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Let Mi and M2 be two Riemannian spaces1 with Riemannian
metrics dt and d2 respectively whose sectional curvature is
positive constant. We consider the product of the two
Riemannian spaces Mx x M2, then the Riemannian space
Mi x M2 has nonnegative sectional curvature with respect to
the Riemannian metric dί x d2 but not strictly positive
sectional curvature.

We can construct a Riemannian metric on Mi X M2 which
approaches the Riemannian metric dL X d2 as closely as we
wish and which has strictly positive sectional curvature.

Now, our results can be stated as follows. We consider two
manifolds Mι(Hι - Eu gx), M2(H2 — E21 q2) such that each of them has
only one chart where Hu Eί are the south hemisphere and the equator,
respectively, of a /c-dimensional sphere (k ^ 2) and E2, H2 are also
the south hemisphere and the equator, respectively, of an ^-dimensional
sphere (n ^ 2), and qu q2 are special mappings. We also consider on
Mi and M2 particular Riemannian metrics du d2, respectively, with
positive constant sectional curvature. We obtain a special 1-parameter
family of Riemannian metrics F(t) on Mx x M2 such that F(0) = dtx d2.
We have proved that vP e Mι x M2 the derivative of the sectional
curvature with respect to the parameter t for t — 0 and for any
plane of (Mι x M2)P, is strictly positive.

I* Let Mi be a manifold which consists of one chart (Ht — Eu qj,
where H19 Eλ are the south hemisphere and the equator, respectively,
of a ^-dimensional sphere S$(k ̂  2) and the inverse mapping of qx is
defined as follows

1 + v\ + + u\ ' ' 1 + u\ + + u\ '
χk+1 = ^l "f * * -f Uk 1 \

1 + u\ + .. + u\ ) "

maps the open set Hx — JEΊ onto the open ball n\ + + %\ < 1.
On the manifold JlίΊ, we take the following Riemannian metric

1 A Riemannian space is a Riemannian manifold covered with one chart ([5], p.
314).
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d, = dSϊ = \dn = = dkk =

d .̂ = 0 if i ^

whose sectional curvature is positive constant.
Let M2 be another manifold which consists of one chart (H2 — E2, q2),

where H2, E2 are the south hemisphere and the equator, respectively, of
an -^-dimensional sphere S2{n ^ 2) and the inverse mapping of q2 is
defined by

" Γ
2uu

q2 maps the open set H2 — E2 onto the open ball u\+1 + . . . + uk+n < 0.
On the manifold M2, we also take the following Riemannian metric

d2 = <xo2 — *{dk+ik+ι = = dk+nk+n

(1.2) 4
4 •/ — ft i f 4 =£

(1 + ul+1 + +

whose sectional curvature is positive constant.
Consider the product of the two manifolds Mx x M2. Then Mγ x M2

is a manifold with one chart {(ί^ — EΊ) x (ίί2 — E2), qt x g2}.
We define a 1-parameter family of Riemannian metrics on the

manifold ML x M2 defined by

_ „ _ 4(1 + if)

(l + ̂ + +^i) 2

(1.3) dS (t) = ^fc+ifc+i = = gk+nk+n

= 4(1 + ftp)
(l + ̂ | + 1 + + ̂ 1+τι)2

where - 5 < ί <b,φ = ̂ ( ^ , , wΛ), / =
The Riemannian metric dS2(0) coincides with the product Rieman-

nian metric dS? x dS2

2 of the two manifolds Mx and M2.

2. We shall calculate the components Rhijk of the Riemannian
curvature tensor when the index h — 1, because the other cases are
similar to these.

If h — 1, there exist the following distinguished cases in which
Rίijk do not vanish identically.
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iii* 3 = 2> * * , k> Rik+jik+j, 3 = 1, , nf

,3 = 2 , •••, k , I = 1 , • • - , * & ,

^ ί k + j k + j l i 3 — 1 ) , 7 1 , 6 = 2 , • • • , / & ,

ii, ί ^ i ^ ϊ, ί = 2, , k + w, i = 2, , k + n, I = 2, . , k + n .

As it is known, JSlίiA; is given by ([12], p. 18)

2 V

where ltv[» | iκ> Ί ^ } > l ^ f a r e the Christoίfel symbols of the second

kind.
From the above formula by virtue of (1.3) we obtain

ί 2 1) R - -
(2.1) i ? , , , - τ g (

ζ P 2/1 V v d φ

" 2 A S %

(2.2) dul+i

df
_ fΐ "I '^ «'i+j ' , ^ 1 ^ f „' _ 1 . . . w

(2.3) !?,„, = 0, j Φ I, j = 2, , k, I = 2, . ., k ,

df dφ

- t*

tφ)A2

(2.5) _3φ _3φ

Λiϋϊ = 0, i ^ 3 Φ I, i = 2, , k + n,
j = 2, ., ft + n, I = 2, ., ά + n ,

where
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(2.7) A = 1 + tt» + • + w£ , B = l + u\+ι + + ul+n .

If the functions φ and / are chosen such that they satisfy the
systems of partial differential equations

d2φ 2Ui_ dφ_ 2u5 dφ __ Q

(2.8) dUiduj A duj A dui

2uh df 2ux df _

(2.9) duhduι B duι B duh

respectively and if m e [1, , k] and

ie[k + 1, , k + ri\, i Φ j e [k + 1, •••,& + %]

or if m G [k + 1, , k + n] and i e [1, , k], i Φ j e [1, , k], then
we have

df df dφ dφ
(2.10) p _ .2 dUj du3- p _ ,

Eίmmj ~ l (1 + */)A2 ' ° r Λ < " ' "

We consider one partial differential equation of the system (2.8),
for example,

d2φ 2uι dφ 2u2 dφ _ ~

duλdu2 A du2 A duι

or

/o i i \ d2φ . d log A dφ , 3 log A dφ Λ

duγdu2 duι du2 du2 du±

From the first of (2.7), we conclude that

(2 12) 32 log A = _ 3 log A 3 log A
(/ IΛ/ΛU (Λ/O *J IΛJΛ U IA/O

Equation (2.11), by virtue of (2.12), takes the form

1 log A dφ
duι du2 du2

3 2 l o g A y + dlogA d\og
duλdu2 dut du2

or
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JL.ίl2L + d log A pi + Slog A f dφ + d log A \
3t6x 1 3 u 2 du2 i duγ \ du2 du2 i

from which we obtain

(2.13) -fίE. + I M A , , - Jl = 0 ,
du2 du2 A

where v is an arbitrary function of u2, •••,%*.
Equation (2.13) is a linear differential equation whose general

solution is

(2.14)

where z is an arbitrary function of u19 uB, , uk.
Relation (2.14), by virtue of the first of (2.7), takes the form

(2 15) ω = a μ ( U ι > u*> " ' ' Uk) + π ( U 2 > 0 " > u ^
1 + u\ + + u\

where z — aμ, \vdu2 — aπ and a is an arbitrary real constant.

In order for the function φ to satisfy the rest of partial differential
equations of the system (2.8), as it is easily proved that it must have
the form

(2.16) φ = a φ ^ ] + m' + φk(Uk) ,

where <pu •••,% are arbitrary functions of uu •• ,ukf respectively.
Similarly, in order for the function / to satisfy the system of

partial differential equations (2.9), it must have the form

(2 17\ f — fχJk + l\^k + l) H~ * ' * 4~ Jk+ni'M'k+n)

1 + u2

k+i + + u\+n

where fk+u •••,/*+„ are arbitrary functions of uk+ι, * ,uk+n. respec-
tively.

From (2.1), (2.2), (2.4) and (2.10), we obtain

(2.18) BιJU(0) = - ^ , R'ιjl3(0) = - J | £ , j = 2, . , k ,

OUk+i )
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(2.20) Rljjk+ι(0) = E[iik+ι(0) = 0 , j = 2, , 1 = 1, . . . , n ,

(2.21)

where R'kiji denotes the derivative of Rhijι with respect to the parameter
t.

From (1.1), (1.2) and (1.3), we obtain the following formulas

<7π(0) - . . . - gkk(0) = dn,

(2.22) \ k+lk+1 ~~ ~ k+nk+n ~~ k+nk+n '
„/ /f\\ ~t (C\\ fJ

Qι\χJ) — " — 9kk\y) — Jam
9k+ik+i(0) = = 9fk+nk+n(0) = φdk+nk+n.

Relations (2.18) and (2.19) by means of (2.7) and (2.22) take the
form

(2.23) RliU = -d\u R[jlά(Q) = -fdl , j = 2, . ., k ,

') = 0, R[ ) A

(2-24) _ 2A | , tt^ + β 2 _ ^ £ _ + 2 B U i + V _ 2 β £ Uk+

j

j = 1, . . . , & .

3* Let P be any point of Mλ x M2. Then the & + w vectors
d/duu , 3/3uΛ, d/duk+ί, , d/duk+n form an orthonormal basis of the
tangent space (Jlίί x M2)P.

As it is known, the sectional curvature of the plane spanned by
dldnu d/dUj, j = 2, , k, is given by

which implies

/Q i \ τrt ίc\\ — ffijii(O)&iiV( o . l ; AijV") — — — ~

Relation (3.1), by virtue of (2.22) and (2.23), takes the form

(3.2) Xi'y(0)= - / .

Similarly, calculating Kl+lk+j(0), we obtain

(3.3) KUik+M = - <P .

Formulas (3.2) and (3.3), by means of (2.16) and (2.17), take the
form
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K'(0) = fχfk+l\^k + l) ~Ί~~ * * * + Jk+nV^k+n)
u 1 + vl+ι + + u2

k+n

Kk+ίk+j(0) - - a

respectively. In order for K-j(0), Kί+lk+ί(0) to be positive, we must
have a < 0, fk+j(uk+j) > 0, j = 1, , n, ?>*(%*) > 0, i = 1, , fc, which
means the real number α must be negative and the functions fk+j(uk+j)
and ψiiut) must be positive when the corresponding variable takes
values in the interval( — 1,1).

The sectional curvature of the plane spanned by djduu d/duk+j is
given by

Klk+j= -

which, by virtue of (2.22) and either (2.24) or similar to (2.24), takes
the form

Kίk+j(0) = - | { A°f£- + 2AUιψ- -2A± «*£-
8 I oui oUi i=tι oUi

-2B± uk+i
dul+j duk+j i*i duk

In order for K'ιk+j{Q) to be positive and because the functions φ and
/ are independent, it must be

(3.5) A2-^- + 2Auι4^- -2AΣ w J 2 - < 0 , I - 1, . , k ,

0 ,B--¥L- + 2Buk+Γ^— 2B±uk+i-?-
(3.6) dul+j duk+j i*ί duk+i

j = 1, . . . , w .

Inequalities (3.5) and (3.6), by virtue of (2.16) and (2.17), become

^\A2^ΓΓ - 2A±uJp- - 2(2 - A)±φλ < 0 , 1 = 1, ...,fc ,

?L\B2Ά±L -2B± uk+iMϊ±±. - 2(2 - B) ± fk+λ < 0 ,

i = l, . . . , t t ,

which imply
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f^i. -2(2-A)Σ,φi>0,

fy - 2B±uk+i^Δ±L - 2(2 - B)±fk+i > 0 ,
k + j *=i »%*+* i=i

i = 1, . . . , n .

If the functions fk+j = fk+j(uk+j), φ{ = ^(ttί) are chosen to have
the form

(3.8) Λ + y ttj + j " ^

then the inequalities (3.7) take the form

2 - A > 0 , 2 - £ > 0 ,

which, by virtue of (2.7), become

1 Hi V/k ^> U , 1 M

which are valid on the open balls u\ + + u\ < 1, u\ ̂  + +
%fc+ft < 1, respectively.

Relations (2.16) and (2.17), by means of (3.8), take the form

(3.9) / = g t t i + + " ! + 1/2 ^ + + ^ + V2
l + + f̂c + n + 1 U>\ + + U%

The second of (2.24) or similar to that and (3.4), by means of (3.9),
become

(1 + u\+ + ul)2(l + n\+ι + + u\+n)
2

{ 1 2 2 1 2 2 ^

JL iΛ/i w/fc I -L ΊΛ/k-^.γ ιλ/k-^-n I

1 + ul + + ul 1 + ul+1 + + ul+n J '
/y f 1 Λ,2 n,2 1 Λ/2 Λ.2 ^

^ /f\\ £•*• I -I- wj φ ^/e I -*- ^fc + 1 (A/fi-^γ^ I

'*+ y l ~ ~ ¥ I 1 + ul + + ul 1 + ul+ι + ••• + uU, i '

Using the fact that α < 0, then following inequalities are obtained
from the above relations:

(3.10) ieί*+ y ι f c + J.(0)< 0 , K{k+j(0)>0, 1 = 1, . . . , Λ , i = 1, . . . , n ,

which are valid on the open balls ^ 2 + + u\ < 1, ̂ | + 1 + +

Let ξ(ξ\ , ί*+n) and z(z\ , ̂ + w ) be any two vectors of the
tangent space (M1 x M2)P. The sectional curvature of the plane
spanned by ξ and z is given by ([11], p. 12)
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xr _ Rhijιz
hz'ξψ

or

(3.11) K = A .

where

(3.12) A = Rhiiιz"z^ψ ,

From (3.11), the following is obtained:

ί3 13) K'(0) =
W

From (3.12), by virtue of (2.3), (2.6), (2.20), (2.21), (2.22), (2.23),
(2.24) and similar formulas to (2.23) and (2.24), we obtain

Λ(0) = - Cdl -

Aί(0) = - fCdl - φDdl+lk+ι + T ,

(3.15) £x(0) = - Cdl, - Dd\+lk+1 - Ed

(3.16) 5/(0) = - ZfCdλ. - 2φDdl+lk+1 - ( / + φ)Edndk+lk+ι ,

where

(3.17) c = Σ Σ < , D= Σ Σ* <• -
i l i < i 2 ifc l ij k+2

(3.18) Γ

Relation (3.13), by means of (3.14), takes the form

/Q ]n\ Kf(O) — ^^i(Q) "̂ " CGd\γ + DJd2

k+lk+ϊ

Bϊ(0)

where

(3.20) G = J5/(0) - /β^O) , J - 5/(0) -

Formulas (3.20), by virtue of (3.15), and (3.16), become

(3.21) G - L - (2φ - f)Ddl+lk+1 , J - N - (2/ -

where

L = - φEdndk+lk+ι - fCd2

n ,

2SΓ = - fEdndk+lk+ί -
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Relation (3.19), by means of (3.21), takes the form

(3 23) K'(0) = T B l { 0 ) + C L d ί ί + DNd2*+i*+i - ( / + <P)CDdldl+ιk+1

' B}(0)

From (3.15) and (3.22), by means of (3.17), and because the
functions / and φ are negative, we conclude

(3.24) BM < 0 , L > 0 , N>0 .

The first of (3.18), by virtue of the first inequality of (3.10),
implies

(3.25) T S 0 .

Formula (3.23), by means of (3.17), (3.24), (3.25) and / < 0, φ < 0,
implies

K'φ) > 0 ,

because it is not possible that simultaneously C = D = T — 0 for the
two vectors ζ and z.

Hence, we have the following theorem.

THEOREM. Let M1 and M2 be two special Riemannian spaces
with constant positive sectional curvature defined in § 1. If we
consider a special 1-parameter family of Riemannian metrics F(t)
on M1 x M2 defined by (1.3), where the functions /, φ have the form
(3.9), then the derivative of the sectional curvature with respect to
the parameter t for t = 0 and for any plane of {Mί x M2)P and
yPeM1 x M2 is strictly positive.

From the above, we conclude that, if the parameter t is positive
and small enough, then the corresponding Riemannian metric F(t)
defined by (1.3) on M1 x M2, where the functions / and φ have the
form (3.9), has strictly positive sectional curvature.

I wish to express here my thanks to Professor S. Kobayashi for
many good ideas I obtained from conversations with him.
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