word “possible” is inserted.

In this paper, R will denote a ring with 1, and all modules will be unital right R-modules. If M_R is a module, $E(M_R)$ will denote the injective hull of M. M_R is an essential extension of N_R will be denoted $M' \supseteq N$ or $N \subseteq M$. Following Caldwell’s terminology in [1] and [2], R will be called hypercyclic if R satisfies (ii), that is, $E(R/I)$ is cyclic for every right ideal I. The socle of M will be denoted $S(M)$, and R_n will denote the ring of $n \times n$ matrices over R. R is called regular if every finitely generated right ideal is generated by an idempotent.

1. Hypercyclic rings with chain conditions on R/J. In this section we study hypercyclic rings such that R/J is artinian. Such rings will be called restricted hypercyclic. We do not actually use the full force of R/J artinian; it is equivalent to assume that R is hypercyclic and R/I has ascending chain condition on direct summands for all right ideals I. Thus if R is hypercyclic, the ascending chain condition on $(R/J)_R$ will imply R is restricted hypercyclic also. We start by quoting several known results.
Lemma 1.1. Let M be a finitely generated R-module. Then $MJ = M^*M = 0$.

Proof. See Jacobson [6], Theorem 10. I suspect the name Nakayama usually associated with this lemma comes from [11], where Nakayama reformulates the statement of Jacobson’s theorem by throwing out extraneous hypotheses.

Proposition 1.2. Let $R = I_1 \oplus \cdots \oplus I_n$, where $\{I_j \mid 1 \leq j \leq n\}$ are isomorphic right ideals. Let $R' = \text{Hom}_R(I_1, I_1)$. Then $R \approx (R')^n$.

Proof. See Jacobson [8], p. 52.

Proposition 1.3. Let R_R be injective. Then R/J is regular, and for each set $\{e_i \mid 1 \leq i \leq n\}$ of orthogonal idempotents in R/J such that $\sum_{i=1}^n e_i = 1 + J$, there exists $\{e_i \mid 1 \leq i \leq n\}$ orthogonal idempotents in R with $e_i + J = e_i$ and $\sum_{i=1}^n e_i = 1$.

Proof. See Faith and Utumi [5].

Proposition 1.4. Let $e = e^2, f = f^2 \in R$. Then $eR \approx fR \approx eR/eJ \approx fR/fJ$.

Proof. See [8], p. 53.

Proposition 1.5. Let $F = \sum_{i=1}^n x_iR$ be a free R-module with free basis $\{x_i \mid 1 \leq i \leq n\}$. Then $M_R \to \text{Hom}_R(F, M)$ is a category isomorphism between the category of right R-modules and the category of right R_n-modules with inverse $N_{R_n} \to N \otimes_{R_n} F$.

Proof. See Morita [10], Theorem 3.4.

Proposition 1.6. Let R be restricted hypercyclic. Then $R' \supseteq S(R)$.

Proof. See Caldwell [1], Theorem 3.5. $R/J = \sum_{i=1}^n \oplus S_i$, S_i simple, and every simple R-module is isomorphic to some S_i. Hence $E(R/J) = \sum \oplus E(S_i)$ is faithful, and $E(S_i) = x_iR$ for some x_i. Let $D_i = \{r \in R \mid x_i r \in S_i\}$. Then $D_i \subseteq R$ since $E(S_i)' \supseteq S_i$ and $\bigcap_{i=1}^n D_i \subseteq R$. Then $E(R/J) \cdot \bigcap_{i=1}^n D_i \subseteq R/J$ so $E(R/J) \cdot (\bigcap_{i=1}^n D_i) J = 0$. We conclude $(\bigcap_{i=1}^n D_i) J = 0$, so $\bigcap_{i=1}^n D_i \subseteq S(R) \subseteq R$.

We now come to a basic lemma on restricted hypercyclic rings, extending a result in Faith [3], who proved it in the case that R
was perfect and hypercyclic.

Lemma 1.7. Let \(R \) be a hypercyclic ring such that every homomorphic image of \(R \) has ascending chain condition on direct summands. Then \(R \) is injective and \(R \) is restricted hypercyclic.

Proof. Since \(R \) is hypercyclic, \(E(R) \cong R/I \) for some right ideal \(I \). Let \(f \) embed \(R \) in \(R/I, f(1) = x + I \). Since \(f \) is one-to-one, \(xR \cap I = 0 \), so \(E(R) = E(xR) \oplus E(I) \oplus M \). Since \(xR \cong R, E(xR) \cong E(R) \oplus E(I) \oplus M \) so \(E(R) \cong E(R) \oplus E(I) \oplus M \oplus E(I) \oplus M \cong \cdots \cong E(R) \oplus \sum_{i=1}^{n} [E(I) \oplus M]_i \). Since \(R/I \) has ascending chain condition on direct summands, \(E(I) \oplus M = 0 \), so \(I = 0 \) and \(R \) is injective. Since \(R/J \) is regular by 1.3, the chain condition on \(R/J \) implies \(R/J \) artinian.

Lemma 1.8. Let \(R/J \) be artinian, \(I \) a right ideal of \(R, R/I = \sum_{i=1}^{n} M_i \). Then \(m \leq \) the composition length of \(R/J \). Moreover, if \(M_i/MJ \) is simple for each \(i \), the number of \(M_i/MJ \) isomorphic to a given simple module \(M \leq \) the number of factor modules \(\cong M \) in a composition series for \(R/J \).

Proof. \(\sum_{i=1}^{n} M_i/MJ \cong (R/I)/(R/I)J \cong R/I + J \cong (R/J)/(I + J)/J \). The lemma then follows from the Jordan-Holder-Schreier theorem. See Jacobson [7], p. 141.

Corollary 1.9. Let \(R \) be restricted hypercyclic, \(e = e^2 \in R, length eR/eJ = m \). Then any independent set of submodules of a quotient of \(eR \) has at most \(m \) elements.

Proof. Let \(\{M_i \mid 1 \leq i \leq k\} \) be an independent family of submodules of \(eR/eI \). Then \(R/eI \cong (1-e)R \oplus \sum_{i=1}^{k} M_i \), so \(E(R/eI) \) contains a direct sum of \((length R/J - m + k) \) terms. Hence \(k \leq m \) by 1.8.

Corollary 1.10. Let \(R \) be restricted hypercyclic, \(e = e^2 \in R, eR/eJ \) simple. Then the submodules of \(eR \) are linearly ordered.

Proof. Let \(A, B \subseteq eR \). By 1.9, \(A/A \cap B = 0 \) or \(B/A \cap B = 0 \), so \(B \subseteq A \cap B \) or \(B \subseteq A \cap B \).

Corollary 1.11. Let \(R \) be restricted hypercyclic. Then \(R \) is injective.

Proof. Apply 1.8 and 1.7.
LEMMA 1.12. Let R be restricted hypercyclic, M a simple R-module. Then $E(M) \cong eR$ for some $e = e^2 e \ldots$ need only show each e_i is central. Assume not. Then there exist $i \neq j$ such that $e_i e_j \neq 0$. Let $e_i r e_j \neq 0$, $i \neq j$. Consider

Proof. By 1.11, R_R is injective. Let $R/J = \sum_{i=1}^n \varepsilon_i e_i R/J$, $\{\varepsilon_i | 1 \leq i \leq m\}$ orthogonal primitive idempotents. By 1.3, there exist $\{\varepsilon_i | 1 \leq i \leq m\}$ orthogonal idempotents of R such that $e_i + J = \varepsilon_i$ and $1 = \sum_{i=1}^m e_i$. By 1.6, $e_i R \cap S(R) \neq 0$. Since $e_i R/e_i J$ is indecomposable, so is $e_i R = E(e_i R \cap S(R))$. Hence $e_i R \cap S(R) = S_i$ is simple. By 1.4, $e_i R/e_i J \cong e_j R/e_j J \Rightarrow S_i \cong S_j$. Hence the correspondence $S_i \mapsto E(S_i)/E(S_i) J$ is one-to-one between isomorphism classes of simple modules containing a representative $S_i \subseteq S(R)$ and isomorphism classes of modules of the form $e_i R/e_i J$. Since every simple R-module is isomorphic to some $e_i R/e_i J$ and the set of isomorphism classes of simples is finite, every isomorphism class of simples contains some S_i. If $M \cong S_i$, $E(M) \cong e_i R$.

LEMMA 1.13. Let R be hypercyclic, $R/J \cong \Lambda_n$ for some division ring Λ. Then $R \cong (R')_n$, where $R'/R' J(R') \cong \Lambda$, so R' is local.

Proof. Let $R/J = \sum_{i=1}^n \varepsilon_i e_i R/J$, $\{\varepsilon_i | 1 \leq i \leq m\}$ primitive orthogonal idempotents. Then $R = \sum_{i=1}^n \varepsilon_i e_i R$, $\{\varepsilon_i | 1 \leq i \leq m\}$ orthogonal idempotents with $e_i + J = \varepsilon_i$ by 1.11 and 1.3. By 1.4, $e_i R \approx e_i R$ for all i and j since all simple Λ_n modules are isomorphic. By 1.2, $R \approx (\text{Hom}_R(e_i R, e_i R))_n$. But $R' = \text{Hom}_R(e_i R, e_i R) \approx e_i R e_i$, and $R'/R' J(R') \approx e_i R e_i / e_i J e_i \approx \text{Hom}_R(e_i \Lambda_n, e_i \Lambda_n) \approx \Lambda$.

LEMMA 1.14. Let $R = \sum_{i=1}^n \bigoplus R_i$ be a ring direct sum. Then R is hypercyclic \iff each R_i is.

Proof. If e_i is the identity of R_i, then $\{e_i | 1 \leq i \leq n\}$ are orthogonal central idempotents of R. Let I be an ideal of R. Then $I = \sum \bigoplus e_i I$, and one easily verifies that $E(R/I) \cong R/K \Rightarrow E(e_i R/e_i I) \cong e_i R/e_i K$.

LEMMA 1.15. Let R be restricted hypercyclic. Then R is a ring direct sum of matrix rings over local rings.

Proof. Let $R/J = \sum_{i=1}^m \bigoplus (\Lambda_i)_{n_i}$, Λ_i a division ring, $n_1 \geq n_2 \geq \cdots \geq n_m$, $(\Lambda_i)_{n_i} = \varepsilon_i R/J$ where ε_i is a central idempotent of R/J. Let $\varepsilon_i = e_i + J$, $\{e_i | 1 \leq i \leq m\}$ orthogonal idempotents of R such that $\sum_{i=1}^m e_i = 1$. By Lemmas 1.13 and 1.14, we need only show each e_i is central. Assume not. Then there exist $i \neq j$ such that $e_i R e_j \neq 0$. Let $e_i r e_j \neq 0$, $i \neq j$. Consider
$$M = R/(\sum_{i=1}^{n_i} e_i R + e_j J + e_i r e_j J) \approx e_j R/e_j J \bigoplus e_i R/e_i r e_j J.$$

This contains a direct sum of at least $n_j + 1$ copies of the unique simple $(A_i)_{n_j}$ module S. Then $E(M) \cong \sum_{i=1}^{n_{i+1}} E(S) \cong R/I$ for some I. Since $E(S)/E(S)J$ is simple by the proof of 1.12, lemma 1.8 shows $E(S)/E(S)J$ is the simple $(A_i)_{n_i}$ module for some l with $n_i > n_j$. Now $E(R/J) \cong R/K$ for some K, and by 1.12, since R/J is a finite direct sum of simple modules, $E(R/J)$ is projective. Hence $R \cong E(R/J) \bigoplus K$, where the length of $E(R/J)/E(R/J)J = \text{length } R/J$. By 1.8, $K = 0$, so $S(R) \cong R/J$. But then the number of composition factors of $S(R) \cong S$. Thus $n_i = n_j$, a contradiction.

Lemmas 1.14 and 1.15 reduce the study of restricted hypercyclic rings to hypercyclic matrix rings over local rings R'. We will show that, for R' local, $(R')_n$ is hypercyclic $\iff R'$ is hypercyclic.

Lemma 1.16. Let R be hypercyclic, R/J a simple R-module. Let $F = \sum R_i, K \subseteq F$. Let $\{N_i \mid 1 \leq i \leq k\}$ be a family of nonzero independent submodules of F/K. Then $k \leq n$.

Proof. Let x_1, \ldots, x_{n+1} be any $n + 1$ elements of F, $x_i = (x_{1i}, \ldots, x_{ni})$. We will show that $\{x_i \mid 1 \leq i \leq n + 1\}$ is not independent modulo K. If some $x_i \in K$, this is immediate, so we may assume $x_i \notin K$ for all i. By 1.10, the right ideals of R, $\{r_i\}$, has a maximum element, that is an r_{i_0} such that $r_{i_0} R \supseteq r_i R$ for all i. Clearly we may permute the x_i and the order of the summands R_i in F without losing generality. Hence we may assume $x_{i_0} = \max \{x_{ij} \mid 1 \leq i \leq n + 1, 1 \leq j \leq n\}$. Let $x_{i_0} = x_{i_0} r_{i_0}, 2 \leq i \leq n + 1$, and consider the elements $x_{i} - x_{i_0} r_{i_0}$. These all have zeros in the first component. Then some $x_{ij} - x_{i_0} r_{i_0} = \max \{x_{ij} - x_{i_0} r_{i_0} \mid 2 \leq i \leq n + 1, 2 \leq j \leq n\}$, say $i = j = 2$. Then there exist elements $r_{i_0}, 3 \leq i \leq n + 1$ such that $\{(x_{i} - x_{i_0} r_{i_0}) - (x_{2} - x_{2} r_{2}) r_{i_0} \mid 2 \leq i \leq n + 1\}$ all have zeros in the first two components. Continuing in this manner, and permuting so the largest coefficient is in the k, k position, we get $n + 1 - k$ elements of the form $x_m - \sum_{i=1}^{k} x_{i} s_{ik}$ which have zeros in the first k positions. When $k = n$, we get $x_{n+1} - \sum_{i=1}^{n} x_{i} s_{in} = 0$, and since $x_{n+1} \notin K$, this gives a nontrivial dependence of $\{x_i \mid 1 \leq i \leq n + 1\}$ modulo K.

Lemma 1.17. Let R' be a local ring. Then R' is hypercyclic if and only if $(R')_n$ is hypercyclic for some n.
Proof. \Rightarrow Let R' be hypercyclic, $e = e^2 \in (R')_n = R$, e a primitive idempotent. Identify R' with eRe. Then $Re_{R'} \approx \sum_{i=1}^n \oplus R'_i$. Since the category isomorphism of 1.5 takes $R' \to \text{Hom}_{R'}(Re, R') \approx eR$, every quotient of eR has injective hull a quotient of eR. Let I be a right ideal of R. Then

$$R \to R/I \to 0$$

is exact, so

$$R \otimes_R Re \to R/I \otimes_R Re \to 0$$

is exact. Since $R \otimes_R Re_{R'} \approx Re_{R'}, R/I \otimes_R Re$ is an R'-quotient of Re. By 1.16, $R/I \otimes_R Re$ is an essential extension of at most n cyclic R'-modules. By the category isomorphism, R/I is an essential extension of a sum of at most n quotients of eR. Hence its injective hull is a direct sum of at most n quotients of eR, and thus a quotient of R.

\Leftarrow. Let $R = (R')_n$ be hypercyclic, e a primitive idempotent, $A \subseteq e(R')_n$. Then $E(R/A) = (1 - e)R \oplus E(eR/A)$, so $E(eR/A)/E(eR/A)J$ is simple, and $E(eR/A)$ is a quotient of eR. By the category isomorphism 1.5, every quotient of R' has injective hull also a quotient of R'.

Putting 1.17, 1.15 and 1.14 together we get

Theorem 1.18. R is a restricted hypercyclic ring $\Leftrightarrow R$ is a ring direct sum of matrix rings over local hypercyclic rings.

2. Local hypercyclic rings. By Theorem 1.18, hypercyclic rings R such that R/J is semi-simple Artin are ring direct sums of matrix rings over local hypercyclic rings. In this section we study local hypercyclic rings. These turn out to be, with one possible exception, the rings studied by Caldwell in [2], with R commutative replaced by $xR = Rx$ for all $x \in R$.

By 1.11, a local hypercyclic ring is right self injective; by 1.10 its right ideals are linearly ordered.

We have the well-known

Proposition 2.1. Let M_R contain a copy of the injective hull of every simple R-module. Then every right ideal of R is the annihilator of some subset of M.

Proposition 2.2. Let R_R be injective. Then any finitely generated left ideal is the annihilator of some right ideal, and the right socle of $R \subseteq$ the left socle of R.

Let $X \subseteq R$. Define $X^r = \{r \in R \mid Xr = 0\}$, $X^l = \{r \in R \mid rX = 0\}$.
COROLLARY 2.3. Let R be a local hypercyclic ring. Then the left ideals of R are linearly ordered.

Proof. Let \(x_1, x_2 \in R \). Then \(x_1 \subseteq x_2 \) or \(x_2 \subseteq x_1 \), so by 2.2, \(x_1^1 = Rx_1 \subseteq x_2^1 = Rx_2 \) or \(Rx_1 \supseteq Rx_2 \). Now let \(I_1, I_2 \) be two left ideals, \(I_1 \not\subseteq I_2 \). Let \(x \in I_1 - I_2 \). For \(y \in I_2, Ry \nsubseteq Rx \) since \(x \in I_2 \). Hence \(Rx \subseteq Ry \) so \(I_2 \subseteq I_1 \).

LEMMA 2.4. Let \(x, z \in R, 0 \neq xz \in S(R) \). Then \((Rx)^r = zJ, (Jx)^r = zR, (zJ)^i = Rx, (zR)^i = Jx \).

Proof. Since \(0 \neq xz \in S, xzJ = 0, xzR \neq 0 \). By the linear ordering on right ideals, \(zJ \subseteq (Rx)^r \subseteq zR \). Since \(zR/zJ \) is simple, \(zJ = (Rx)^r \). Since left ideals are linearly ordered by 2.3, \(Jx = (zR)^i \) by symmetry. By 2.2, principal left ideals are annihilators so \(Rx = (zJ)^i \). By 2.1, \(zR \) is an annihilator so \((Jx)^r = zR \).

We note that given \(x \neq 0 \) or \(z \neq 0 \), by the linear ordering on right and left ideals, we can always find the other such that \(0 \neq xz \in S(R) \).

COROLLARY 2.5. Let R be a local hypercyclic ring. Then every right ideal and every left ideal is an annihilator ideal.

Proof. Since \(R \) is injective and contains a copy of the unique simple \(R \)-module, 2.1 states every right ideal is a right annihilator.

Now let \(I' \) be a left ideal, and let \(Z = \bigcap_{x \in I'} Rx \). Then \(Z = (\sum_{x \in I'} x^i) \) since \((x^i)^i = Rx \). If \(I' \neq Z \), let \(y \in Z - I' \). Then \(Ry \supseteq I' \), and \(Rz \supseteq I' \Rightarrow Rz \supseteq Ry \). Hence \(Ry/I' \) is a simple left module. By Nakayama's lemma, \(Jy \neq Ry \). Hence \(Jy \subseteq I' \). Since \(Ry/Jy \) is also simple, \(Jy = I' \). By 2.4, \(I' \) is an annihilator left ideal.

LEMMA 2.6. Let I be a right ideal of the local hypercyclic ring \(R, R \supseteq I \supseteq S(R) \). Then \(R/I \) is not injective.

Proof. Since \(I \neq R, I \subseteq J \). Let \(x \in I, x \in S(R) \). Since the left ideals of \(R \) are linearly ordered and \(S(R) \) is a two sided ideal, there exists \(y \in R \) such that \(0 \neq yx \in S(R) \). Then \(xJ = (Ry)^r \) by 2.4. Since \(x \in S(R), y \) is not a unit, so \(y \in J \). We now proceed as in Caldwell [2]; the map \(f: yR \rightarrow R/I \) given by \(f(yr) = r + I \) is well defined since \(y^i = xJ \subseteq I \). \(R/I \) injective implies there exists \(m \in R \) such that \(my + I = 1 + I \). Hence \(1 - my \in I \), and since \(y \in J, (1 - my)(1 - my)^{-1} = 1 \in I \), a contradiction.

LEMMA 2.7. Let \(R \) be local hypercyclic. Then every right (left)
ideal is of the form xR or xJ (Rx or Jx).

Proof. Let I be a right ideal. Since the injective hull of R/I is cyclic, by 2.6 R/I embeds either in R or in $R/S(R)$. Assume f embeds R/I in R. Let $0 \neq f(x + I) \in S(R)$. Then $xJ \subseteq I \subseteq xR$, so $I = xJ$. If g embeds R/I in $R/S(R)$, let $g(1) = m + S(R)$. Let $0 \neq my \in S(R)$. Then $g(y) = 0$ so $y \in I$. Let $x \in I$. Then $mx \in S(R)$. If $mx = 0$, $x \in yJ = m^*$. If $mx \neq 0$, $m^* = xJ = yJ$, so by the linear ordering $xR = yR$. Hence $x \in y^R$, and $I = yR$.

Since every left ideal I is an annihilator by 2.5, it is of the form (xR) or (xJ) for some x. If $x \neq 0$, select y such that $0 \neq py \in S(I)$. Then $y^R = y^2R$, where $yz'R = yzR$.

PROPOSITION 2.8. Let R be local hypercyclic, $y \in J$. Either y is nilpotent or $0 \neq \bigcap_{n=0}^\infty y^nR = z'R$, where $yz'R = z'R$.

Proof. (See Caldwell [2] Theorem 2.20) Since $R' \supseteq S(R)$, $y^nR \supseteq S(R)$ or $y^n = 0$. Thus $I = \bigcap_{n=0}^\infty y^nR = 0 \iff y^n = 0$ for some n.

Let $y^n \in y^{n+1}R$. Then for some $r \in R$, $y^n = y^{n+1}r$, so $y^n(1 - yr) = 0$, and since $yr \in J$, $1 - yr$ is invertible. Hence $y^n = 0$. Thus y not nilpotent implies $yR \supset y^2R \supset \cdots$ is a strictly descending chain of right ideals. Let $(y^iR)^i = Jz_i$. Then $I = (\bigcup_{i=0}^\infty Jz_i)^i$, where $\bigcup_{i=0}^\infty Jz_i = K$ is the union of a strictly ascending chain of left ideals if y is not nilpotent. Then K cannot be finitely generated so $K = Jz$ for some $z \in R$ by 2.7, and $I = K^r = z'R$ for some z'. Since $y(y^nR) \subseteq y^nR$ for all n, $yI \subseteq I$. Now $z' \in I$, so $z' = yr$ for some $r \in R$. Assume $r \in I$. Then there is an n such that $r \in y^nR$, so $rR \supset y^nR$. Let $rs = y^s$. Then $z's = yrs = y^{s+1} \in I$. If y is not nilpotent, this cannot occur, so $r \in I$ and $z' \in yI$. Hence $yI = I$.

COROLLARY 2.9. Let $yR = Ry$ for $y \in J$. Then y is nilpotent.

Proof. Assume not. Then $0 \neq I = \bigcap_{n=0}^\infty y^nR = \bigcap_{n=0}^\infty Ry^n$. As in the proof of 2.8, $(\bigcap_{n=0}^\infty Ry^n)y = \bigcap_{n=0}^\infty Ry^n$. By 2.8, for some z', $I = z'R$. Then $I = z'Ry$, so there exists $r \in R$ with $z'ry = z'$, $z'(ry - 1) = 0$. Since $y \in J$, $ry - 1$ is invertible, so $z' = 0$, a contradiction.

THEOREM 2.10. Let R be local hypercyclic. Then J is nil $\iff yR = Ry$ for all $y \in R$.

Proof. \Leftarrow. This is just 2.9. \Rightarrow. Assume J is nil, and let $0 \neq y, r \in R, yr \in Ry$. Then $Ryr \supseteq Ry$, so $y = xyr$ for some $x \in J$. Then $y = xyr = x^2yrs = \cdots = x^nyr^n = 0$, a contradiction. Hence $yR \supseteq Ry$.

By symmetry, $Ry \subseteq yR$.

Thus if J is nil, every one sided ideal of R is two sided, and all
of Caldwell’s arguments in [2] may be carried over to this case almost verbatim. The reader is referred to Caldwell for further discussion of this case.

Whether a local hypercyclic ring can have nonnil radical is unknown. We show that it implies the existence of a very elusive type of ring, namely a simple radical ring (without 1 of course), which has linear ordering on both right and left ideals.

Lemma 2.11. Let R be a hypercyclic local ring, J not nil. Then $J^2 = J$ and for all $y \in J$, $JyJ \neq J \Rightarrow \exists z \in J, zR = Rz$ and $y \in zR$.

Proof. If $J^2 \neq J$, by the linear ordering on one sided ideals, for any $x \in J - J^2, J = xR = Rx$. Hence x is nilpotent by 2.9, so $J^* = (xR)^* = x^nR = 0$ for some n, a contradiction. Hence $J = J^2$. Let $y \in J$. Then $(JyJ)J = JyJ = J(JyJ)$, so JyJ is not a finitely generated right or left ideal. Hence $JyJ = zJ = Jz'$ for some $z, z' \in R$ by 2.7. Let ν denote the natural map from R onto R/JyJ. Then $\nu(z)R = S(\nu(R)_R), R\nu(z') = S(\nu(R))$ since the right and left ideals of $\nu(R)$ are linearly ordered and $\nu(z)R$ and $R\nu(z')$ are simple. Moreover, $\nu(z')R \supseteq \nu(z)R$. Since $S(\nu(R))$ is a two sided ideal of $\nu(R), S(\nu(R)) = R\nu(z') \subseteq \nu(z)R = S(\nu(R)_R)$. By symmetry, $S(\nu(R)_R) \subseteq S(\nu(R))$, so $R\nu(z') = \nu(z)R = \nu(z')R = R\nu(z)$ since it is a simple R-module on both right and left. Taking ν^{-1} of both sides we get $z'R = Rz' = zR = Rz$. If $JyJ \neq J, S(\nu(R)_R) \neq R/J$, so $z \in J$.

Moreover $zR \supseteq JyJ = zR \supseteq JyJ$ for all $j \in J = zR \supseteq JyR$ for all $j \in J$ by the linear ordering $= zR \supseteq JyR$. Similarly $zR = Rz \supseteq RyR$.

Theorem 2.12. Let R be a local hypercyclic ring, J not nil. Then there exists a nilpotent ideal $zR \subseteq J$ such that zR is a maximal proper two sided ideal of J (so J/zR is a simple radical ring.)

Proof. Let I be the union of all the nil two-sided ideals of R. Then I is a nil two-sided ideal since ideals are linearly ordered. Moreover, $I \neq 0$ since S is a nilpotent two-sided ideal, and $I \neq J$ since J is not nil.

Let $K = JI$. Then $JK = KJ = K$, so as in 2.11, $K = zJ = Jz$ where $zR = Rz = \nu^{-1}(S(R/K))$ and $x \in Rz$ for all $x \in I$. Since $[\nu^{-1}(S(R/K))]^* \subseteq K$ and $K \subseteq I, zR$ is nil. Hence $zR = Rz = I$. If $z^* = 0$, then $I^* = (zR)^* = z^nR = 0$, so I is nilpotent.

Now let $y \in J - I$. If $JyJ \neq J$, by 2.11, y belongs to some nilpotent ideal of R and hence to I. Thus $JyJ = J$, and J/zR is a
simple ring. By [8], p. 10, J is a radical ring, and hence so is J/zR.

REFERENCES

Received January 18, 1967. The author gratefully acknowledges partial support from the National Science Foundation under grant GP-4226.

RUTGERS, THE STATE UNIVERSITY
Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California 90024.

Each author of each article receives 50 reprints free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners of publishers and have no responsibility for its content or policies.
Martin Aigner, *On the tetrahedral graph* ... 219
Gregory Frank Bacheli, *Homomorphisms of annihilator Banach algebras* ... 229
Phillip Alan Griffith, *Transitive and fully transitive primary abelian groups* ... 249
Benjamin Rigler Halpern, *Fixed points for iterates* .. 255
James Edgar Keesling, *Mappings and dimension in general metric spaces* ... 277
Al (Allen Frederick) Kelley, Jr., *Invariance for linear systems of ordinary differential equations* ... 289
Hayri Korezlioglu, *Reproducing kernels in separable Hilbert spaces* 305
Gerson Louis Levin and Wolmer Vasconcelos, *Homological dimensions and Macaulay rings* ... 315
Leo Sario and Mitsuru Nakai, *Point norms in the construction of harmonic forms* ... 325
Barbara Osofsky, *Noncommutative rings whose cyclic modules have cyclic injective hulls* ... 331
Newton Tenney Peck, *Extreme points and dimension theory* 341
Jack Segal, *Quasi dimension type. II. Types in 1-dimensional spaces* 353
Michael Schilder, *Expected values of functionals with respect to the Ito distribution* ... 371
Grigorios Tsagas, *A Riemannian space with strictly positive sectional curvature* ... 381
John Alexander Williamson, *Random walks and Riesz kernels* 393