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A set of linear operators from one normed linear space
to another is collectively compact if and only if the union of
the images of the unit ball has compact closure. This paper
concerns general properties of such sets, Several useful cri-
teria for sets of linear operators to be collectively compact
are given., In particular, every compact set of compact linear
operators is collectively compact. As a partial converse, every
collectively compact set of self adjoint or normal operators
on a Hilbert space is totally bounded.

Let X and Y be real or complex normed linear spaces and [X, Y]
the space of bounded linear operators on X into Y. It is assumed that
[X, Y] has the norm topology except in Proposition 2.1(c), where a
strong closure appears.

Let <# denote the closed unit ball in X. Then 2 C[X, Y] is
collectively compact if and only if the set 5<% = {Kwu: Ke %,
x € <&} has compact closure in Y. Collectively compact sets and their
applications to integral equations have been treated in a number of
papers [1-5, 7-9, 11-12]. Results obtained in this paper are used in
a sequel [6] which relates spectral properties of operators 7 and T,,
n=1,2, ..., such that T, — T strongly and {T, — T} is collectively
compact.

Frequently it will be necessary to show that a set in Y or [X, Y]
is compact. For this purpose, recall that a subset of a metric space
is compact if and only if it is closed and sequentially compact if and
only if it is complete and totally bounded (for each ¢ > 0 it has a
finite e-net). An often useful fact is that a set is totally bounded
whenever it has a totally bounded ¢-net for each ¢ > 0. The familiar
proposition that a continuous function from one topological space to
another maps compact sets onto compact sets will be used several
times. The following generalization of the Arzeli-Ascoli theorem will
be needed.

LEmMMA 1.1. Let § be an equicontinuous set of functions from
a compact metric space 55 into a metric space. For each pe 5%,
assume that the set Fp = {f(p): f € 27} has compact closure. Then
the set % = {f(p): f e, pe %} has compact closure.

2. General properties of collectively compact sets. Collectively
compact sets of operators have a number of properties analogous to
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those of sets with compact closure in arbitrary normed linear spaces.
For example, any subset or scalar multiple of a collectively compact
set is collectively compact. Any finite union or sum of collectively
compact sets is collectively compact. A collectively compact set is
necessarily bounded.

ProposiTiON 2.1. Let %" C[X, Y] be collectively compact. Then
the following sets are collectively compact:

(a) The convex hull of .5

(b) The circled hull \NK: M| £ 1, Ke %7} of 55

(c) The strong closure .% * and norm closure .5 of .5%;

(d)y S nK,:K,e 2, SN N =b: for each b > 0, N < oo,

Proof. Mazur’s theorem [10, p. 416] yields (a). The circled hull
of a compact set in Y is compact since the map f defined by f(\, ¥) = \y
is continuous. This yields (b). Since % < % *and % "% C ¥ 7,
(c) is valid. Since .2 is bounded, the set in (d) belongs to the norm
closure of the convex circled hull of b 9.

The next result involves integrals of operator valued functions.
Let I" be a finite interval if X is real and a rectifiable arc if X is
complex. Suppose K,(\)C[X, Y] for el and & in an index set A.

For each ae A assume that S K.\ )d) is the strong or norm limit of
r

the usual approximating sums,
ZIK,X(M)(M = N .
=

ProposITION 2.2. With the foregoing notation, assume that {K,(\):

ae A, nverl} is collectively compact. Then {S K, (\)d\: ae A} is col-
r
lectively compact.

Proof. This follows from Proposition 2.1(c), (d) and
3% — Ny | < length (1)
Jj=1
For the next proposition, let Z be another normed linear space.

ProPoOSITION 2.3. Let ¥ C[X, Y], # C|Z,X]and 1} C|Y, Z].
Then

(a) 2 collectively compact, .2 bounded = .9 7 collectively
compact,

(b) 2 collectively compact, ./ compact = _4~.% collectively
compact.



COLLECTIVELY COMPACT SETS OF LINEAR OPERATORS 41¢

Proof. (a) Suppose ||M|| <+ for all Me._~. Then
H B Cr P,

8o 5% .7 <% is compact and .9 . is collectively compact. (b) Define
amap f: / X 7<% —ZDby f(N,y) =Ny for Ne_J", ye 5% <%.
Since ./ and .5 <% are compact and f is continuous, its range, which
contains /.9 <7, is compact. Thus ./ 5% <7 is compact and _/ " 5%
is collectively compact.

A collectively compact set is a bounded set of compact operators.
The converse fails as can be seen by considering the set of one di-
mensional projections of norm one in any infinite dimensional Banach
space. However we have:

THEOREM 2.4. Ewery compact set .55~ of compact operators in
[X, Y] is collectively compact.

Proof. Define maps f,: 55 — Y by f(K) = Kz for Ke 57, x ¢ <%
and let § = {f.:xe.<Z}. Since || f(K, — K))|| = || K, — K, ||, & is equi-
continuous. Since each K¢ .2 is compact, the sets FK = K277 are
compact. By hypothesis, .2 is compact. Therefore, by Lemma 1.1,
X% = i <% is compact and % is collectively compact.

THEOREM 2.5. If Y 1is complete, then every totally bounded set
% of compact operators in [X, Y] s collectively compact.

Proof. In this case, .% is a compact set of compact operators.
By Theorem 2.4, 5 is collectively compact. Hence, . is collective-
ly compact.

The converses of Theorems 2.4 and 2.5 are false:

ExaAmPLE 2.6. Let .2 be the set of operators on I?(1 < p £ )
defined by K,x = x,p,, n=1. Since % <7 is bounded and one-
dimensional, .5 is collectively compact. But .o is not totally bound-
ed, for || K, — K, || = 2% if m # n.

Partial converses of Theorem 2.5 are given in the next section.

3. Operators on a Hilbert space. Throughout this section, let
X be a Hilbert space. It will be shown that every collectively com-
pact set of self adjoint or normal operators in [X, X] is totally
bounded.

We begin by considering sets of projections. Let .o = {z: ||z || =1}
and, for each x¢ .97, let E, be the self adjoint projection onto the
.subspace spanned by w.
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Levmma 3.1, Let w <. and #7 = {E;:xecz}. (Thus, # can
be any set of self adjoint projections with one-dimensional ranges.)
The following statements are equivalent:

(a) 2 s totally bounded;

(b) _# s totally bounded;

(¢) _# 1is collectively compact.

Proof. Since E,y = (y, x)x for ye X and xec.%”, the map f:
& —|X, X] given by f(x) = E, is continuous. Since #Z = f(%),
(a) implies (b). By Theorem 2.5, (b) implies (¢). Since % C # .#,
(¢) implies (a).

LEMMA 3.2, Let _Z be a collectively compact set of self adjoint
projections and _7" any subset consisting of mutually orthogonal pro-
jections. Then 27" is finite and there is an integer n, independent
of 7", such that

SidimEX < #n.
Ee. .7’

Proof. Since .~ 5 is totally bounded, it can be covered by a
finite number n of open balls of radius 1/2. If =, ye _#Z .S andx Ly

then |jx — yi| = 12, so that @ and y lie in different balls. The lemma
follows.

LEMMA 3.3. Suppose X is a real Hilbert space and X is its
complexification defined in the wusual way. For 27 C|X, X], let
i [X', X | be the set of canownical extensions of operators in o .

Then 2 is collectively compact if and only if % s collectively
compact,

Since the proof is straightforward, it is omitted.
We are now ready to establish the principal results of this section.

THEOREM 3.4. Let 57 be a set of self adjoint or normal com-

pact operators on a Hilbert space. Then the following statements
are equivalent:

(a) 2 1s collectively compact.

(b) o™ ={K*: Ke 5} is collectively compact.

(¢) 97 1s totally bounded.

Proof. Without loss of generality, X is complex. Assume
" ={K,. e A}

collectively compact. Then every K, is compact. For each ac A,
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the spectral theorem yields a decomposition

Ka = Z )"omEan

with the self adjoint projections E,, multually orthogonal and with
dim E,,X = 1 (thus, the \,, are not necessarily distinct). Since 5%~
is bounded, there exists b < o« such that

M | S N KN S0, acd,n=1.
For e A and € > 0, let

N,. = {n: | Aan| = ¢},
A = {Ep: € A, me N},
KQ’E = Z X&’ILEOZ’VL y

nE€N ge

o ={K,:.aeA}.

Then K, E., = \e.E,, and, for ne N,,, E,,.<% = \;K E,,Z C 'K, %
Therefore, 7<% Cce ' <# and _# is collectively compact. By
Lemma 3.1, _# is totally bounded. By Lemma 3.2, there exists n
such that, for each ae A, N, contains no more than n, elements
Then .57 is in the convex circled hull of b =, ., so % is totally
bounded. Since || K, —K,.|| < ¢ for all ae A, 2 is an c-net fo
2¢. Therefore, .9 is totally bounded.

This result and Theorem 2.5 give:

2¢ collectively compact if and only if 57 totally bounded .
Since || T*|| = || T'|| for all Te[X, X],
2" totally bounded if and only if 2 * totally bounded .

The theorem follows.

THEOREM 3.5. Let 57 be a set of compact operators on a Hilber
space. Then 27 1is totally bounded if and only if both 27 and S¢
are collectively compact.

Proof. As above, 97 totally bounded implies .# and _2#°* col
lectively compact. Now assume .9 and .9%°* collectively compact
Then the sets

@ ={K+K:Ke%}, 7 ={K—K*"Kex}

are collectively compact. By Theorem 3.4, <2 and _# are totall;
bounded. Since ¥ U F*cC(# + £)U(F — _#), both ¥ an
97 * are totally bounded.
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For the collectively compact set .9 in Example 2.6 with p = 2,
it is easily verified that .9 °* is not collectively compact. This also
follows from Theorem 3.5, since .97 is not totally bounded.
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