A RIEMANNIAN SPACE WITH STRICTLY POSITIVE SECTIONAL CURVATURE

Grigorios Tsagas
A RIEMANNIAN SPACE WITH STRICTLY POSITIVE SECTIONAL CURVATURE

Grigorios Tsagas

Let M_1 and M_2 be two Riemannian spaces with Riemannian metrics d_1 and d_2 respectively whose sectional curvature is positive constant. We consider the product of the two Riemannian spaces $M_1 \times M_2$, then the Riemannian space $M_1 \times M_2$ has nonnegative sectional curvature with respect to the Riemannian metric $d_1 \times d_2$ but not strictly positive sectional curvature.

We can construct a Riemannian metric on $M_1 \times M_2$ which approaches the Riemannian metric $d_1 \times d_2$ as closely as we wish and which has strictly positive sectional curvature.

Now, our results can be stated as follows. We consider two manifolds $M_i(H_i - E_i, q_i)$, $M_2(H_2 - E_2, q_2)$ such that each of them has only one chart where H_i, E_i are the south hemisphere and the equator, respectively, of a k-dimensional sphere ($k \geq 2$) and E_2, H_2 are also the south hemisphere and the equator, respectively, of an n-dimensional sphere ($n \geq 2$), and q_1, q_2 are special mappings. We also consider on M_1 and M_2 particular Riemannian metrics d_1, d_2, respectively, with positive constant sectional curvature. We obtain a special 1-parameter family of Riemannian metrics $F(t)$ on $M_1 \times M_2$ such that $F(0) = d_1 \times d_2$.

We have proved that $\forall P \in M_1 \times M_2$ the derivative of the sectional curvature with respect to the parameter t for $t = 0$ and for any plane of $(M_1 \times M_2)_P$, is strictly positive.

1. Let M_1 be a manifold which consists of one chart $(H_1 - E_1, q_1)$, where H_1, E_1 are the south hemisphere and the equator, respectively, of a k-dimensional sphere $S^k_1(k \geq 2)$ and the inverse mapping of q_1 is defined as follows

$$q_1^{-1} = \left\{ x^1 = \frac{2u_1}{1 + u_1^2 + \cdots + u_k^2}, \ldots, x^k = \frac{2u_k}{1 + u_1^2 + \cdots + u_k^2}, \right.$$ $$x^{k+1} = \frac{u_1^2 + \cdots + u_k^2 - 1}{1 + u_1^2 + \cdots + u_k^2} \right\}.$$ q_1 maps the open set $H_1 - E_1$ onto the open ball $u_1^2 + \cdots + u_k^2 < 1$.

On the manifold M_1, we take the following Riemannian metric

1 A Riemannian space is a Riemannian manifold covered with one chart ([5], p. 314).
\[d_1 = dS_1^2 = \left\{ d_{11} = \cdots = d_{kk} = \frac{4}{(1 + u_1^2 + \cdots + u_k^2)^2}, \right\} \tag{1.1} \]
\[d_{ij} = 0 \text{ if } i \neq j \]
whose sectional curvature is positive constant.

Let \(M_2 \) be another manifold which consists of one chart \((H_2 - E_2, q_2)\), where \(H_2, E_2 \) are the south hemisphere and the equator, respectively, of an \(n \)-dimensional sphere \(S_2^n(n \geq 2) \) and the inverse mapping of \(q_2 \) is defined by
\[
q_2^{-1} = \left\{ x^1 = \frac{2u_{k+1}}{1 + u_{k+1}^2 + \cdots + u_{k+n}^2}, \cdots, \right. \\
x^n = \frac{2u_{k+n}}{1 + u_{k+1}^2 + \cdots + u_{k+n}^2}, x^{n+1} = \frac{u_{k+1}^2 + \cdots + u_{k+n}^2 - 1}{1 + u_{k+1}^2 + \cdots + u_{k+n}^2} \right\}.
\]
\(q_2 \) maps the open set \(H_2 - E_2 \) onto the open ball \(u_{k+1}^2 + \cdots + u_{k+n}^2 < 0 \).

On the manifold \(M_2 \), we also take the following Riemannian metric
\[d_2 = dS_2^2 = \left\{ d_{k+1,k+1} = \cdots = d_{k+n,k+n} = \frac{4}{(1 + u_{k+1}^2 + \cdots + u_{k+n}^2)} \right\}, d_{ij} = 0 \text{ if } i \neq j \right\}, \tag{1.2}\]
whose sectional curvature is positive constant.

Consider the product of the two manifolds \(M_1 \times M_2 \). Then \(M_1 \times M_2 \) is a manifold with one chart \((H_1 - E_1) \times (H_2 - E_2), q_1 \times q_2 \).

We define a 1-parameter family of Riemannian metrics on the manifold \(M_1 \times M_2 \) defined by
\[\tilde{d}S^2(t) = \left\{ g_{i1} = \cdots = g_{kh} = \frac{4(1 + tf)}{(1 + u_1^2 + \cdots + u_k^2)^2}, \right\} \tag{1.3} \]
\[g_{k+1,k+1} = \cdots = g_{k+n,k+n} = \frac{4(1 + tf)}{(1 + u_{k+1}^2 + \cdots + u_{k+n}^2)^2}, g_{ij} = 0 \text{ if } i \neq j \right\}, \]
where \(-b < t < b\), \(\varphi = \varphi(u_1, \cdots, u_k), f = f(u_{k+1}, \cdots, u_{k+n}) \).

The Riemannian metric \(dS^2(0) \) coincides with the product Riemannian metric \(dS_1^2 \times dS_2^2 \) of the two manifolds \(M_1 \) and \(M_2 \).

2. We shall calculate the components \(R_{hijk} \) of the Riemannian curvature tensor when the index \(h = 1 \), because the other cases are similar to these.

If \(h = 1 \), there exist the following distinguished cases in which \(R_{iijk} \) do not vanish identically.
\(R_{ijij}, j = 2, \ldots, k, R_{ik+jk+j}, j = 1, \ldots, n, \)
\(R_{ijjl}, j \neq l, j = 2, \ldots, k, l = 2, \ldots, k, \)
\(R_{ijjk+l}, j = 2, \ldots, k, l = 1, \ldots, n, \)
\(R_{ik+jk+jl}, j = 1, \ldots, n, l = 2, \ldots, k, \)
\(R_{iijl}, i \neq j \neq l, i = 2, \ldots, k + n, j = 2, \ldots, k + n, l = 2, \ldots, k + n. \)

As it is known, \(R_{ijjk} \) is given by ([12], p. 18)
\[
R_{ijjk} = \frac{1}{2} \left(\frac{\partial^2 g_{ij}}{\partial u_i \partial u_j} + \frac{\partial^2 g_{jl}}{\partial u_j \partial u_l} \right) - g_{rs} \left(\begin{array}{c} r \\ ij \\ \end{array} \right) \left(\begin{array}{c} s \\ 1l \\ \end{array} \right) - \left(\begin{array}{c} r \\ il \\ \end{array} \right) \left(\begin{array}{c} s \\ 1j \\ \end{array} \right),
\]
where \(\left\{ \begin{array}{c} r \\ ij \\ \end{array} \right, \left\{ \begin{array}{c} s \\ 1l \\ \end{array} \right, \left\{ \begin{array}{c} r \\ il \\ \end{array} \right, \left\{ \begin{array}{c} s \\ 1j \\ \end{array} \right \} \) are the Christoffel symbols of the second kind.

From the above formula by virtue of (1.3) we obtain
\[
(2.1) \quad R_{ijij} = - \frac{16(1 + tf)}{A^2} + \frac{t^2}{1 + t\varphi} \frac{B^2}{A} \sum_{i=1}^{\infty} \left(\frac{\partial f}{\partial u_{k+i}} \right)^2, j = 2, \ldots, k,
\]
\[
(2.2) \quad R_{ik+jk+j} = \frac{2t}{(AB)^2} \left\{ A^2 \frac{\partial^2 \varphi}{\partial u_1^2} + 2Au_1 \frac{\partial \varphi}{\partial u_1} - 2A \sum_{i=1}^{k} u_i \frac{\partial \varphi}{\partial u_i} \right. \\
\left. + B^2 \frac{\partial^2 f}{\partial u_{k+j}^2} + 2Bu_{k+j} \frac{\partial f}{\partial u_{k+j}} - 2B \sum_{i=1}^{n} u_{k+i} \frac{\partial f}{\partial u_{k+i}} \right\} - t^2 \left\{ \left(\frac{\partial f}{\partial u_{k+j}} \right)^2 \right. \\
\left. \left((1 + tf)A^2 \right) + \left(\frac{\partial \varphi}{\partial u_1} \right)^2 \right\}, j = 1, \ldots, n,
\]
\[
(2.3) \quad R_{ijjl} = 0, j \neq l, j = 2, \ldots, k, l = 2, \ldots, k,
\]
\[
(2.4) \quad R_{ijj+1k+l} = t^2 \frac{\partial \varphi}{\partial u_{k+1}} \frac{\partial \varphi}{\partial u_1}, j = 2, \ldots, k, l = 1, \ldots, n,
\]
\[
(2.5) \quad R_{ik+jk+jl} = - \frac{2t}{B^2} \left\{ \frac{\partial \varphi}{\partial u_1} \frac{\partial \varphi}{\partial u_1} + 2u_1 \frac{\partial \varphi}{\partial u_1} + 2u_1 \frac{\partial \varphi}{\partial u_1} \right\} \\
+ t^2 \left(\frac{\partial \varphi}{\partial u_1} \right)^2, j = 1, \ldots, n, l = 2, \ldots, k,
\]
\[
(2.6) \quad R_{iijl} = 0, i \neq j \neq l, i = 2, \ldots, k + n, \\
\left. j = 2, \ldots, k + n, l = 2, \ldots, k + n, \right.
\]
where
If the functions ϕ and f are chosen such that they satisfy the systems of partial differential equations

\[
\frac{\partial^2 \phi}{\partial u_i \partial u_j} + \frac{2u_i}{A} \frac{\partial \phi}{\partial u_j} + \frac{2u_j}{A} \frac{\partial \phi}{\partial u_i} = 0 ,
\]

\(i \neq j, i = 1, \ldots, k, j = 1, \ldots, k ,\)

\[
\frac{\partial^2 f}{\partial u_h \partial u_i} + \frac{2u_h}{B} \frac{\partial f}{\partial u_i} + \frac{2u_i}{B} \frac{\partial f}{\partial u_h} = 0 ,
\]

\(h \neq l, h = k + 1, \ldots, k + n, l = k + 1, \ldots, k + n ,\)

respectively and if $m \in [1, \ldots, k]$ and

\[i \in [k + 1, \ldots, k + n], i \neq j \in [k + 1, \ldots, k + n]\]

or if $m \in [k + 1, \ldots, k + n]$ and $i \in [1, \ldots, k], i \neq j \in [1, \ldots, k]$, then we have

\[
R_{immj} = t^2 \frac{\frac{\partial f}{\partial u_i} \frac{\partial f}{\partial u_j}}{(1 + tf)A^2} , \quad \text{or} \quad R_{immj} = t^2 \frac{\frac{\partial \phi}{\partial u_i} \frac{\partial \phi}{\partial u_j}}{(1 + tf)B^2} .
\]

We consider one partial differential equation of the system (2.8), for example,

\[
\frac{\partial^2 \phi}{\partial u_i \partial u_z} + \frac{2u_i}{A} \frac{\partial \phi}{\partial u_z} + \frac{2u_z}{A} \frac{\partial \phi}{\partial u_i} = 0 ,
\]

or

\[
\frac{\partial^2 \phi}{\partial u_i \partial u_z} + \frac{\partial \log A}{\partial u_i} \frac{\partial \phi}{\partial u_z} + \frac{\partial \log A}{\partial u_z} \frac{\partial \phi}{\partial u_i} = 0 .
\]

From the first of (2.7), we conclude that

\[
\frac{\partial^2 \log A}{\partial u_i \partial u_z} = - \frac{\partial \log A}{\partial u_i} \frac{\partial \log A}{\partial u_z} .
\]

Equation (2.11), by virtue of (2.12), takes the form

\[
\frac{\partial^2 \phi}{\partial u_i \partial u_z} + \frac{\partial \log A}{\partial u_i} \frac{\partial \phi}{\partial u_z} + \frac{\partial \log A}{\partial u_z} \frac{\partial \phi}{\partial u_i} + \frac{\partial^2 \log A}{\partial u_i \partial u_z} \phi + \frac{\partial \log A}{\partial u_i} \frac{\partial \log A}{\partial u_z} \phi = 0 ,
\]

or
\[\frac{\partial}{\partial u_1} \left\{ \frac{\partial \varphi}{\partial u_2} + \frac{\partial \log A}{\partial u_2} \varphi \right\} + \frac{\partial \log A}{\partial u_1} \left\{ \frac{\partial \varphi}{\partial u_2} + \frac{\partial \log A}{\partial u_2} \varphi \right\} = 0 , \]

from which we obtain

\[\frac{\partial \varphi}{\partial u_2} + \frac{\partial \log A}{\partial u_2} \varphi - \frac{v}{A} = 0 , \]

where \(v \) is an arbitrary function of \(u_2, \ldots, u_k \).

Equation (2.13) is a linear differential equation whose general solution is

\[\varphi = \frac{1}{A} \left(z + \int v du_2 \right) , \]

where \(z \) is an arbitrary function of \(u_1, u_3, \ldots, u_k \).

Relation (2.14), by virtue of the first of (2.7), takes the form

\[\varphi = \alpha \frac{\mu(u_1, u_3, \ldots, u_k) + \pi(u_2, \ldots, u_k)}{1 + u_1^2 + \cdots + u_k^2} , \]

where \(z = \alpha \mu \int v du_2 = \alpha \pi \) and \(\alpha \) is an arbitrary real constant.

In order for the function \(\varphi \) to satisfy the rest of partial differential equations of the system (2.8), as it is easily proved that it must have the form

\[\varphi = \alpha \frac{\varphi_1(u_i) + \cdots + \varphi_k(u_k)}{1 + u_1^2 + \cdots + u_k^2} , \]

where \(\varphi_1, \ldots, \varphi_k \) are arbitrary functions of \(u_1, \ldots, u_k \), respectively.

Similarly, in order for the function \(f \) to satisfy the system of partial differential equations (2.9), it must have the form

\[f = \alpha \frac{f_{k+1}(u_{k+1}) + \cdots + f_{k+n}(u_{k+n})}{1 + u_{k+1}^2 + \cdots + u_{k+n}^2} , \]

where \(f_{k+1}, \ldots, f_{k+n} \) are arbitrary functions of \(u_{k+1}, \ldots, u_{k+n} \), respectively.

From (2.1), (2.2), (2.4) and (2.10), we obtain

\[B_{1j} U_j(0) = - \frac{16}{A^4}, R'_{i j} U_j(0) = - \frac{16 f}{A^4}, j = 2, \ldots, k , \]

\[R_{i k + j} U_j(0) = 0, R'_{i k + j} U_j(0) = \frac{2}{(AB)^2} \left\{ A^2 \frac{\partial^2 \varphi}{\partial u_i^2} + 2A u_i \frac{\partial \varphi}{\partial u_i} \right\} \]

\[- 2A \sum_{i=1}^k u_i \frac{\partial \varphi}{\partial u_i} + B^2 \frac{\partial^2 f}{\partial u_{k+j}^2} + 2B u_{k+j} \frac{\partial f}{\partial u_{k+j}} - 2B \sum_{i=j}^n u_{k+i} \frac{\partial f}{\partial u_{k+i}} \right\} , \]

\[j = 1, \ldots, n \]
(2.20) \[R_{i,jk+i}(0) = R'_{i,jk+i}(0) = 0, \, j = 2, \ldots, l = 1, \ldots, n, \]
(2.21) \[R_{1k+j+k+l}(0) = R'_{1k+j+k+l}(0) = 0, \, j = 1, \ldots, n, l = 1, \ldots, n, \]
where \(R'_{k+i} \) denotes the derivative of \(R_{k+i} \) with respect to the parameter \(t \).

From (1.1), (1.2) and (1.3), we obtain the following formulas

\[
\begin{cases}
g'_{k+l}(0) = \cdots = g_{k}(0) = d_{11}, \\
g_{k+l,k+1}(0) = \cdots = g_{k+n,k+n}(0) = d_{k+n,k+n}, \\
g'_{k+l}(0) = \cdots = g'_{k+n,k+n}(0) = \varphi d_{k+n,k+n}.
\end{cases}
\]

Relations (2.18) and (2.19) by means of (2.7) and (2.22) take the form

\[
R_{k+l}(0) = -d_{11} R'_{k+l}(0) = -fd_{11}, \quad j = 2, \ldots, k,
\]

\[
R_{1k+j+k+l}(0) = 0, R'_{1k+j+k+l}(0) = \frac{d_{11} d_{k+l+1}}{8} + 2A u_{1} \frac{\partial \varphi}{\partial u_{1}}
\]

(2.23) \[-2A \sum_{i=2}^{k} u_{i} \frac{\partial \varphi}{\partial u_{i}} + B^{2} \frac{\partial^{2} f}{\partial u_{k+j}^{2}} + 2B u_{k+j} \frac{\partial f}{\partial u_{k+j}^{2}} - 2B \sum_{i+j}^{n} u_{k+i} \frac{\partial f}{\partial u_{k+i}} \]

\[j = 1, \ldots, k. \]

3. Let \(P \) be any point of \(M_{1} \times M_{2}. \) Then the \(k + n \) vectors

\[\partial / \partial u_{1}, \ldots, \partial / \partial u_{k}, \partial / \partial u_{k+1}, \ldots, \partial / \partial u_{k+n} \]

form an orthonormal basis of the tangent space \((M_{1} \times M_{2})_{P} \).

As it is known, the sectional curvature of the plane spanned by \(\partial / \partial u_{1}, \partial / \partial u_{j}, j = 2, \ldots, k, \) is given by

\[K_{1j} = -\frac{R_{1j}(0)}{g_{1j} g_{jj}}, \quad j = 2, \ldots, k, \]

which implies

(3.1) \[K'_{1j}(0) = -\frac{R'_{1j}(0) g_{1}(0) g_{jj}(0) - R_{1j}(0) (g'_{1}(0) g_{jj}(0) + g_{1}(0) g'_{jj}(0))}{g_{1j}(0) g_{jj}(0)} \]

Relation (3.1), by virtue of (2.22) and (2.23), takes the form

(3.2) \[K'_{1j}(0) = -f. \]

Similarly, calculating \(K'_{k+1,k+j}(0) \), we obtain

(3.3) \[K'_{k+1,k+j}(0) = -\varphi. \]

Formulas (3.2) and (3.3), by means of (2.16) and (2.17), take the form
respectively. In order for $K_i'(0)$, $K_{k+j}'(0)$ to be positive, we must have $\alpha < 0$, $f_k(u_k) > 0$, $j = 1, \cdots, n$, $\varphi_i(u_i) > 0$, $i = 1, \cdots, k$, which means the real number α must be negative and the functions $f_k(u_k)$ and $\varphi_i(u_i)$ must be positive when the corresponding variable takes values in the interval $(-1, 1)$.

The sectional curvature of the plane spanned by $\partial/\partial u_l$, $\partial/\partial u_{k+j}$ is given by

$$K_{l+k+j} = -\frac{R_{l+k+j}^k}{g_{l+k+j}^k}, \quad l = 1, \cdots, k, j = 1, \cdots, n,$$

which, by virtue of (2.22) and either (2.24) or similar to (2.24), takes the form

$$K'_{l+k+j}(0) = -\frac{1}{8}\left\{A^2 \frac{\partial^2 \varphi}{\partial u_i^2} + 2Au_i \frac{\partial \varphi}{\partial u_i} - 2A \sum_{i=1}^{k} u_i \frac{\partial \varphi}{\partial u_i} - 2B \sum_{i=p}^{n} u_k \frac{\partial f}{\partial u_k} - 2B \sum_{i=p}^{n} u_k \frac{\partial f}{\partial u_k} \right\}.$$

In order for $K'_{l+k+j}(0)$ to be positive and because the functions φ and f are independent, it must be

$$A^2 \frac{\partial^2 \varphi}{\partial u_i^2} + 2Au_i \frac{\partial \varphi}{\partial u_i} - 2A \sum_{i=1}^{k} u_i \frac{\partial \varphi}{\partial u_i} < 0, \quad l = 1, \cdots, k,$$

$$B^2 \frac{\partial^2 f}{\partial u_k^2} + 2B u_k \frac{\partial f}{\partial u_k} - 2B \sum_{i=p}^{n} u_k \frac{\partial f}{\partial u_k} < 0, \quad j = 1, \cdots, n.$$
If the functions \(f_{k+j} = f_{k+j}(u_{k+j}) \), \(\varphi_i = \varphi_i(u_i) \) are chosen to have the form

\[
\begin{align*}
f_{k+j} &= u_{k+j}^2 + \frac{1}{2n}, \quad j = 1, \cdots, n, \quad \varphi_i = u_i^2 + \frac{1}{2k}, \quad i = 1, \cdots, k, \\
\end{align*}
\]

then the inequalities (3.7) take the form

\[
2 - A > 0, \quad 2 - B > 0,
\]

which, by virtue of (2.7), become

\[
1 - u_i^2 - \cdots - u_k^2 > 0, \quad 1 - u_{k+1}^2 - \cdots - u_{k+n}^2 > 0,
\]

which are valid on the open balls \(u_i^2 + \cdots + u_k^2 < 1, \ u_{k+1}^2 + \cdots + u_{k+n}^2 < 1 \), respectively.

Relations (2.16) and (2.17), by means of (3.8), take the form

\[
\begin{align*}
f &= \alpha \frac{u_{k+1}^2 + \cdots + u_{k+n}^2 + 1/2}{u_{k+1}^2 + \cdots + u_{k+n}^2 + 1}, \quad \varphi = \alpha \frac{u_i^2 + \cdots + u_k^2 + 1/2}{u_i^2 + \cdots + u_k^2 + 1}. \\
\end{align*}
\]

The second of (2.24) or similar to that and (3.4), by means of (3.9), become

\[
R'_{lk+j lk+j}(0) = \frac{2\alpha}{(1 + u_i^2 + \cdots + u_k^2)(1 + u_{k+1}^2 + \cdots + u_{k+n}^2)} \times \left\{ \frac{1 - u_i^2 - \cdots - u_k^2}{1 + u_i^2 + \cdots + u_k^2} + \frac{1 - u_{k+1}^2 - \cdots - u_{k+n}^2}{1 + u_{k+1}^2 + \cdots + u_{k+n}^2} \right\},
\]

\[
K'_{lk+j}(0) = -\frac{\alpha}{8} \left\{ \frac{1 - u_i^2 - \cdots - u_k^2}{1 + u_i^2 + \cdots + u_k^2} + \frac{1 - u_{k+1}^2 - \cdots - u_{k+n}^2}{1 + u_{k+1}^2 + \cdots + u_{k+n}^2} \right\},
\]

\[
l = 1, \cdots, k, \ j = 1, \cdots, n.
\]

Using the fact that \(\alpha < 0 \), then following inequalities are obtained from the above relations:

\[
R'_{lk+j lk+j}(0) < 0, \quad K'_{lk+j}(0) > 0, \quad l = 1, \cdots, k, \ j = 1, \cdots, n,
\]

which are valid on the open balls \(u_i^2 + \cdots + u_k^2 < 1, \ u_{k+1}^2 + \cdots + u_{k+n}^2 < 1 \).

Let \(\xi(z^1, \cdots, z^{k+n}) \) and \(z(z^1, \cdots, z^{k+n}) \) be any two vectors of the tangent space \((M_1 \times M_2)_P \). The sectional curvature of the plane spanned by \(\xi \) and \(z \) is given by ([11], p. 12)
\[K = \frac{R_{kijl}z^k z^l \xi^i \xi^j}{(g_{ki}g_{lj} - g_{kj}g_{il})z^k z^l \xi^i \xi^j}, \]

or

\[(3.11) \quad K = \frac{A}{B}, \]

where

\[(3.12) \quad A_i = R_{kijl}z^k z^l \xi^i \xi^j, \quad B_i = (g_{ki}g_{lj} - g_{kj}g_{il})z^k z^l \xi^i \xi^j. \]

From (3.11), the following is obtained:

\[(3.13) \quad K'(0) = \frac{A_i(0)B_i(0) - A(0)B'(0)}{B_i(0)}. \]

From (3.12), by virtue of (2.3), (2.6), (2.20), (2.21), (2.22), (2.23), (2.24) and similar formulas to (2.23) and (2.24), we obtain

\[(3.14) \quad A_i(0) = - Cd_i l - D d_{k+1} d_{k+1}, \]
\[(3.15) \quad A'_i(0) = - fCd_i l - \varphi D d_{k+1} d_{k+1} + T, \]
\[(3.16) \quad B_i(0) = - Cd_{i l} - D d_{k+1} d_{k+1} - Ed_{i l} d_{k+1} d_{k+1}, \]
\[(3.17) \quad B'_i(0) = - 2fCd_{i l} - 2\varphi D d_{k+1} d_{k+1} - (f + \varphi)Ed_{i l} d_{k+1} d_{k+1}, \]

where

\[(3.17) \quad C = \sum_{i=1}^{k} \sum_{i<j}^{k} \alpha_{ij}, \quad D = \sum_{i=k+1}^{k+m} \sum_{i<j=k+2}^{k+m} \alpha_{ij}, \quad E = \sum_{i=1}^{k} \sum_{j=1}^{m} \alpha_{i+k+j}, \]
\[(3.18) \quad T = \sum_{i=1}^{k} \sum_{j=1}^{m} R_{i+k+j}^{l+k+j}(0)\alpha_{i+k+j}, \alpha_{jm} = (\xi^j z^m - z^m \xi^j). \]

Relation (3.13), by means of (3.14), takes the form

\[(3.19) \quad K'(0) = \frac{TB_i(0) + CGd_{i l} + DJd_{k+1} d_{k+1}}{B_i(0)}, \]

where

\[(3.20) \quad G = B'_i(0) - fB_i(0), \quad J = B'_i(0) - \varphi B_i(0). \]

Formulas (3.20), by virtue of (3.15), and (3.16), become

\[(3.21) \quad G = L - (2\varphi - f)D d_{k+1} d_{k+1}, \quad J = N - (2f - \varphi)Cd_{i l}, \]

where

\[(3.22) \quad L = - \varphi Ed_{i l} d_{k+1} d_{k+1} - fCd_{i l}, \quad N = - fEd_{i l} d_{k+1} d_{k+1} - \varphi D d_{k+1} d_{k+1}. \]
Relation (3.19), by means of (3.21), takes the form

\[(3.23) \quad K'(0) = \frac{TB_1(0) + CLd_{l_1}^2 + DNd_{k+1}^2 - (f + \varphi)CDd_{l_1}d_{k+1}^2}{B_1^2(0)}.\]

From (3.15) and (3.22), by means of (3.17), and because the functions \(f\) and \(\varphi\) are negative, we conclude

\[(3.24) \quad B_1(0) < 0, \quad L \geq 0, \quad N \geq 0.\]

The first of (3.18), by virtue of the first inequality of (3.10), implies

\[(3.25) \quad T \leq 0.\]

Formula (3.23), by means of (3.17), (3.24), (3.25) and \(f < 0, \varphi < 0\), implies

\[K'(0) > 0,
\]

because it is not possible that simultaneously \(C = D = T = 0\) for the two vectors \(\xi\) and \(z\).

Hence, we have the following theorem.

THEOREM. Let \(M_1\) and \(M_2\) be two special Riemannian spaces with constant positive sectional curvature defined in \(\S\) 1. If we consider a special 1-parameter family of Riemannian metrics \(F(t)\) on \(M_1 \times M_2\) defined by (1.3), where the functions \(f, \varphi\) have the form (3.9), then the derivative of the sectional curvature with respect to the parameter \(t\) for \(t = 0\) and for any plane of \((M_1 \times M_2)_p\) and \(\forall p \in M_1 \times M_2\) is strictly positive.

From the above, we conclude that, if the parameter \(t\) is positive and small enough, then the corresponding Riemannian metric \(F(t)\) defined by (1.3) on \(M_1 \times M_2\), where the functions \(f\) and \(\varphi\) have the form (3.9), has strictly positive sectional curvature.

I wish to express here my thanks to Professor S. Kobayashi for many good ideas I obtained from conversations with him.

REFERENCES

Received March 14, 1967.
Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California 90024.

Each author of each article receives 50 reprints free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsu-sha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners of publishers and have no responsibility for its content or policies.
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martin Aigner</td>
<td>On the tetrahedral graph</td>
<td>219</td>
</tr>
<tr>
<td>Gregory Frank Bachelis</td>
<td>Homomorphisms of annihilator Banach algebras</td>
<td>229</td>
</tr>
<tr>
<td>Phillip Alan Griffith</td>
<td>Transitive and fully transitive primary abelian groups</td>
<td>249</td>
</tr>
<tr>
<td>Benjamin Rigler Halpern</td>
<td>Fixed points for iterates</td>
<td>255</td>
</tr>
<tr>
<td>James Edgar Keesling</td>
<td>Mappings and dimension in general metric spaces</td>
<td>277</td>
</tr>
<tr>
<td>Al (Allen Frederick) Kelley, Jr.</td>
<td>Invariance for linear systems of ordinary differential equations</td>
<td>289</td>
</tr>
<tr>
<td>Hayri Korezlioglu</td>
<td>Reproducing kernels in separable Hilbert spaces</td>
<td>305</td>
</tr>
<tr>
<td>Gerson Louis Levin and Wolmer Vasconcelos</td>
<td>Homological dimensions and Macaulay rings</td>
<td>315</td>
</tr>
<tr>
<td>Leo Sario and Mitsuru Nakai</td>
<td>Point norms in the construction of harmonic forms</td>
<td>325</td>
</tr>
<tr>
<td>Barbara Osofsky</td>
<td>Noncommutative rings whose cyclic modules have cyclic injective hulls</td>
<td>331</td>
</tr>
<tr>
<td>Newton Tenney Peck</td>
<td>Extreme points and dimension theory</td>
<td>341</td>
</tr>
<tr>
<td>Jack Segal</td>
<td>Quasi dimension type. II. Types in 1-dimensional spaces</td>
<td>353</td>
</tr>
<tr>
<td>Michael Schilder</td>
<td>Expected values of functionals with respect to the Ito distribution</td>
<td>371</td>
</tr>
<tr>
<td>Grigorios Tsagas</td>
<td>A Riemannian space with strictly positive sectional curvature</td>
<td>381</td>
</tr>
<tr>
<td>John Alexander Williamson</td>
<td>Random walks and Riesz kernels</td>
<td>393</td>
</tr>
</tbody>
</table>