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The purpose of this paper is to characterize the topological
dimension of a compact metric space X in terms of the
extremal structure of the unit ball of the spaces C(X, Rn),
where Rn denotes Euclidean n-space with the usual Euclidean
norm and C(X, Rn) denotes the space of continuous maps of
X into Rn, normed by the sup norm. The main results are
that if n ^ 2, the unit ball of C(X, Rn) is always the closed
convex hull of its extreme points, and that if the unit ball
of C(X, Rn) is actually equal to the convex hull of its extreme
points, then the dimension of X is less than n. If n is even,
the converse of the second assertion above is shown to be
true, and with additional assumptions on X, the converse of
the second assertion holds whether n is even or odd.

In the last half of the paper, the corresponding questions
for the spaces C(X, N) are studied, where N is an infinite-
dimensional strictly convex normed space and C(X, N) is the
space of continuous maps of X into N, again with the sup
norm. Here it is established that the unit ball of C(X, N)
is always the convex hull of its extreme points.

We will be studying spaces C(X, N), where N is either finite-
dimensional Euclidean space or an infinite-dimensional strictly convex
normed space. If | | is the norm on N, C(X, N) is normed by
11/II = sup, e z \f(x) |. Let UN denote the (closed) unit ball of C(X, N)
and let EN denote the set of extreme points of UN; then it is clear
that EN is the set of all continuous maps of X into the surface of
the unit ball of N. In case N is ^-dimensional Euclidean space, we
let UN be represented by Un; similarly EN will be represented by En.
When no confusion can arise we will sometimes drop the subscript
N on UN and EN.

It is to be emphasized that all the hypotheses on X are not
always needed; we elaborate this in the remarks at the end of the
paper.

A theorem in Bade [1] states that Ϊ7Ί is the closed convex hull of
Eι if and only if X is totally disconnected. Phelps [6] proved that
U2 is always the closed convex hull of E2; a simpler proof was given
by Sine [7]. Related results were obtained by Goodner [2] for the
case n = 1; here, compactness of X was not assumed.

l Mappings into Euclidean spaces* We begin with

THEOREM 1. If n ^> 2, Un is equal to the closed convex hull of
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En.

Proof. Our basic tool is the construction used by Sine in [7],
with a suitable modification. By Sn-i we will mean the surface of
the unit sphere in Rn. If a and β are (small) positive numbers and
x0 is a point of S»_i, let B(x0, a) = {ze S ^ : \z — xo\ < cή and let
TΓ(α;o, α, β) equal the convex hull of (B(x0, a) U { — βxo}) Any set of
the form W(x0, #, β) will be called a wedge; ~βx0 will be called the
vertex of the wedge.

Now let / be in Un and let ε > 0. Let k be a positive integer
such that (1/k) < ε; it is not hard to see that wedges Wu •••, Wk

can be chosen so that the wedges W{ are pairwise disjoint outside
the set {zeRn: \z\ ^ ε}. (Choose at relatively small in comparison
with βi if Wi = TFία?*, «<, β{)). Let 9^ be the following retraction of
the unit ball in Rn onto the unit ball with the (relative) interior of
the wedge Wi removed: If z is in Wif <Pi(z) is obtained by projecting
z parallel to a?f until it hits the boundary of Wt. If z is not in
Wi9 φi{z) = z. The number βt can be chosen < ε; then | φ^z) | <£ e if
\z\Se.

We now estimate | z — (1/k) Σ*=i φ^z) \ for z in the unit ball of
Rn. If I z I <; ε, then | ̂ (2) | ^ ε for each i, so

if ε < I z j ^ 1, <Pi(z) — z for all but at most one i, so

Hence | | / - (l/*)Σ?»i^°/ll ^ 2ε.
If A is a subset of Sn-U n^>2, by a vector field on A we will

mean a continuous function <P: A —> S ^ such that 0(2) is perpendicular
to z for all 2 in A. If w is even, define p on S w by

Then p is a vector field on Sw_lβ

If ^ is odd, n >̂ 3, and the complement of A in Sn_ί contains at
least one point, A admits a vector field. We see this as follows:
clearly we may assume that the omitted point p0 is the "north pole"
(0, 0, , 1). If z e Sn^u z Φ po, we define P(z) to be the stereographic
projection of z on the hyperplane H — {tn = 0}, where tn is the nnh

coordinate function: P(z) is the intersection of the line through p0

and z with H. P is one-to-one and bicontinuous from Sn^ ~ {p0} onto
H. Let T be a translation of H onto itself: T{y) = y + y0, where y0
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is a nonzero element of H. Now let Q(z) = ( P " 1 o TO P){z) for z e Sn__x ~

For each z in Sn^ ~ {p0}, Q(̂ ) can be written uniquely as Xz + V(z),
where λ is a real number and V(z) is an element of Rn which is
perpendicular to z. If V(z) = 0, then since | Q(z) \ = \ z | = 1, we have
λ = ± 1 . We cannot have that λ = 1, since Q(z) Φ z (Γis fixed-point
free); and if the vector y0 in the definition of T is small enough,
T{y) — y is uniformly small, so X cannot equal —1, Hence V(z) Φ 0,
so if we define Φ by Φ(z) = (F(s)/| F(s) |), 0 is the desired vector field.
It is not hard to check that P has the properties claimed for it and
that V is continuous, whence Φ is continuous.

For each i, let Wt be the wedge associated with φ{; W{ is the
convex hull of v{ and B(xu a{), where v{ is the vertex of Wi9 The
preceding remarks imply that there is a vector field Φ{ on S«_i ~
BiXi,^). Observe that for each i,<Pi°f omits the origin and that
Φi(f(χ))l\φi(f(%))\ is never in B(x{1 a{); hence we can define gt and h{

on X by

<pi(f(x))

Then gi and Λi are in En and ψi°f — {g{ + hi/2); hence / is approxi-
mated within 2ε by a convex combination of elements of En. This
completes the proof.

Let dim X denote the dimension of X as defined in Hurewicz and
Wallman [3]. We continue with

THEOREM 2. For n^> 1, suppose that Un is equal to the convex
hull of En. Then dim X < n.

Proof. By Theorem VI. 4. of Hurewicz and Wallman, it suffices
to prove the following: Let A be a closed subset of X. Then if /
is a continuous map of A into Sn__i, there is an extension of / to a
continuous map of X into Sn_i

Hence, let A and / be as above. Using Tietze's theorem, we can
extend / to a continuous / from X into the unit ball of Rn. If / is
in the convex hull of En, there is a probability measure μ defined on
the Borel subsets of Un with μ(En) = 1 (μ has finite support, but we

do not need this fact) such that Ψ(f) = ί Ψ(g)dμ{g) for each con-

tinuous linear functional Ψ on C{X, Rn). Let {xd} be a sequence dense
in A and let ps — f(x§). Define continuous linear functional Ψj by
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Φj(9) = <ΦJ), Pj> for g in C{X, Rn) .

(Here, <, > denotes the usual inner product.) Then for each j we
have

1 == Ψj(f) = (

If g is in En and #(#,/) =£ p3 , then 5^(0) < 1; since μ is a probability
measure it must be the case that

μ{geEn:g(xj) Φ pd} = 0 .

Hence, μ(\Jf=ι {g e En: g(xά) Φ p,-}) = 0; it follows that there is a g*
in En such that g*(Xj) = Pj — f(Xj) for all j . Since {Xj} is dense in
A, g*(x) — f(x) for all x in A. This #* is the desired extension of /
and the proof is complete.

We now show that in case n is even the converse of Theorem 2
holds, and that if n = 1, something slightly weaker than the converse
of Theorem 2 holds; we also give some related results. Before pro-
ceeding, we again note that if n is even, the function p on Sn^
defined by

is a continuous map of S ^ into Sn_i such that p(z) is perpendicular
to z for all z in Sn_lβ

THEOREM 3. If n is even and dim X < n, Un is equal to the
convex hull of En.

Proof. The containment one way is trivial. To show that Un

is contained in the convex hull of En, it suffices to show that Un is
in the convex hull of those elements of Un which omit the origin;
for if g is an element of Un which omits the origin we can define
Λ and f2 in En by

I g(χ)

- g(χ) - (i - (

Plainly g = f, + /2/2.
Hence suppose dim X < n and that / is in Un. By Theorem VI.

1. of Hurewicz and Wallman, the origin is an unstable value of /;
by Proposition B of the same section in Hurewicz and Wallman, there
is a function hλ in Un which omits the origin, such that
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( 1 ) If \f(x) I ^ (1/3), then h,(x) = f(x),
( 2 ) If \f(x) | < (1/3), then | h,(x) \ < (1/3).

Put h2 = 2/ — /^ then fc2 is in Un.
Suppose I hx{x) | > 3ε > 0 for all x in X. Using the same results

in Hurewicz and Wallman, we can choose g2 in Un such that g2 omits
the origin and such that

( 3 ) If I h2(x) I ^ ε, then g2(x) = h2(x)y

( 4 ) If I h2(x) I < ε, then | g2(x) \ < ε.
Put gt = 2/ — g2. Now it is easy to check that || g1 || ^ 1 and || g2 || ^ 1;
moreover gι omits the origin because || g1 — hι \\ = \\ g2 — h2 || ^ 2ε.
This completes the proof of Theorem 3.

For the case n = 1, dim X — 0, we have a slightly weaker version
of Theorem 3:

THEOREM 4. // d i m X = 0, then for every f in Uι there is a
sequence {h^ of elements of E1 such that f = ΣS=i (V^i+1)(hi-i + h2i),
the convergence being norm convergence.

We first prove an auxiliary result:

LEMMA 1. Assume that dim X = 0 and ί/^aί / is in UΊ. Then
there are two elements h u h 2 of Eγ such that \\f— ( l / 4 ) ( ^ i + h2) \\ ̂  1/2.

Proof. If hi assumes only the two values ± 1, hi — χA. — χ^A.,
where At is an open-and-closed subset of X and χτ denotes the
characteristic function of the set T. If | | / - (l/4)(^ + h2) \\ ^ 1/2
we must have that \f - (1/2) | ^ 1/2 on Aι n A2, \f\ £ 1/2 on

(A, - A2) U (Λ - A) ,

and | / + (1/2) | ^ 1/2 on (~A) Π (—A2). Using the zero-dimensionality
of X, we can find an open-and-closed set Ax containing /~1[l/2,1] and
contained in /"^O, 1]; we can then find an open-and-closed subset A2

containing f~ι[0, 1] and contained in f~ι{ — (1/2), 1], With this choice
of A1 and A2, \\f — (l/4)(λj. + h2) \\ ^ 1/2, and this completes the proof
of the lemma.

Turning now to the proof of the theorem, we suppose that / is
in Uι. By the lemma, there are elements hu h2 of Eι such that

λfa + h2) 2

Assume that elements hί9 h2, ", h2j_l9 h2J of Ex have been found so
that
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Σ

Let

Then 112 -̂11 <g 1; appealing to the lemma again, we find elements
h2j+1, h2j+2 of E1 such t h a t

- ±(hiS+ι + h2j+2)

whence

i+i 1

^ ί=ΐ 2*+

This completes the induction step and the proof of the theorem.
We now turn to the case that n is an odd integer, n ^ 3; we

would like to prove something like Theorem 3 for such n. The two
key elements in the proof of Theorem 3 were the approximation of
an / in Un by a no where-vanishing g, and the fact that a nowhere-
vanishing g can be written as the midpoint of two elements of En.
The approximation is always possible, whether n is odd or even,
provided dim X < n; but the representation of a nonvanishing g in
Un as the midpoint of two elements of En is not always possible,
even with dim X < n. For example, if n is odd, let X = (l/2)Sr

%_1,
the set of points in Rn at distance 1/2 from the origin. Let / be the
identity map of X into the unit ball of Rn. Then if / = gt + gz/2,
with gίy g2 in En9 it is easy to see that if

h(z) =

z
~2

for z in S%_1? A is a vector field on Sn^u which is an impossibility.
We do have the following partial result:

PROPOSITION 1. Suppose that X is a compact metric space such
that any two continuous maps of X into Sn_ι are homotopic in
Sn-ίin ^ 2). Then if g is an element of Un which omits the origin,
g = hj. + h2/2, with h19 h2 in En.

Before we prove the proposition, we make the following observa-
tion (which must be in the literature):
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LEMMA 2. Let X be a compact space and let f g be two continuous
maps of X into Sn-ι9 w ^ 2, such that \\f — g\\ < λ/Ύ. Then if
there is a continuous gf from X into Sn_ί such that g'(x) is perpen-
dicular to g(x) for all x in X, there is a continuous f from X into
Sw_i such that f\x) is perpendicular to f(x) for all x in X.

Proof of the lemma. For each x in X we can write g'(x) uniquely
in the form g"{x) + X(x)f(x), where g"(x) is perpendicular to f(x) and
X(x) is a scalar between —1 and 1. It is easy to see that g" is continuous
as a function of x. If g"{y) = 0 for some y, then g'(y) = ±f(y);
since g(y) is perpendicular to g'(y) we have | f(y) — g(y) | = Ί / 2, a
contradiction. The proof of the lemma is complete if we define
f'(x) = (g"(x)/\ g"(x) |) for x in X.

Proof of the proposition. Define h on X by h(x) — (g(x)/\ g(x) |);
then h is a continuous map of X into Sw_i. By assumption, there
are a constant map k of X into Sw_i and a continuous map q of
X x [0, 1] into Sw_! such that q(x, 0) = k(x), q(x, 1) = h(x) for all x in
X. Clearly there is a continuous map kr of X into Sn^ such that
k\x) is perpendicular to k(x) for all x in X. (Simply let kf be another
constant map, appropriately chosen.)

Let T be the set of all t in [0, 1] such that there is a continuous
map g't from X into S%_1 with g\(x) perpendicular to q(x, t) for all x
in X. The set T is nonempty, and by the lemma above, T is open
and closed in [0,1]. We conclude that there is a continuous hr of X
into Sn_x such that h'{x) is perpendicular to h(x) for all x in X.

Now define hx and &2 on X by

+ (1 - I g(x) \Ύl2h'{x) ,

- ( i - \g(χ)\Ύ'2h'(χ).

It follows that ^i and h2 are in j ^ n and that g = ht + fea/2.
Combining Proposition 1 and the techniques used in the proof of

Theorem 3, we obtain the following.

COROLLARY. // n is an integer Ξ>3 and if X is a compact
metric space of dimension <n such that any two continuous maps
of X into £w_! are homotopίc in Sw_i, then Un is the convex hull of
E

In particular, if dim X < n and X is contractible, then Un is the
convex hull of En. Hence if n ^ 3 and άimX < n — 1, Un is the
convex hull of En. (Use the cone over X; this has dimension
and is contractible.)
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2* Mappings into infinite-dimensional spaces* We now wish
to prove Theorem 3 in the case that the range space N is infinite-
dimensional. We assume from here on that X is a compact Hausdorff
space (metrizability is no longer assumed) and that N is an infinite-
dimensional strictly convex normed space.

THEOREM 5. Let X and N be as above. Then UN is the convex
hull of EN.

We shall prove this in the same way that we proved Theorem 3:
every element of UN can be approximated by an element of UN which
omits the zero vector in N: every element of UN which omits the
origin is the midpoint of two elements of EN. The first assertion is
proved in Proposition 2 below; the second assertion is proved in
Proposition 3.

PROPOSITION 2. Let X and N be as above. Then if / is in UN

and ε is a positive number, there is g in UN such that g omits the
o r i g i n a n d \\f - g\\ < ε .

Proof. The set K — f(X) is compact, so by a result of Nagumo
[4, Th. 2] there are points xu •• ,ίc r in the uni t ball of N and a
continuous map q of K into the convex hull of {xly , xr} such t h a t
I q(z) - zI < ε/3 for z in K. If s is the number 1 - (ε/3), | s-q(z) - z\<
2ε/3 for z in K. Now let v be any element of the unit ball of N
which is not in the linear span of {xlf •••, xr}. Finally if we define
g on X by g(x) = (ε/S)v + s-q(f(x)), g is a continuous map of X into
the unit ball of N, g omits the origin, and \\f — g\\ < ε.

COROLLARY. Let X and N satisfy the hypotheses of Proposition
2. Let f be an element of UN. Then for every ε > 0 there is a g
in UN such that g omits the origin, \ g{x) \ < ε if \ f(x) \ < ε, g(x) =
fix) if\f(x)\^ε.

Proof. The proof of Proposition B § 1 in chapter VI of Hurewicz
and Wallman can be used without change, in conjunction with Proposi-
tion 2.

Now let N be an infinite-dimensional strictly convex normed space.
Let B denote the closed unit ball of N and let S denote the boundary
of B. Let X be a compact Hausdorff space and let g be a continuous
map of X into B ~ {0}. We shall show that g is the midpoint of
two continuous maps of X into S. To prove this, it is certainly
enough to prove the following.



EXTREME POINTS AND DIMENSION THEORY 349

PROPOSITION 3. Let N be an infinite-dimensional strictly convex
normed space and let K be a compact subset of the unit ball of N
such that K does not contain the origin. Then there are two con-
tinuous maps φx and φ2, defined and continuous on K and assuming
values in S, such that for each x in K, x = φ^x) + φ2(x)/2.

Proof. Let K satisfy the hypotheses of the proposition. Then
if 7] is defined on K by η(x) — (x/\ x |), η is a continuous map of K into
S. Since N is infinite-dimensional, S cannot be compact; hence there
is a point z in S ~ (i)(K) U ~~ V(%)) We n o w define 7 on K x [0, 2]
in the following way:

Ύix9 t) = α - *W*> + to for 0 < ί < 1
| ( 1 « ) ? ( * ) + «* I ~ ~

for 1 ^ 2 .

(Note that the norms in the denominators are never zero because of
the way z was chosen.) It is clear that 7 is continuous on Kx[0, 2]
and that 7 is a map of K x [0, 2] into S.

Fix x in K; then it is easily verified that | 2x — y(x, 0) | <£ 1 and
I 2a; — 7(α, 2) I > 1. It follows that there is at least one t in [0, 2]
such that I 2x — y(x, t) \ — 1.

We assert that there is at most one such t. Since this is an
assertion about a two-dimensional subspace of N, our claim is equivalent
to the following lemma, in which (1, 0) plays the role of the point
7)(x) and (0,1)/| (0,1) | plays the role of the point z:

LEMMA 3. Let \ \ be any strictly convex norm on the XY-plane.
Suppose that | (1, 0) j = 1 and that 0 < r <£ 1. Then there is at most
one point (xu yx) with yx ^ 0 such that

I (a?i, a/i) I = I 2(r, 0) - (xu 1/01 = 1 .

Proof. For a contradiction, we may assume there are two such
points q1 = (xx, i/O and g2 = (α?2, j/2), with ^ > y2 > 0, (It is immediate
from strict convexity that y1 Φ y2.) Let (tt, 0) denote the point of
intersection of the #-axis and the line through qx and q2. Explicitly,

and

<Z2 = λft + (1 - λ)(w, 0) , where λ = y2/yλ e (0,1) .

We also have

q2 - 2(r, 0) - λ[9 l - 2(r, 0)] + (1 - \)(u - 2r, 0) .
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We can obviously assume that neither the above-mentioned line nor
its translate by — 2(r, 0) passes through the origin, so the strict
convexity of the norm yields | (u, 0) | > 1 and | (u — 2r, 0) | > 1. These
last two points are at most two units apart (since 0 < r < 1), so we
either have u — 2r < u < — 1 or 1 < u — 2r < u. Neither of these is
possible (a sketch clarifies this); in the first case, for instance, we
would have q2 in the interior of the triangle defined by q2 — 2(r, 0), qι

and the origin, which would imply | q2 | < 1. (In the second case, we
would get I q2 - 2(r, 0) | < 1.)

Continuing with the proof of the theorem, we let t(x) be the
unique point in [0, 2] such that | 2x — y(x, t(x)) \ — 1. We now claim
that t is continuous on K. If not, there are a point x0 in K and a
sequence {Xj} converging to x0 such that | t(xά) — t(x0) | > ε > 0 for
all j . Taking a subsequence, if necessary, we may assume that {£(%)}
converges to tQ Φ t(x0). Using, the continuity of 7 we find that

I 2x0 - 7(x0, t0) I = lim I 2x5 - j(xj9 t(Xj)) \ = 1
3

this contradicts the uniqueness of t(x0) and the continuity of t is
established. It is now clear how φι and φ2 are to be defined on K:

ψl(χ) = j(χ9 t(x)) ,

φ2(χ) = 2x - 7(0?, t(x)) .

This completes the proof of the proposition.
Observe that a much simpler proof is available if N is complex

linear. Indeed, if N is complex linear and if x is in the unit ball B
of N, x Φ 0, define φλ and φ2 by

The modulus of each of the coefficients of x in the above expressions
is I x I"1, so it follows that for x in B — {0}, | φt(x) \ — \ φ2(x) | — 1.
Plainly, x = φx(x) + φ2(x)/2, and it is equally clear that φ1 and φ2 are
continuous on B ~ {0}.

Combining the above proposition, the Corollary to Proposition 2,
and the techniques of Theorem 3, we obtain Theorem 5.

We conclude with a question: what are necessary and sufficient
conditions on the compact metric space X so that Un is equal to the
convex hull of En, if n is an odd integer ^>3?

Author's note. Since this paper was written, the results have
been improved on in several ways. Professor Joram Lindenstrauss
has communicated a proof that the conclusion of Theorem 1 holds for
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the case of C(X, N), where N is any finite-dimensional real vector
space, normed in such a way that the extreme points of the unit ball
of N form an arcwise connected set. In the proof of Theorem 3
compactness of X appears essential (| h^x) | > 3β > 0 for all x in X),
but Professor James L. Cornette has shown that compactness is un-
necessary by modifying ht slightly. A similar device is used by
Professor John Cantwell in a paper to appear in the AMS Proceedings;
in this paper Cantwell establishes the converse of our Theorem 2 for
odd n,n ^ 3, without any additional hypotheses on X. (He shows
that for odd n9n Ξ> 3, each element of Un is in the convex hull of
eight elements of E% if dim X < n.) For n = 1 our Theorem 4 appears
best possible, since convex combinations of elements of Et assume
only finitely many values and there are certainly zero-dimensional
compact metric spaces admitting a continuous real-valued function
which assumes infinitely many values.

Note that the proof of Theorem 1 shows that the theorem is
really a statement about the normed space of all bounded continuous
functions from a Hausdorff space X into Rn, n >̂ 2. Finally, we
remark that the proof of Theorem 2 would have been simpler if /
had been written explicitly as a convex combination of elements of
En; the point here is that the weak form of "representability" of /
used in the proof is enough to give the conclusion.

I would like to thank Professors R. H. Szczarba and J. D. Stafney
for several helpful conversations, and Professor R. R. Phelps for
several communications on the subject. I would also like to thank
Professor R. C. Sine for showing me his unpublished manuscript [7];
and I am indebted to the referee for several helpful suggestions.
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