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In this paper we consider the partial ordering induced
on l-dimensional contirua by quasi dimension type. For ex-
ample, we show that the pseudo-arc precedes every snake-like
continuum in this partial ordering. We also obtain sufficient
conditions in terms of quasi dimension type for the embedding
of Peano continua in the plane. Finally, necessary and suffi-
cient conditions in terms of quasi dimension type are given
for a continuum to be tree-like and to be 1-dimensional.

All spaces considered in this paper are metric. The distance
between two points x,y will be denoted by p(z,y) and the diameter
of a set A will be denoted by d(4). By “covering” we mean “open
covering”, We use dX and ¢X for the Fréchet and quasi dimension
types of X respectively, Recall that dX < dY provided there is a
homeomorphism of X into Y; ¢X < ¢Y provided that for each covering
a of X there is a closed a-mapping of X into Y. (A continuous
function f: X — Y is an a-map if there is a covering 8 of Y such
that f—'[B] refines a and f is closed if it takes closed subsets of X
into closed subsets of Y.) A compact connected space of more than
one point will be called a continuum. A chain is a finite collection
of open sets U, U,, -+, U, such that U, intersects U, if ¢ =j — 1,7,
J + 1, and otherwise o(U;, U;) > 0. If the links of a chain are of
diameter less than ¢, the chain is called an e-chain. A continuum X
is called snake-like if for each ¢ > 0 it can be covered by an e-chain
(whose links are subsets of X). Finally, S.. = {y|p(=,y) < &, R*
denotes Euclidean n-space and J denotes the positive integers.

1. Quasi dimension types of snake-like continua. Bing [1]
proved that any two snake-like hereditarily indecomposable continua
are homeomorphic. Such continua are called pseudo-arcs and through-
out this paper we use + to denote a pseudo-arc.

LemmaA 1.1, [22, Th, 6]. If, for each ¢ > 0, a continuum can
be e-mapped onto a hereditarily indecomposable continuum, then X is
hereditarily indecomposable.

LemmA 1.2, If, for each € > 0, a continuum X can be e-mapped
onto a snake-like continuwum, then X is snake-like.

353



354 JACK SEGAL

THEOREM 1.1. If X 4s mot totally disconmected and ¢X < qv,
then ¢X = qir.

Thus we have that no nontotally disconnected space precedes A»
and hence in this sense + is minimal for those nontotally disconnected
spaces with which it is comparable, We will now consider how large
this class of spaces is. Certainly, for any snake-like continuum X
which contains an arc or a pseudo-arc, we have ¢ < ¢X. However,
this does not exhaust the class of snake-like continua. Bing [3],
Lelek [17], and others have shown that +4 can be mapped onto any
snake-like continuum. We sharpen this result by proving that, for
any € > 0, ¢ can be e-mapped onto any snake-like continuum. Fur-
thermore, since for any & > 0, an arc can be e-mapped onto any Peano
space X which contains an open n-cell, » = 2, as an open set (see
[16]) we may conclude that + can be e-mapped onto X (so that
g¥ = ¢qX). But since we need only e-mappings of « into a space, we
have g < qX if X contains a snake-like continuum. So + occupies
a position with respect to spaces which have snake-like subcontinua
similar to that of the Cantor set with respect to all infinite subsets
of the line.

THEOREM 1.2. If X is a snake-like continuum and € > 0, then
there 1s an e-mapping of + onto X (and so gir < gX).

Proof. To obtain the desired result we modify Bing’s proof [3,
p. 446] that 4 can be mapped onto X. For any ¢ > 0,let D, D,, ---
be a sequence such that D, is a (¢/27)-chain covering X and D, is a
refinement of D;. It follows from Theorem 7 of {4] that there is a
sequence of coverings K, E,, --- of 4 such that: (1) E; is a (¢/2i)-
chain covering +, (2) E; has the same number of links as D; and (3)
for the jth link of D, ., there is an integer n(7, j) such that the jth
link of D,,, lies in the n(7, j)th link of D, and the jth link of E,,,
lies in the n(7, j)th link of E,.

For each point p of 4 let e(p, i) be the union of the links of E;
containing p and d(p, 7) be the union of the corresponding links of
D;. Note that e(p,? + 1) Ce(p, ?) and d(p, ¢ + 1) Cd(p, ). For each
point p of + let f.(p) be the intersection of the closures of the d(p, 7)’s.
Then f, is a mapping of + onto X and we need show that it is an
e-mapping.

Suppose f.(p) = f.(q9). Then d(p, 2) N d(q, 2) = @ and this implies
that two adjacent links of D,, say d% and d} (where k=7 — 1,7 or
j + 1), are such that

(4) fup)edind; (which implies f.(p) € du,; N di,p) and

(5) dicd(p,2) and di < d(q, 2).
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Therefore, from (4) we get
(6) enupNenuw>De;Ne + D
and from (5) we get
(7) pee’ and gee;.
So we have ¢(p,1) Ne(q,1) # @ and it follows that

o(p, q) = d(e(p, 1)) + d(e(g, 1)) < ¢/2 +¢/2=¢.
This yields the desired result that f. is an e-mapping.

THEOREM 1.2'. If X 1s a space which contains a snake-like
continuum, then gy < qX.

We now show that there is a planar continuum M (originally
described by Whyburn [{24] as an example of a continuum each sub-
continuum of which separates the plane) such that gy < ¢M is false,
By Theorem 1.1 this means that + and M are not comparable. What
we actually prove is that no subcontinuum of M is the continuous
image of .

The continuum M has a rather complicated description but we
can obtain our desired result by using only some of its properties.
First note that M arises in a condensation process from a ray spiralling
on a circle. Letting A denote the latter continuum it is not difficult
to see that A is the continuous image of M. Therefore  cannot be
mapped onto M; otherwise, we could map + onto A and this is
impossible (see [17, Example 2]). Furthermore, Whyburn shows that
(1) every subcontinuum of M contains a continuum which is homeo-
morphic to M and (2) if any subcontinuum N of M contains a point
of a subcontinuum W of M which is homeomorphic to M, then N
contains W or W contains N. We use C(X) to denote the space of
all nonvacuous subcontinua of a continuum X metrized by the Hausdorff
metric (see [14]). If Y is a closed subset of X, then C(X, Y') denotes
the subset of C(X) consisting of continua which contain Y.

THEOREM 1.3. The continuum M has no subcontinuum which 13
the continuous vmage of pseuwdo-arc r.

Proof. Suppose M properly contains a continuum X which is the
continuous image of +. Say f is a mapping of + onto X. Then X
contains a continuum W which is homeomorphic to M. Suppose xc W.
Then there is a y € ¢ such that f(y) =«. Let B={B,|0=<1t¢ <1} be
the unique arc in C(y) from {y} to 4 with B, = {y} and B, = ¢ (see
[14, Th. 8.4]). Let f": C(+)— C(X) be defined by f(Y)=f[Y] for
each Y e C(y). Then f’ is a mapping, Denote f'(B,) by B; and f'[B]
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by B’. Then B’ is a subcontinuum of C(X) which contains X and {x}.

Now since B; N W = @ by property (2) of M we have B; contains
W or W contains B, for 0 <t <1. However, since M is not the
continuous image of + neither is W so that B, properly contains W
or W properly contains B,. Therefore

B, eC(X,W)uC(wW), for0<t<1
and so
B cCX,W)ucCw).

It is possible to define a real-valued continuous function, g, of
C(X) onto the unit interval I (see [23]) with the properties:

(1) If Y,CY, Y, #7Y, then (Y)) < i(Y)).

(2) mMX) =1, and for any ze X, p({z}) = 0.
Therefore since B’ contains {x} and X we have that the continuum
/IB’] contains 0 and 1 and so y[B'] = I. Thus thereis ¢, 0 <t <1,
such that p(B;) = (W). Now in C(X, W)U C(W) the only element
with p-value equal to p(W) is W itself since all other elements either
are properly contained or properly contain W and (1) applies. So finally
we have B, = W which is a contradiction.

COROLLARY 1.3. The quast dimension types of the pseudo-arc -
and Whyburn’s continuum M are not comparable.

Question. Are there snake-like continua whose quasi dimension
types are not comparable?

Question. What is the cardinality of the set of quasi dimension
types of snake-like continua?

LeEmMA 1.3, Suppose X is a compactum, K is a component of
X and V is a set open in K. Then there is a set V' open in X
such that V"N K =V and CL(V')N K = ClL(V).

LEMMA 1.4. Suppose X is a compactum with a snake-ltke con-
tinuum K as a component and C = (¢, +++,¢,) 18 a chain covering
K where each c¢; is an open set in K. Then there is a chain
D=(d,---,d,) covering K where each d; is an open set in X and
dNK=c,i=1,+-+,m.

Proof. By the previous lemma we have that there is a set d;
open in X such that dNK =c¢; and Cl(d))NK =Cl(¢;) fort =1, .-+, n.
Let
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d; = di — U {Cl(d}) |j € p()}

where (i) = {j|j is an integer, 1 <j <mn,|j —<¢|>1}. Then D=
(d, +--,d,) is a chain covering K and d;N K =¢;, i =1, ---, n.

NoraTioN. If C = {C,|ac A} and D = {D; | 8 € B} are two collec-
tions of sets, CND={C,ND;|acA,BeB,C,NDs = @}. If, in
addition, £ is a set ENC={ENC,|acA, EnC,+ @} Finally,
C*=U{C.|ac 4}.

THEOREM 1.4. Suppose X is a compactum each nondegenerate
component of which s a snake-like continuum. Then X ts embeddable
wn R

Proof. First we show that X has arbitrarily small coverings
whose nerves are embeddable in R'. Let U= (%, ---,%,) be an
arbitrary finite irreducible covering of X and let {K,|ac A} be the
collection of components of X. Denote {u,|u,c U, u, N K, * @} by
U,. There exists a a chain C, = (¢%, +--, ¢%.) covering K, each of
whose links is open in K, and such that C, > U, (i.e., C, refines U,).
By the previous lemma there is a chain D, = (d¢, ---, d%,) covering
K, each of whose links is open in X and such that D, N K, = C..

Now letting v% = M) {u, | 4, € U,, ¢ Cu,} we define E, to be
{dinvs|j=1,.--,n(@)}. Then E, is a chain covering K, whose links
are open in X and such that E, > U,. Finally we define

E,={d:nvi— U{K;|Be A, K; £ EF}|dinvieE}.

Then E. is a chain covering K, whose links are open in X and such
that E, > U,. We can partition X as follows. There is a collection
P=(P,---,P,) of disjoint open and closed sets whose union is X.
Then {PN E}|ac A} is a covering of X and since the latter is compact
we need only elements from a finite number of the chains {P N E|a € A}
to cover X, say @ = (@, -+, Q,) where Q; = P; N E, for some j,1 <
J<mn and ac A. Then @ is a covering of X,Q > U and each non-
degenerate component of the nerve of @ is an arc. Hence the nerve
of @ is embeddable in R' and since there is a @-mapping of X into
the nerve of @ we have that X is the inverse limit of an inverse
sequence each coordinate space of which is contained in R' (see [9,
Lemma 1.6]). Thus by Theorem 1 of [13] X is embeddable in R?

THEOREM 1.5. ([8]) If X s a planar compactum each nonde-
generate component of which is a snake-like continuum (pseudo-arc),
then X is embeddable in a snake-like continuum (pseudo-arc).
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THEOREM 1.6. If X s a compactum, then the following are
equivalent:

(a) every nondegenerate component of X is a snake-like continuum.,

(b) dX £dY for some snake-like continuum Y (i.e., X is em-
beddable in Y).

() gX =4ql

Proof. First, (a) implies (b) by Theorems 1.4 and 1.5. Second,
(b) implies (c¢) since ¢X < qY < ¢l. Third, (c¢) implies (a) since, for
any nondegenerate component K of X, ¢K < ¢I so that K is a snake-
like continuum by Lemma 1.2,

THEOREM 1.7. If X is a compactum, then the following are
equivalent:

(a) every nondegenerate component of X is a pseudo-arc.

(b) dX < dy.

() gX = gqvy.

Proof. First, (a) implies (b) by Theorems 1.4 and 1.5. Second,
it is obvious that (b) implies (c). Third, (c¢) implies (a) since, for any
nondegenerate component K of X, qK < gy so that K is a pseudo-are
by Lemma 1.1 and 1.2.

THEOREM 1.8. In the class of metric spaces the Cantor discon-
tinuum C immediately precedes the pseudo-arc - (i.e., qC < qv).

Proof. Suppose not, i.e., ¢C < ¢X < g¥ for some metric space
X. Then X is compact and not totally disconnected (otherwise
gX < ¢qC). Therefore X contains a nondegenerate continuum and so
¢X = qv» by Theorem 1.1. But this is a contradiction.

2. Quasi dimension type of linear graphs.

DEFINITION 2.1. By a linear graph we mean a finite connected
1-dimensional geometric complex. A tree is an acyclic linear graph.
An end point of a linear graph is a vertex which is contained in only
one edge (1-simplex). A branch point is a vertex which is contained
in more than two edges. A tree which is homeomorphic to the cone
over n(=2) points is called an n-od. A dendrite is a locally connected
continuum which contains no simple closed curve. In a tree the
unique arc with end points p,q is denoted by [pq]; [pq] = [pq] — »,
ete.

DEFINITION 2.2. For a positive integer n, we say the curve X
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18 of order =Zn at the point p (in symbols: ord, X < =) if, for every
€ > 0, there exists an open set U of X such that pe U, 6(U) < ¢ and
cardinality of the boundary of U < n. Furthermore, if ord, X <n
and it is false that ord, X <m for any m <=, then we say ord, X = n.
We also define for a linear graph X the following

o(X) =2+ 3 (ord, X — 2)
and
B(X) = 3 ord, X
the summations being extended over all branch points of X.

LemMmA 2.1. If X is a linear graph, then B(X)—o(X) = 2(m — 1)
where m 1is the number of branch points of X.

LemmaA 2.2, ([14, Th., 55])) If X is a linear graph, then
dim C(X) = o(X). Moreover, C(X) is a polyhedron.

THEOREM 2.1. If X and Y are linear graphs and, for every
€ > 0, there is an e-map f.: X — Y, then for ¢ sufficiently small

o(X) = o(fIX] .

Proof. For any ¢ > 0 we have f.[X] is subcontinuum of Y and
hence is also a linear graph. The map f! induced by f. (see Theorem
1.3) is an s-mapping of C(X) into C(f.|X]). Therefore, for ¢ sufficiently
small we have by Alexandroff’s Theorem on the approximation to
compact spaces by polyhedra (see [12, p. 72]) that

o(X) = dim C(X) £ dim C(f[X]) = o(f[X]) .

COROLLARY 2.1. If X and Y are linear graphs and ¢qX < qY,
then cX £ o0Y.

COROLLARY 2.2. If X and Y are linear graphs and qX < q7,
then B(X) = B(Y).
NoTATION. For any metric space X and ¢ > 0 we define
Viz,e) ={ye X|p(@,y) < ¢} .
THEOREM 2.2. If X and Y are linear graphs, then the following

statements are equivalent,
(a) ¢X =qY.
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(b) dX =4dY.
(¢) X and Y are homeomorphic.

Proof. The implications (c) — (b) — (a) are trivial. Now assume
gX = qY. Denote the branch points of X by p, -+, . and the
branch points of ¥ by ¢,, -+, ¢.. We consider X and Y to have the
decompositions determined by taking the branch points and end points
as the vertices. Let v = 1/2min {o(v;, v;) | v;, v; are distinet vertices
of Y}. First we show that m = n. There isa 4,,0 < 4; < v/2, such
that, for any positive number 4 < 4,,

Ordqu(Qi, A) = Ordqu y for 7 = ]_, e, M,

This in turn implies that o(V(g;, 4)) = ord,, Y. Let V; = V(g,, 4;) and
o; = o(V;). By hypothesis for every ¢ > 0 there is an e-map g.: Y — X.
So

2<ord,V; =0, <a(g,[V:])

where 7, = min {e, -+, &,} and ¢; is sufficiently small so that ¢(V;) <
a(g.[V:]) for i =1,---,n. Now since V; is a g;-od we have

V= TQ [q:v7]

where the (q,y7] are disjoint arcs.

We now define Y’ to be the subdivision of Y induced by taking
as the vertices of Y’ those of Y and all the points y,7 =1, -+-, n;
r=1,..-,0,., (Note that Y and Y’ are homeomorphic and have the
same branch points and end points.) Let the end points Y’ be denoted
by e; where the subscript and supersecript correspond to those of the
y: which is adjacent to e, (i.e., [ely;] is an edge of Y’). Then note
that Y’ — Ur,V,; is the union of disjoint arcs of two kinds:

(1) [eiy;) for every end point e; of Y’, and

(2) (yiye) where [yiy:] is an edge of Y’ and ¥ and 2,
are end points of V, and V,, respectively.

Let

77 = min {7]1: 7\’1, ccty 7\%}
where

\; = min [min {o(V, [efyi]) | [eivil NV, = @ for any ¢ = k},
min {o(V;, [yiys]) | [¥iyn] is an edge of Y’ and
lviyal NV, = @ for any t = k or m}].

Now for any 7-map, g,, we have that the sets ¢,[V.], ---, ¢,[V,] are
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disjoint (since o(V;, V;) = v > 7). Since o(g,[V;]) > 2 we have that
951 V] must contain at least one branch point of X for 1 =1, ..., n.
Therefore » < m and by a symmetric argument m < » and so m = n.
Moreover, g, V;] contains exactly one branch point of X, say ;..
Likewise f,[W;] contains exactly one branch point of Y’ say ¢,
(where W, = V(p,, 0;), with J; chosen like 4;, v chosen like 7» and X’
determined like Y’). So ord,, . X = a(g,[ Vi]) = o; and ord, , Y’ =
o(fIW:]) = o[ W;]. Therefore,

o(X) =2+ 3 (ord,,, X'~ 2) 2 2+ 5 (0, — 2)

Pi)

=2+ 3 (ord, Y’ — 2) = o(Y")

and since ord,,j(i) X' z o; for each 7 we have ord,,, X' = ord, Y’ for
t=1,..-,m. Likewise ord,, Y’ = ord, X’ for i =1, ..., m.

We can now write g,[ V] as follows: ¢,[ V] = U, [9;4,25:,] and the
(p;@)%5)] are disjoint ares. Thus relying on the way in which 7 was
chosen we have X' — |J~, ¢,[V,] is the union of disjoint arcs of two
kinds:

(3) [dimahy,) for every end point df,, of X’ which is in
X’ — Ux. 9, V:] (the subscript and superscript of d being determined
by the fact that [d%,,2},) does not contain and end point of any
9,1 Vi, for 1 =1,...,n, and

(4) (50%5m) for end points 2%, and .., of g,[V,]and g,[V,],
respectively, and where g,(y?) € (9;,,)%5w],t =1, -+, n,

We now define a homeomorphism % of Y’ onto X’ as follows:

(5) (h|Vy):V,— g, V] is a homeomorphism such that i(g;) = ;.
and

, #5 (= midpoint of [p;u%5]); if dju € g,[Vi]
h(y7) = - .
2%, otherwise
where ¢,(y]) € (P, @50, t =1, -+, n, and r =1, .-+, 0,

(6) (2]lyivad: lviyi] — [2502%5m] 18 & homeomorphism such that
h(ys) = %4, and k(y:) = %%, for any edge [yy:] in Y’ whose end
points are also end points of V, and V,, respectively, and k +# m.

\ (7)) (h]|leyiD: leiyr] — [d5h(y7)] is a homeomorphism such that
h(e;) = dj.); h(y?) is as in (5).
This determines a homeomorphism # of Y’ onto X’ and so Y and X
are homeomorphic. Therefore we have (a) — (c).

The first of following examples shows that ¢X < ¢Y does not
imply dX < dY even in the case that X and Y are trees. The second
shows that Theorem 2.2 is not true for dendrites.
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ExAmpPLE 2.1. Let X be a 4-od and Y the space obtained by
taking the union of two vertical segments with end points (1/4, 0)
and (3/4, 0) and the closed unit interval |0,1]. Then ¢X =< qY since
an arc of arbitrarily small diameter with the branch point of X as
one end point can be projected onto an arc of the same kind on another
branch of X thereby obtaining a space homeomorphic to Y. But
obviously neither X nor Y is embeddable in the other.

ExampLE 2.2. Let X be the union of the sets (1), (2) and (3)
and let Y be the union of the sets (1) and (2) where

(1) the closed unit interval [0, 1],

(2) the vertical segments with end points (1/n, 0) and (1/n, 1/n),
n =238, .-,

(3) the segment given by y = (1/2) — #,3/8 <z < 1/2.
Then ¢X < qY (see the previous example) and ¢V < ¢X since Y is a
closed subset of X. So ¢X = ¢qY but dX £ dY.

3. Quasi dimension type of Peano curves.

DerFINITION 3.1. A curve is a 1-dimensional continuum and a
Peano curve (continuum) is a locally connected curve (continuum).
A curve X is essentially nonplanar, if there is an ¢ > 0 such that
X cannot be ¢-mapped onto any planar curve. If a space is the unit
sphere of R"*, then it is called a n-sphere and is denoted by S*. A
space homeomorphic to S*(S?) is called a simple closed curve (spheri-
cal surface),

DEFINITION 3.2. Kuratowski [15] described four Peano curves
K, (= 1-skeleton of a tetrahedron with midpoints of a pair of non-
adjacent edges joined by a segment), K, (= complete graph on 5
vertices), K, and K, which are indicated in Figures 1, 2, 3, and 4,
respectively. A topological image of anyone of the four curves K,
K,, K,, K, is called a skew curve. A topological image of K, or K,
(K, or K,) is called a primitive (secondary) skew curve.

Kuratowski showed that every nonplanar linear graph contains a
primitive skew curve. Claytor [7] managed to use the secondary skew
curves to obtain the following elegant result: A Peano continuum
which 1s not homeomorphic with a subset of S* mnecessarily contains
a topological image of a skew curve. As a special case he also proved:
Every cyclic Peano continuum which 1s not homeomorphic with a
subset of S* contains a topological image of a primitive skew curve.

DEFINITION 3.3. The Sierpinski (or universal plane) curve, &, and
the Menger (or universal) curve, I, are different 1-dimensional locally
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>

Fia. 1 Fic. 2

Fic. 3 F16. 4

connected analogues of the Cantor discontinuum. The Sierpinski curve
can be obtained by considering a square and by successively deleting
first the open middle-ninth of that square, second the middle-ninths
of each of the eight squares remaining, third the middle-ninths of
each of the 64 squares remaining, etec. The Menger curve may be
defined as the set of all points of the unit cube which project in each
of the three directions (of the edges) into Sierpinski curves constructed
as above on the various faces of the cube. The Menger (Sierpinski)
curve contains homeomorphic images of all 1-dimensional (planar)
continua. Actually a more general statement is true, i.e., any 1-
dimensional separable metric space can be embedded in I and any
1-dimensional planar set can be embedded in & (see [20, p. 106]). So
for any subset X of R® (R?)) we have that ¢X < qM(¢®) implies
dX < dP(dS).
Mazurkiewicz {18] has shown the following.

THEOREM 3.1. An essentially nonplanar Peano curve contains a
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primitive skew curve.

COROLLARY. If X is a Peano curve which does mot contain a
primitive skew curve, then qX < ¢©S.

THEOREM 3.2. [11] If X is a compact polyhedron of dimension
n == 2 such that ¢ X < qR*, then dX < dR™.

Combining these two results we have the next theorem.

THEOREM 3.3. If X 4s a Peano curve, then qX < qR? if and only
1f X does not contain a primitive skew curve.

Proof. Suppose X contains a primitive skew curve, K, and suppose
gX < qR?, then qK < ¢X < gqR:. Therefore, by the previous theorem
dK < dR?, but this is impossible. The other half of the theorem is
just a restatement of Theorem 3.1.

Claytor’s fundamental result [7] in this area is stated next.

THEOREM 3.4, A Peano continuum X is embeddable in S* if and
only if X does not contain a skew curve.

COROLLARY. A Peano continuum X which 18 mnot a spherical
surface is planar if and only if X does not contain a skew curve.

The next two theorems show how quasi dimension type is related
to the above results in a particular setting.

THEOREM 3.5. If X is a Peano curve which does not contain a
secondary skew curve, then the following are equivalent.

(a) dX < dR"

(b) ¢X = ¢@.

() qX = qR".

(d) X does not contain a primitive skew curve.

Proof. First, (a) implies (b) since if X is planar it is embeddable
in &. Second, (b) implies (¢c) since ¢& < qR?. Third, (¢) implies (d)
is just half of Theorem 3.3. Fourth, (d) implies (a) follows from
Theorem 3.4.

THEOREM 3.6. If X is a Peano continuum which does not contain
a secondary skew curve, then the following are equivalent.

(a) dX < dR.

(b) ¢X = qR.
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(¢) X 1is mot a spherical surface and does not contain a primitive
skew curve.

Proof. First, (a) implies (b) is trivial. Second, (b) implies (c)
follows from Theorem 8.3 and the Borsuk-Ulam Theorem, i.e., for any
mapping of f: S”— R, there is a pair of antipodal points of S* with
the same image under f (so that ¢S* £ qR*). Finally (c) implies (a)
as a result of Theorem 3.4.

REMARK 3.1. Note that K; and K, are such that ¢K, < qR? and
gK, < qR*. To see that the former is true choose any ¢ > 0. Then
take a circle S in the defining sequence of K, of diameter <¢/3. Then
shrinking S and its interior (in R’) to a point clearly yields a space
embeddable in R®* The same technique works for showing that
gK, < qR*. This shows that necessity of requiring that X contain no
secondary skew curve in Theorem 3.5 and 3.6. Since the dyadic
solenoid D is such that ¢D < ¢S* < qR? but dD £ dR?, the need for
requiring X to be locally connected in the previous two theorems is
evinced.

Mazurkiewicz [18] also pointed out that the following two theorems

are consequences of Theorem 3.1.
THEOREM 3.7. If X is a curve and qK, < qK, then dK, < dX.

THEOREM 3.8. If X is a curve and qK, < qX, then dK, < dX or
dK, < dX.

As a result of Theorems 3.7 and 2.1 we have the following.

THEOREM 3.9. The primitive skew curves, K, and K, are not
comparable with respect to quast dimension type.

THEOREM 3.10. The secondary skew curves, K; and K, are mnot
comparable with respect to quasi dimension type.

Proof. Suppose ¢K; < qK,. Let A, be a subset of K, which is
a circumscribed figure T (i.e., A, = SU B where S is a simple closed
curve, B is a 3-od with center « and end points a,,a,, and a; and
SNB=a,Ua Uay). Let A= A, U [yb] U [z2¢] where [yb] and [zc] are
arcs, [yb] N A, = y € (xa,) (an open arc contained in B), and [z¢] N A4, = z
(an element of the open arc of S from a, to a, which does not contain
a;). Then, for ¢ sufficiently small, the e-image A contains a curve
homeomorphic to A. However, K, contains no such curve so we have

.a contradiction.
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Suppose ¢K, < gK,. Let A denote a circumscribed figure X (i.e.,
A = S U B where S is a simple closed curve, B is a 4-od with center
2 and end points a,, a,, a; and a,; and SN B =a,Ja,Ua;Ua,). Then,
for ¢ sufficiently small, the s-mage of A contains either a curve
which is homeomorphic to A, or a circumscribed figure H. However,
K, contains no such curves so we have a contradiction.

COROLLARY. No two of the skew curves are comparable with
respect to quasi dimension type.

4. Quasi dimension type of curves. Recall the following nota-
tion: I = closed unit interval, D = dyadic solenoid, + = pseudo-are,
& = Sierpinski curve and M = Menger curve. Then from the results
of §1 and §2 we have the following.

THEOREM 4.1. If X is a snake-like continuum, then
(1) qv £ qX = qf;

(2) X contains an arc if and only if ¢l < ¢X;
(3) X is a pseudo-arc 1f and only if ¢X < gi.

DEFINITION 4.1. A circular chain is a chain subjected to the
added condition that its first and last links intersect. A continuum
X is called circle-like if for each ¢ > 0, X can be covered with a
circular chain of mesh <e.

THEOREM 4.2. If X is a circle-like continuum, then

(1) g¥ =qX =qS%

(2) X is a simple closed curve if and only if ¢S' < ¢X;
(38) X is a pseudo-arc if and only if qX < g,

(4) ¢X < gD implies that qX < qI or X is not planar.

Proof. The first inequality of (1) follows from the fact that any
circle-like continuum contains a snake continuum and Theorem 1.2',
The second inequality of (1) follows from the fact that a continuum
has e-mappings into the nerves of its coverings.

Only one implication of (2) is nontrivial. Assume ¢S*' < ¢X. This
implies that X contains a simple closed curve S and since ¢X < ¢S!
there are e-mappings, f., of X into S'. Then, for ¢ sufficiently small,
f. must take S onto all of S*. Therefore S = X, Condition (4) follows
from the fact that D is not the continuous image of any planar con-
tinuum (see [10]).

DEFINITION 4.2. A tree chain is a finite collection of open sets
whose nerve is a tree. A continuum X is called tree-like if for each
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€ > 0, X can be covered with a tree chain of mesh >e.

DEFINITION 4.3. For any positive integer #, a curve X s said
to be of order less than or equal to m (in symbols: ord X < n), if
ord, X=<n for each p € X (see Definition 2.2). Furthermore, if ord X=n
and it is false that ord X < m for any m <= (i.e., ord, X =n for
some pe X), then ord X = #.

DEFINITION 4.4. For any positive integer »n, o continuum X 1is
satd to be of t-order less than or equal to n (in symbols: t-ord X < #),
if X has coverings of arbitrarily small whose nerves are trees of
order < n. (The usual convention prevails in defining 7-ord X = n.)
If we replace “z” by “y” and “trees” by “linear graphs”, then we
obtain the definition of 7-ord X < n.

Menger [19, p. 318] has shown that there is a dendrite U (in
the plane) which is universal for dendrites (i.e., any dendrite can be
embedded in U). Moreover, he showed that for any positive integer
n = 2 there is a dendrite U, of order » which is universal for all
dendrites of order #.

LemMA 4.1. If X is a tree, then t-ord X £ 3,

Proof. Let b, --+,b, denote the branch points of X, k; = ord,, X
and v = 1/2min {o(v,, v;) | v;, v; are distinct vertices of X}. There
is a 4,,0< 4; <y/2, such that, for any positive number 4 < 4,,
ord, V(b;, 4) =k;, for i=1,.--,n. Let r=(1/2)min{4;|i=1, -+, n}.
We will replace each k;-od in X by a (k;-2)-comb (a m-comb is a tree
homeomorphic to the union of the closed interval [0, m + 1] and m
vertical segments from (¢,0) to (¢,1) for 2 =1,..-,m). This will
yield a new tree Y of order <3 which is the e-image of X for each
e > 0.

For a fixed branch point b, consider the r-neighborhood S(b;, r)
and its boundary points ¥, ---,y,. Let A, be an arc which
intersects X only in its end points y, and .. Let z,---,z, be
(k; — 2) distinct points of A, — (y,U¥,). Now, for 3<j <k, let
A;_, be an arc which intersects X U A, U --- U A4;_; only in its end
points z; and ;. Finally let B, = U{4,|5 =1, -+, k; — 1} (so that
B;is a (k; — 2)-comb) and let Y = [X — [Jz, S(b;, r)] U [U’. B;]. Using
the techniques of Theorem 2.2 and Example 2.1 it is not difficult to
see that X can be c-mapped onto Y for all ¢ > 0.

Now let V be a covering of X with Lebesque number 7., There
exists a subdivision of Y fine enough so that, for the associated
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covering U by stars of vertices, there exists an e-mapping f of X
onto Y with the property that the mesh f~%(U) < 7. Then f~(U)
refines V' and its nerve is homeomorphic to Y. Hence X has coverings
of arbitrarily small mesh whose nerves are trees of order <3, i.e.,
7-ord X < 3.

THEOREM 4.3. A continuum X 1is tree-like if and only if t-ord
X <3,

Proof. Suppose X is tree-like (the other implication follows
immediately from the definition of z-order). Then X has coverings
{V.} whose nerves N(V;) = N, are trees and such that mesh V, < 1/3.
Moreover, for any ¢ > 0, there is an s-mapping f. of X into some N,.
Now by the previous lemma each N, has coverings { Wi} whose nerves
are trees of order <3 and such that mesh Wi < 1/5.

In view of the compactness of X, for any ¢ > 0, there is a
positive integer 4 and a 7 > 0 such that: if Ac N, and 4(4) < 7,
then o(f7'(4)) <e. So for j large enough so that mesh W? <7 we
have that mesh f7(Wi{) <e. Moreover, N(f(W/)) is a tree of order
<3 and therefore z-ord X < 3.

Lemma 4.2, If X and Y are continua, Y is tree-like and ¢ X<qY,
then X is tree-like.

THEOREM 4.4. A continuum X is tree-like if and only if ¢X <
qu,.

Proof. Suppose X is tree-like. Then by the previous theorem
Y has coverings of arbitrarily small mesh whose nerves are trees of
r-order <3. So these nerves are embeddable in U,. Therefore, for
any ¢ > 0, X can be e-mapped into U, i.e., ¢X < qU,. Conversely,
suppose ¢X < qU,. Now U, is a dendrite and dendrites (being planar
and not containing a subcontinuum which separates the plane) are
tree-like (see |5, p. 656]). Thus we have by Lemma 4.2 that X is
tree-like.

COROLLARY. For every positive integer 1, qU; = qU,,; = qU.

Proof. Since U, cU,.,c U, we have that ¢l < qU,., < qU for
each positive integer i. Since U, and U are dendrites they are also
tree-like. Thus by the previous theorem ¢lI; and qll < U, and so the
desired result follows.

Since there are tree-like continua which fail to contain a snake-
like subcontinuum we have as an open question the following.
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Question. Is gy < qX for any tree-like continuum X?

The appropriate modifications of Lemma 4.1, and Theorems 4.3
and 4.4 yield the following three results.

LemMMA 4.3. If X is a linear graph, then v-ord X < 3.

THEOREM 4.5. A continuum X is 1-dimensional tf and only if
v-ord X < 3.

THEOREM 4.6. A continuum X 1s l-dimensional if and only if
gX = qI.

From the results of § 3 we obtain the next two theorems.

THEOREM 4.7, If X is a Peano curve which does not contain a
primitive skew curve, then

(1) o =q¢X =S

(2) X is an arc if and only if qX < ql.

COROLLARY. If X 1is a continuum with coverings of arbitrarily
small mesh whose nerves are planar linear graphs (i.e., do not contain
a primitive skew curve), then ¢X < ¢ (<qR?). (For example, tree-like
continua have such coverings.)

THEOREM 4.8. If X is a Peano curve which contains a primitive
skew curve, then

(1) ¢X £ qR;
(2) {12} < ax = om;

(3) X s homeomorphic to K, if and only if qX = qK,;
(4) X is homeomorphic to K, ©f and only if qX = ¢K,.

Proof. We consider only one implication from each of (3) and
(4) (in that order). Assuming that ¢X = ¢K, by Theorem 3.7 we
have that X contains K, a topological image of K,. So the s-mappings
of X into K, must take K onto all of K, for ¢ sufficiently small. So
we must have that X = K.

Assuming that ¢X = ¢K, we have by Theorem 3.8 that X contains
K, a topological image of K, or K,. The former case is impossible
since K, and K, are not comparable with respect to quasi dimension
type. So e-mappings of X into K, must take K onto all of K, for ¢
sufficiently small. So we must have that X = K.

Added in proof. I intended to construct a snake-like continuum
with 2¢ different quasi dimension types among its subsets. However,
this and the two questions in §1 remain unsettled. The situation as
regards circle-like continua is clearer. H. Cook [Fund. Math. 60 (1967)
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241-249] has constructed a 1-dimensional continuum M, containing ¢
continua which are circle-like but not snake-like and no one which is
the continuous image of the other. It follows that no two of these
circle-like continua are comparable with respect to quasi dimension
type. Furthermore, since there are at most ¢ topologically different
circle-like continua, we may conclude that the cardinality of the set
of quasi dimension types of circle-like continua is ec.
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