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This paper gives a unified account of a body of work on
mean values of functions regular in the unit disc, relating
particularly to the fractional derivatives and integrals of such
functions.

Two types of fractional derivative and integral are dis-
cussed. For each of the two types of fractional derivative
considered, a function analogous to the Littlewood-Paley g-
function is defined, and the properties of these two g-type
functions are discussed. The results obtained here include
several new inequalities, and, in particular, an extension
(Theorem 5) of a theorem of Hirschman for indices less than or
equal to 1.

The remaining contents are as follows. In §4 the Hardy-Littlewood
maximal theorem is applied to obtain an inequality for fractional deriva-
tives. In §10 an auxiliary theorem equivalent to one of Hardy and
Littlewood is proved, and this is used to obtain a new proof of a theorem
on majorants. In §8§11-12 new proofs of the Hardy-Littlewood theorem
on fractional integrals and of some related results are given, and in §13
a theorem of Hardy and Littlewood on the convolution series of two
power series is completed and extended.

The results obtained have obvious applications in the classical
theory of Fourier series, via M. Riesz’s theorem on conjugate functions,
but these are not stated explicitly.

2. Notation and theorems used. We assume throughout this
paper that ¢ is a function regular in the unit disc 4 = {zeC: |z]| < 1},
and that

@) = %cnz“ (ze d).

We write

Myw; 0) = {o=| 1pt0e pao}” @ <p< +eo),
M(p; 0) = M..(p; p) = sup | p(0e®)] .

It is familiar that if 0 < p <+ oo, then M,(p; p) increases with p,

and therefore tends to a finite limit or + o as p—1—. We define
(2.1) A (P) =p1_ij§ Myp; 0) (O<p= ),

the value + oo being allowed. The class of @ for which the limit in
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(2.1) is finite is, of course, the class H?. It is familiar that if ¢ € H?,
then ¢ has a radial limit @(e*®) = lim ¢p(pe™®) for almost all 6, and that
p—i—m

@) = o= Ipenpas}” @ <p < 4o,

ANP) = Arulp) = ess sup lp(e®) | .

For any real- or complex-valued function f measurable in the in-
terval [ -7, 7] we write

A f) = {%S;mm |Pda}1”’ 0<p< +e0),

ANf) = A +of) = ess sup | f1,

the value + « being allowed. The class of f for which _#Z(f) is
finite (where 0 < p £ 4 ) is the class L?(—x, 7).

For any number p used as an index (exponent) and such that
1< p< 4+, we write p’ = p/(p — 1), so that p and p’ are conjugate
indices in the sense of Holder’s inequality. We extend this notation
to include p = 1 and p = + « by interpreting 1/0 as + oo and 1/+ oo
as 0. All indices and other parameters are assumed to be finite except
where otherwise stated.

Any inequality L < R quoted or proved is to be interpreted as
meaning ‘if R is finite, then L is finite, and L < R’.

We use A(D, ¢, ---) to denote a positive constant depending only
on b, ¢, ---, not necessarily the same on any two occurrences; A by
itself will denote a positive absolute constant. We also sometimes
write B for constants of the form A(b, ¢, ---); these too are not
necessarily the same on any two occurrences,

We collect together here a number of known theorems which we
use in the course of our proofs.

THEOREM A. Let

p=1, g=1, 1
r

let f, g be real- or complex-valued functions measurable on [—x, ],
and let

h(o) = ?lﬂ_g;f(a — Ho(t)dt .

Then
A (b)) = A (f)A (9) .
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This is a well-known inequality of W. H. Young (see, for example,
[22, i. p. 37]).

THEOREM B. Let f be a function measurable on the interval
10, +co[, let f(@) =0 for x>0, and let Fi(x) be the Riemann-
Liouville integral of f of order 6 with origin 0, 7.e.

Fie) = s (@ = 0wy -

If x> —1 and either
k=l=1,06>1/l -1k, or k>1>1, 6=1/1 —1Jk,

then

+ 11
0

{S:”m—1~“—kﬁpg(x)dx}”'° < A(k, 1, 5, x){g " it f’(x)dm}

For 6 > 1/l — 1/k this is essentially an elementary application of
Holder’s inequality; for 6 = 1/I — 1/k, the result lies deeper, the case
A = —1/l being the Hardy-Littlewood theorem on fractional integrals
of real functions (see [5, Th. 2]).

THEOREM C. If @€ H?, where 0 < p < + oo, then ¢ can be ex-
pressed in the form ¢ = @, + @,, where @, and @, are regular and
have no zeros in 4, and

AN P) 2242 (p)  (1=1,2).
This is a familiar theorem of Hardy and Littlewood ([8, p. 207]).

THEOREM D. If 0<p < + and g = max{0, 1/p — 1}, then
n*|e,| < Alp)A () .

This also is due to Hardy and Littlewood ([12, Theorem 28]).

THEOREM E. Let 0 <7 <1, and let S(6) = S,(0) be the open subset
of 4 bounded by the two tangents from the point e to the circle with
centre 0 and radius 7, together with the longer arc of this circle
between the points of contact. Let also @ be regular in 4, and let

() = sup |@(2)| .
zeS(0)
Then for 0 < p £ + o
A (@) = A, ) A (P) .
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This is the Hardy-Littlewood ‘ Complex Max’ theorem (see, for
example, [22, i, p. 278)).

THEOREM F. Let ¢ be regular tn 4, and let
1 T ’ 0—it) |k 1/k
T, (0) = S 1 — o) +k—2g S Mdt} .
@) = 1 (0 — orrrido|” LEEE
If p >0, k=2, >max{l, k/p}, then
'—///p(Tk,o) é A(k’ v, 0-)'-///10(73) .

This is one of the consequences of the Littlewood-Paley g-theorem
(see [3, Th. 15]).

THEOREM G. Let fe L(—=x, w), where p > 1, let the complex
Fourier series of fbe > =76, and let ¥(z) = Yo v.2"(ze 4). Then

A () = AD)AZ ()

This is equivalent to M. Riesz’s theorem on conjugate functions
(see Hardy and Littlewood [9] for further explanations).
In addition to these theorems we also make extensive use of
Holder’s inequality, and of Minkowski’s inequality in the form
1/k

{Joaz{{sw, wrwan} T = (rwav{ @, nowas}”

where k > 1, and f, g, h are nonnegative. We use also the analogous
result for £k = + o, namely

sup {[ @, 9wy} = [{sup sto, v}y .

3. Fractional derivatives and integrals, first type. The defini-
tion of fractional derivative and integral which is used in §§3-18 is
as follows, Let ¢ be defined as in §2, i.e. @ is regular in 4, and

P() = Szt (zed).

Then for any 8 = 0 the fractional derivative #°p of ¢ of order B is
given by

3.1) HFop(z) = 3, nfe,z" (e ).

n=0
Clearly #*¢ is regular in 4, and
(3.2) (I p) =
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for all nonnegative 3, 7.
The corresponding definition of the fractional integral applies only

to functions vanishing at the origin, Thus if ¢(0) = ¢, = 0, then for
any « = 0 the fractional integral J,p of ¢ of order a is given by

(3.3) S.p(2) = 2 ezt (z€ ).

As for the fractional derivative, the fractional integral &, is regular
in 4, and

(3.4) Il p) = Furrp

for all nonnegative «, .
When @(0) = 0, (3.1) and (3.3) can be used to define d,p and ¥¢p
for all real a, B (so that J,p = 9 “p for all real a), and then (8.2)

and (3.4) hold for all real «a, 3, 7.
The functions &,p and #°p defined above seem to have been first

studied by Hadamard [7]'. For a > 0, i~*d,p(pe”) is the Weyl frac-
tional integral of order a of the function &-~ @(0e®), and for any
positive integer m

. . o™ .
I p(oe’) = —- p(e”) .

Thus the definitions (3.1) and (3.3) correspond roughly to differentiation
and integration with respect to 6. We note also that if m is a posi-
tive integer, then

(3.5) o) = (2-) 90,

so that ¢ has its traditional meaning of zdi
2

For a > 0 the fractional integral ¢, is connected with @ by the
relation
; 1 (° et 0y 00
3.6 S p(06% =~_..S (1 ﬁ) oe0) 39
(3.6) #0e) = e | (log £) oo %

where 0 < p < 1; this relation is easily obtained by term-by-term in-
tegration, using the formulae

3.7
p“"gp(log plo)a"do = S (log 1/s)**s"'ds = S+mt“—1e—”tdt =n"l(a),

! Hadamard writes 2¢ in place of our 9% (for all real §). We have followed Hardy
and Littlewood in using inferior letters for integrals and superior letters for deriva-

tives.
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where @ > 0,7 > 0, 0 > 0.

The formula (3.6) was obtained by Hadamard [7, p. 157], but does
not seem to have been used by subsequent writers on fractional de-
rivatives and integrals. In §§4-12 we develop the theory of the
functions #°¢ and 4., making systematic use of the formula (3.6).

4. As our first application of Hadamard’s formula (3.6), we
prove:

THEOREM 1. Let S,(6) be the kite-shaped region defined in Theo-
rem K, where 0 <1 <1, let

0(6) = sup |9(d)|,
and let B> 0. Then for 0 <p<1
(4.1) | #p(0e”) | = A(B, NP — p)~FO(0) .

A similar result for a different type of fractional derivative is
proved by Hardy and Littlewood [17, Th. 5] (see also Hirschman [18,
Lemma 4.1], and Flett [6, Th. 8]).

Suppose first that B is a positive integer, m say, and let C be

the circle with centre z = pe® and radius %97(1 —p). By (3.5), for

z # 0 we have

—1,9m — i, @ \™ _ 1 P(E, 2)p(8)
onple) = () o) = 57| LB ac,

where P is a polynomial of degree m — 1 in {, 2 depending only on
m. Since Cc S,(6), it follows that

(4.2) o~ | 9"p(0e”) | = AB, )1 —p)~"P(0) ,

and this implies (4.1), since 9"p(0) = 0.
Next, let 8 be nonintegral, and let m = [8] + 1 (where [8] denotes,
as usual, the integral part of B). Since #p = &, _(F"p), (3.6) gives

8 i) 1 s ﬁ m—f- m io@_
@y elee) = i (log £)7 et

and since logl/x =1 — % for © > 0, and m — 8 < 1, we obtain from
(4.3) and (4.2) that

@4 900 | < AB, OO (0 — 0y (1 — o) do .

On substituting ¢ =1 — (1 — p)x, we see that the integral on the
right is equal to
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(4.5)
1 - p)‘ﬁg
and (4.4) and (4.5) together imply (4.1) for 1/2 < o < 1. On the other

hand, if 0 < o < 1/2, then the integral on the right of (4.4) does not
exceed

1/<1~p>( oo
1 1

z — 1)m—s-ig-mdy < (1 — p)“'sg — AB)L — p)*

20 = o)mi=do = 2v0m=3/(m — §) = ABI"L — )7,
and again the inequality (4.1) follows.

THEOREM 1. COROLLARY 1. If0<p <= +o, 8>0, then for
0=p<1

M,(%p; p) = A(p, B)o(l — p) P4 (@) .

This follows from the main theorem and Theorem E, with » = 1/2
(say). Applying this corollary to the function z- ¢p(0'*2), we deduce
also

THEOREM 1. COROLLARY 2. Let 0 < p £ + oo, and let

Myp; 0) sc(0) (O=p<1).
Then for B >0

M (Fp; p) = A@,B)0"* (1 — o) Pe()  (0=p<1).

5. Theorems of Littlewood-Paley type. We consider next a
group of three theorems closely related to results of Littlewood and
Paley, Hirschman, and the author.

For any ¢ regular in the unit disc 4, and for any positive & and
B, let

1/k

! 1\ i @
Zui0) = {| (o )" 19900 122}
THEOREM 2. If B8>0, and either k=1>=1, 6 > 1/l — 1l/k, or
E>1>1, 0 =1/l — 1/k, then for each 6
(5.1) Zs0) = Ak, 1, B, 0)ZL, B + 6(6) .
In particular, +f k=1 and v > 8 > 0, then for each 6
(5.2) T0) = Ak, B, M1, (0) .

THEOREM 3. If p >0, k=2, 8>0, then
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(5.3) A NC rp) = Ak, D, B)A (P)

THEOREM 4. If p >1, 1<k =2, 8>0, and 9(0) = 0, then
(5.4) A o\ P) = Alk, D, B)AZ (L1 5)

The results of Theorems 3 and 4 with <, ; replaceb by the func-
tion g, given by

6-5) 0..:40) = {{ @ = 0507 | #g(0e”) o}

are already known. The cases k = 2,8 =1and k = p, 8 = 1 of these
results for g, were proved by Littlewood and Paley [19], the funec-
tion g¢,, being the well-known Littlewood-Paley g-function The re-
maining cases where 8 =1 are due to Marcinkiewicz and Zygmund
[20], and the cases where 8 = 1 are due to Hirschman [18] and the
author [4, 6]. The crucial result for these theorems for g, ; is that
for g¢,, corresponding to Theorem 3 (i.e. the Littlewood-Paley g¢-theo-
rem), all the other results being obtainable from this.

It is easy to pass from (5.8) to the corresponding inequality for
g5 and vice-versa, for it is obvious that if £ > 1, 8 > 0, then

(5.6) Z5(0) = Ak, B)g1,500) ,

and in virtue of Theorem 1, we have also

2

/2

1
(5.7) gii0) = |+ Sw < A(k, BYOHO) + Alk, )T E(0)
for £ >0, 8> 0. It is also not difficult to deduce Theorem 4 from
the result for g, ; corresponding to Theorem 3. However, the argu-
ments involved in the proofs of these various results, at least for
B # 1, apply much more naturally to <, ; than to g,;, and it seems
worth while to give independent proofs of Theorems 3 and 4.

The inequality (5.1) is new. It shows in particular that the cases
k# 2, 8 =1 of Theorems 3 and 4 are implied by the cases k£ = 2 of
these results, and thus provides a new proof of the results of Mar-
cinkiewicz and Zygmund mentioned above. The simple special case
(5.2) also enables us to reduce the proof of Theorem 3 to the case
where B is a positive integer, and this in turn simplifies one of the
estimates involved.

6. We begin with the proof of Theorem 2. If 8 >0, ¢ > 0 then
I = 3,9 p), so that, by (3.6),

5 i 1 ? e -t 5+0 i d_o
#ptoe) | = | (log £) 719 g0 | T
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The required inequality (5.1) is therefore a consequence of the follow-
ing lemma.

LEMMA 1. Let h be a function measurable on the interval 10,1,
let h(0) =0 for 0 < p <1, and let

=1 Plog L)  nioy 2
o) = ) (low 2) ) -
If 8>0, and either k=1=1,6>1/1—1/k, or k>1>1,6 =1/l — 1/k,
then

{S <log l)’cﬁ—lhg(p)%@}l/k < Ak, 1, 8, 5){8 <10g _:_)_)lﬁﬂa—lh,(p)%g}l/z .

1 1
0 p 0
This follows easily from Theorem B by the transformation

l/x =log1/p, 1/y =logljo, f(x)=2a"""h(e), N=8—1.

The lemma may also be proved independently of Theorem B. In
our arguments we make essential use only of the case k = [ (this
gives the inequality (5.2)), and since the direct proof of this case of
the lemma is particularly simple, we give it here for the sake of
completeness.

Let k=1, >0, 6 >0, and choose /, depending on k, £, 4, such
that d/k' < p < B + 6/k'. For k > 1 we have, by Holder’s inequality,

6.1) OO} | ,
= {10z 5" (tox &) n@) [ (tox )™ (0w £) 74
= A(k, B, 9) <log %)kﬁ/k’—kpg:(log %)k#<log p>5—1h’°(a)'i—0 ,

o
the second factor on the right of the first line of (6.1) being easily
evaluated by means of the substitution 1/x = log1/p, 1/y = log1/o.
If £ =1, the final inequality in (6.1) holds trivially (where 1/%’ is
interpreted as 0). Writing ¢ = k8 + ko/k’ — kr, we therefore have
for k=1

6.2) Si(log%)””h’g(p)ﬂlpﬂ
< 5.5 (e )42 e 1 e £) i

= Ak, B, 3)S:<log —al—>k#h"(0)%o—8:<log —})—)c—l(log Tf—)a—l%‘o— .
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On substituting s = log 1/p, ¢t = log 1/0 we see that the inner integral
on the right of (6.2) is equal to A(k, B, 6)(log 1/¢)***~*, and the result
now follows.

7. We take next the proof of Theorem 3, and here we use
Theorem F (so that the proof, like that for g, ; depends ultimately
on the Littlewood-Paley g-theorem).

As remarked above, it is enough to prove (5.3) when 8 is a large
integer. We note now that if E(z) = 1/(1 — z) then

'(9‘8¢(p26i0) — —'217[_S” peiﬂ—it¢l(peiﬂ—-it)ﬂﬁ——lE(peit)dt .

It is immediate from (3.5) that for positive integral 8.
(7.1) | E(oe") | < A(B)o|1 — pei* [,

and therefore also

—2k 2 0\ |k T Pl(oe?H) | k
=% | Fp(0%e”) | éA(B){S~zT1——Wdt}

gA(B){S" | @' (pe?*—*) |* dt}{g ot }k_l

—x | 1 — peit Ikﬁ—2k+2 —x I 1 — peit lz

N k4 ’ eiﬁ—-it k
= A(k’ B)(l - lo) kg_x l 1‘ ?;(zeit Ikl@?_zik..)_z

Replacing p by o* in the integral for <%, and noting that
(log 1/0)**~0** < A(k, B)(1 — p)**~*,
we thus obtain (again for positive integral 5)
Zr(0) = Ak, B) T kp-2+2(0)

where T is defined as in Theorem F. Since we may assume that
kB — 2k + 2 > max {1, k/p}, the required inequality follows from Theo-
rem F.

When p = + o, the inequality (5.3) is known to be false for 8 =1
(take @(2) = (1 — 2)?), and is almost certainly false for all B8 > 0.

8. For the proof of Theorem 4 we use an argument of a type
first employed by Littlewood and Paley for the case 8 =1 of the
9., s-theorems, and subsequently extended by Hirschman [18] and the
author [6] to the case B8 # 1. For &, the argument takes a very
symmetrical form.

2 The inequality (7.1) continues to hold for nonintegral g > 0, but its proof for
such B is less trivial (see [4, p. 378]).
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To prove Theorem 4, it is enough to show thatif p > 1,1 <k < 2,
B > 0, then

(8-1) Mp(¢; R) = A(ky », B)/’//p(gk,ﬁ)
for 0 < R < 1. Since the expression on the left of (8.1) is equal to

sup ] .élﬂ.g"_xga(zzew) V(6)do ] ,

where the supremum is taken over all complex-valued trigonometric
polynomials V satisfying .~ ,(V) = 1, it is therefore enough to prove
that for any such V

®.2) || e VO)0| < Alh, 9, )2 (1)

when 0 < R < 1,
Let V(0) = 3V _yk.e"?, let £&(z) = >SV_k_,z", and for any v > 0 and
0<R<1 let

22 .000) = {{ (10g %)x 97(Roe”) i%’i}' :

By Theorem 3 and Theorem G,

8.3) Ay S Ak, p, VIM,(E; R) < Ak, p, ) A (V)
= A(ks v, 7) .

We note now that
|| B VOIS = 273 cn R

and hence, by the formulae (3.7), for any positive G, 7,

8.4)
z ) o8+1 1 1\#+-1dp (= ) »
V(@) = —2 '\ (log 2} L2\" (o) E(Rpe*)do
|| pren Vo = 2l (o )0 stgtoenorepe)
98+r (= 1 1 \8+r—t : —indO
== | db\(log= 9 ) E(Rpe )~ |
)30 (log 2 ) Fetoe e R L

By Holder’s inequality with indices k, k', the absolute value of the
inner integral on the right of (8.4) does not exceed &, (6)>F . (—¥0),
and therefore, by Holder’s inequality with indices p, p'.

x 2.5+7’

1 i
8.5) IEES_KQD(R@ )V(a)da[ S e

28+7
S — A NZ A )
= F(B r 'Y) p(-/ k,ﬁ)*/ p( k,r)

S” G o s0) 5 4 (— 0)d0
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Taking v = 1 (say), we obtain from (8.5) and (8.3) the inequality (8.2),
and this completes the proof.

When p = + <o, the inequality (5.4) is false for all 8 > 0. To
prove this, we take @(2) = X7 .(n log n)~*2", so that ¢ is unbounded
in 4. Then for 8 > 0 we have

e —1
1-— p) !

whence &, ,(0) < A(k, B) for all 6 (since k > 1), and this proves the
statement.

| Pploe)| = 3 n(log m) ot = AB)0'(L — o) (log

We note in passing that the results for the function g, ; defined in
(5.5) corresponding to Theorems 3 and 4 are now immediate consequences
of (5.6) and (5.7). When k£ > 1 we have also an inequality for g,.;
corresponding to (5.2), but we postpone the proof of this until §16.

9. It is probable that the inequality of Theorem 4 holds for
p>0,0<k<2 B>0. We are unable to prove this in full gener-
ality, but we can deal with the case 0 << &k <1 for certain values of
B.° In contrast to Theorem 4, the case p = + o is true here.

THEOREM 5. If @(0) = 0, and either ()0 < p <+, 0< k<,
B=1/k, or (i) 0<p=k=<1, 8>0, then

©.1) A p) = Alke, p, B) A (Z16)

We consider first the case where ¢ is regular in the closed dise
4, and we show that in this case the inequality (9.1) holds for
0<p= 4o, 0< k=1, B>0; the limitations on » and £ in (i)
and (ii) arise only in the reduction of the general case to this special
one,

Suppose then that ¢ is regular in 4 and that 0 < p £ + oo,
0<k<1l, 8>0. Itis enough to show that

(9.2) M(p; 1) = Ak, p, B) A2 (Z 16) -

Since @ is regular in 4, the formulae (3.7) give

iy _ 1 ! 1\ 8 7 dIO
Pp(e”) G} B)So<log~p) (e )p ,
and therefore

; 1 1\¢-! v Ao
9.3 i < = el 298 0y | 27 .
9.3) (e = gy (o )19 toe) &

8 A partial result for 0< p =<1, k=2, =1 is proved in {2].
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This trivially implies (9.2) for £ = 1, so that we may suppose k < 1.
Let @ be defined as in Theorem 1, with » = 1/2 (say). Then

| Hp(0e’’) | = A(B)p(L — p)~*@(0) < A(B)(log 1/0)~*@(0) ,
whence, by (9.3),

O 9] = Alk, O+0)| (log 1/o)~ | #p(0e”) o do
= Ak, B)YPH0) T 5(0) .
If p < + 00, then (9.4) gives

M(p; ) = Ak, », ]| 0vrr@)z i)}

Applying Holder’s inequality with indices 1/(1 — k), 1/k, and then
Theorem E, we obtain

(9.5) My(p; 1) < Ak, p, B) A @) A 3(Z 16)
< Ak, p, BYM; ™ (@5 1)l (Z 1)

and since M,(p; 1) is finite, this implies (9.2). If p = + oo, then (9.5)
follows immediately from (9.4), and again we obtain (9.2).

Suppose now that ¢ is regular in 4, and let 0 < R <1, Apply-
ing the special case to the function z- p(Rz), we get

9.6 M3lp; B) < Ak, p, 6)| ao{{(log %)’“‘*““ Fp(Roe') | de }P/k .

If 8=1/k, then

| (105 2) " 1970 Epe) 1192 = | (105 E) 9000 17

= |"(log 1) 0pi0e") M2 < 2L 0)
0 g g

Hence
M£(¢; R) é A(k) v, B)%g(gk'ﬁ) ’
and this implies (9.1).
If £k =p, 8>0, then (9.6) gives

, 1 1 \ke-1 clp % . .
Mi(p; B) = Ali, ) (log )" 221" |9ig(Roe) a0 .
Since the inner integral on the right increases with R, we may replace
R on the right by 1, and this again implies (9.1).
We note explicitly the cases p = k& of Theorems 4 and 5, viz.
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THEOREM 6. If p(0) =0, and 0 <k <2, 8> 0, then

1
0

A ug) = Atk O] [ (108 2) 1900 Fomdpas)

10. A theorem on the means M, (p; p). We prove next

THEOREM 7. Letp(0)=0,let0<p<qg=+ o, a=1/p—1/q, k=p,
and let

= {[ e 2 )

Then
(10.1) J < Ak, p, @) (P) .

This is equivalent to a result of Hardy and Littlewood [12, Th.
31; 17, Th. 11]*. The theorem can be proved in various ways, and
we give here a variant of the proof in {17] which makes the least
demands on the theory of the H” classes.

Suppose first that p = 2, so that &« = 1/2 — 1/q, and let C = _Z (o).
Then

M(@; 0) = S e.| "
= (Slero) (Ee) = o(325) = (e 5) ™

and therefore for 2 < ¢ < +

10.2)  Myp; 0) = M='(p; 0)M(g; 0) < Cllog 1/0)~ .
Hence
(10.3) Jt < Ck_281<10g ) M 022

0 p p

Next, since
; UPTRSNEN )
p(0e") = |9p(0e") 2,

* The equivalence follows by the argument of [17, Lemma y]. Hardy and Little-
wood use a factor (1 — p)**~1 in place of the logarithmic factor above; the form given
here is more convenient for our applications.

It should be noted that there is a misprint in the statement of the result in [17];
the C on the right of (11.2) on p. 236 should be Ct.
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Minkowski’s inequality gives

M(@; 0 = | M3 )

(the case ¢ = + « being included), and hence, by (10.3) and the case
l=k=2,0=1 of Lemma 1,

(10.4) J* = Ak, @)= (g LY i 022
0 o
= Ak, a)C"—zg[)(log E)WM;@;@; pz)_‘ilpﬁ ,

By (10.2) applied to the function z - d'p(z),

Mi@'p; 0°) < (log 1/p)~*Mi(#'p; 0) ,
and hence, by (10.4) and (3.7),

J* < Ak, 0| (log 2 )Mzwlso, ).
4
= Ak, 9| (log = )(S o, 10"
(e )& ) .

= A(k, q)C*3 |, [ = Ak, g)C* ,

and this is (10.1) with p = 2.
Suppose next that p = 2. In this case it is enough to prove that

if 4 isregularin 4,and 0 < p < q¢< 4+, =1/p — 1/q, k = p, then

(10.5) {S:(log %)““M:;w; 0) p’““‘dp}”k < A(k, D, Q) A (W)

for the inequality (10.1) follows from this with +(z) = 27'9(2). Fur-
ther, by Theorem C, it is enough to prove (10.5) when + has no zeros
in 4.

Let 4 be such a function, let y = ¥*2, s = 2¢/p, l=2k/p, B =
1/2 — 1/s. Then s > 2,1 =2, I8 = ka, and _Z5(y) = _Z %)), so that
for this + the inequality (10.5) is equivalent to

1 1\ 11 |
10. il e k—1 < 2 i
106 {](tog )" M M0tdo}” = Ak, 2, 900
But, by the case p = 2 of (10.1) applied to @(z) = 2x(2),

w00 {| (log 2)""briz; 0do}” = Alky 2, 0 D) -
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If k¥ =1, (10.7) implies (10.6) immediately. If ¥ < [, then on putting
o' = o* in the integral on the left of (10.7), and noting that

M,(x; 0) =z MAy; 0)

(since p = o' > g), we see that the left side of (10.6) does not exceed
({/k)? times that of (10.7), whence again (10.6) follows, and this com-
pletes the proof.

For certain p and ¢ we have a stronger result.

THEOREM 8. Let o(0) = 0, let w = (w,) be a sequence of numbers
such that {w,| <1 for all n, and let

(10.8) Pu?) = S ewer (zed).
If0<p<qg=+e,p=2=q, a=1/p~1/q, k= p, then

w9 | (log ) o 0L 5 Ak, 2 0 0)

If p = 2, this follows from the trivial inequality . 2 ,(p,) < 7 (p)
and the inequality (10.1) applied to o,.
If p < 2, then by (10.1) with ¢ = 2 we have

1 k)p—lj2—1 1k
@0.10) {10 1) Migr 222} < Ak, )2 () -
0 p p
Further, by (10.2) applied to ¢,, we have

(10.11) (log 1/0)" =~ M (p,; 0) = Mup.; 0) = MAp; 0)
for 2 < ¢ £ +co, and (10.10) and (10.11) together give (10.9).
Choosing w in Theorem 8 so that ¢,w, = |¢,| for all n, we deduce
the following result.
THEOREM 8. COROLLARY. Let ¢(0) =0, and let
(10.12) P.0) = S|zt (zed).
If0<p<qg=+oo,p=2=gq, a=1/p—1/q, k= p, then

{{(log ) a0 0% 5 Ak, 04 50

In particular, if 0 <p <2, k= p, then
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1 1 \+/»—t . _d_g_ 1k <
(10.13) {So<log ?) P50 } < Alk, )t @),
and if 0 < p <2, then
1 1[
(10.14) {§0¢1(p>—‘fi)ﬁ} "< Alp) 4 @) -

The inequality (10.14) is equivalent to a theorem of Hardy and
Littlewood [8, Th. 15], and (10.13) can be deduced from two results
of the same authors [10, Th. 3; 8, Th. 5]. The proofs of these results
given by Hardy and Littlewood make use of the inequality

(10.15) [Swie, |P}”" < Ap)A @),

where 1 < p £ 2, and are a good deal less elementary than the proof
above.

It has been shown by Hardy and Littlewoed {8] that for 0 < p <1
the inequality (10.14) implies (10.15), the argument here being rela-
tively simple. We thus obtain effectively a new proof of (10.15) for
0<p=1.

It is natural here to ask whether

(10.16) A (Pu) = AD) A () (»p>0, p+2)

for every sequence w = (w,) such that |w,| £1. As might be ex-
pected, the answer is negative. If (10.16) were true for p > 2, then,
by Theorem 7, (10.14) would hold for p > 2, and this is known to be
false, a counter-example being

@(Z) — 2 ,n—llz—aeinlognzn (8 > 0)

(Hardy and Littlewood [8, p. 206]). This argument shows also that
the inequality

(10.17) A Ps) S AD)A ()
is false for p > 2.
To disprove (10.16) for p < 2, we may take
pR) = >, n %" w, = en1E"

Here ¢ e H? for p < 2. On the other hand, ¢, has nowhere a radial
limit, so that _# ,(p,) = +  for all p (see [22, i, p. 186] and [21]).

The question whether (10.17) holds for » < 2 seems to be open
(see [15]).
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11. The Hardy-Littlewood theorem on fractional integrals.
The preceding results enable us to give a succinet proof of the Hardy-
Littlewood theorem on fractional integrals ([12, 17]; see also [22, ii
p. 140]).

THEOREM 9. If 9(0) =0, and ¢ >p >0, a =1/p — 1/q, then
(11.1) A Bup) = AW, QA P) .

Suppose first that p < 2, and let k¥ = min {q, 2}. Then, by Theo-
rem 6 and the case &k = 2 of Theorem 4, we have

11.2) 7 (p) < Alg, a){gizdﬁ{gz(log %)Im—l‘ #p(0e”) 1k%g}q{k} "

Since #(¢4,0) = @, applying successively (11.2) with ¢ replaced by
d., Minkowski’s inequality, and Theorem 7, we obtain

7 0.9 = A, of|” ao{{ (o5 )" ptoe 4L oy

< A(p, Q){S(i(log %)M Mi(p; 0)—= do }M
= A(p, )7 (9) ,

as required.

This leaves only the case ¢ > p > 2. To deal with this, we can
use a simple conjugacy argument which enables us to deduce the re-
quired result from the case 1 < p < ¢ < 2 already proved. Since the
argument is a particular case of one given in §13, we omit it here
(see [22, ii, p. 141}).

If 0<p<=1, the result of Theorem 9 continues to hold for
g = +c. To prove this we use the case t =1, p = + o of Theo-
rem 5(i) and Theorem 7. We thus obtain

(11.3) A (Dpp) = AlD) sup {Rlog %)UIHI P(0e) I%p—}

= (p)g (10g ;)UHM(@; p)%‘l = Ap) 7 p) .

This can be strengthened slightly, as can also the case p <2< ¢q
of Theorem 9. Let w = (w,) be a sequence of numbers such that
lw,| =1, and let ¢, be defined as in (10.8). Since

Iya@w = ?91/?~1/11@'w = 191/2—4/(1(191/1)—1/27)10) y
we have
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%q(ﬂa‘?w) = A(q)‘/zlz(ﬂllp—UZ@w) = A(q)'//z(zyllp—1/2¢) = A(p, Q)‘/[p(¢) y

by a double application of Theorem 9. In particular, if @, is the
majorant of ¢ defined in (10.12), then

(11.4) A (F.Px) = A0, O)A (D)

It follows from a theorem of Hardy and Littlewood on majorants [11]
that (11.4) is stronger than (11.1) when ¢ is an even integer, and it
is probably stronger for all ¢ = 2.

If 0<p<g£1, q =+, then the argument above can be combined
with that of (11.3), and (with ¢, = ¢,) gives the inequality

oo

Snle, ] S Alp) A p) O<p=1D.

n=1

This, however, is weaker than the case 0 < p < 1 of (10.15) (see Hardy
and Littlewood [12, p. 421]).

12. Theorem 6 enables us also to give a simplified proof of the
following theorem of Hardy and Littlewood [12, Th. 46].
THEOREM 10. Let 0 < p = o0, 0 < a <, let p(0) = 0, and let
M, (p; 0) = (logl/o)" (0<p<1).
Then
M,(@.9; 0) < Alp, a, 7)(log /o)  (0<p<1).
Suppose first that 1 < p = + . By (3.6),

dap(pe”’) = SZ(log —g—)a_lsb(ffe”)%‘—f— ,

I'(a)

whence, by Minkowski’s inequality,

. L (oo LY " M.(0: )29
(12.1) 1,095 0) = | (108 &) Myl 0)%

< ol ) (o 2) %
_I'(v—a) (10g 1)a~r ’

' 0

the last integral in (12.1) being evaluated by the substitution
1l/y = log /o , 1/x =log1/p .
Suppose next that 0 < p < 1. By Theorem 6 with £ = p, 8 = «,
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applied to the function z- J#,9(0z), we have
My0.03 0) = A, )] (log L)zt 00 2L

<ol 2

- o, of (s 2o 2) "%

A, a, 7)(10g %Y(a_;)

(by the same substitution as before), and this completes the proof.
Combining Theorem 10 with Theorem 1, Corollary 2, we obtain
the following result (cf. [12, Th. 46]).

THEOREM 11. Let 0 < p £ 40, v >0, v > «, let p(0) =0, and
let
M,(p; 0) = (og L/p)" (0 <p<1).
Then
M, (8.p; 0) = Ap, a, )(log L/o)" (0<p<1).

13. The convolution series of two power series. We suppose
throughout this section that @, + are regular in 4, and that

@(Z) = gl C.R" Flt’f(z) = ldnzn ’ X<Z) = nz;;lcndnzn .

n=

It is easily verified that y is regular in ., and that
1(o%) = LST p(pe ! Yr(pet)dt .
27 )=

It follows immediately from Theorem A that if

p=1, g=1, _1_:_1,+l—120
r

p q

(so that max {p, ¢} < r < + ), and @€ H?, vr€ H?, then ye H".

Hardy and Littlewood [16, 17] have given generalizations of this
result in which the condition that + € H* is replaced by the condition
that

(13.1) M,(y'; p) = K(1 —p)*
for some k. If k =0, then (13.1) is weaker than the condition that



MEAN VALUES OF POWER SERIES 483

4 e H? (cf. Theorem 1, Corollary 1); however, the conclusion that
€ H" remains valid. If 0 < k <1, then (13.1) is equivalent to the
condition that + e Lip (k, ¢) (Hardy and Littlewood [11, Th. 3]), and
is stronger than the condition that 4+ ¢ H% In this case the conclusion
that y ¢ H™ remains valid when ¢ € H* for some s < p.

In this section we generalize these theorems by replacing (13.1)
by a similar condition involving M (#*v; p), where 8 > 0. Such results
were stated by Hardy and Littlewood [16] for the case where 8 is a
positive integer m, but no proof for m > 1 has been published. We
find in fact that there are three distinet theorems®.

THEOREM 12. Suppose that

pzl, ¢g=1, 1=l+—1——1>0, ps2<r, B=0,
» q

that ¢ e H?, and that
M(%; p) < K(log 1/0)~7 .
Then
.//Zr(X) § KA(py qy B)v'/lﬂp(q)) .

In the remaining two theorems we regard p, q, N, 8 as given, and
define 7, s in terms of them.

THEOREM 13. Suppose that

i

RS S

p=z1l, ¢g=1,

fl

m];—: %Ib—‘

0=x<gB,

(so that 0 < s < p), that pc H*, and that
M (&p; p) = K(log 1/0)~* .
If r < 4+ oo (so that 1/p + 1/q > 1), then
(13.2) A (X) = KA(p, ¢, B, A (P) .

If r = 4+ (so that 1/p + 1/g = 1) and s £ 1, then ¥ is continuous
in 4, and for each 6

5 The case 1 of Theorem 12 can be reduced to the case 8 =1 by means of
Theorem 1, Corollary 2 and Theorem 10. Similarly, Theorems 13 and 14 can be re-
duced to the case of integral 8 by means of Theorem 10. However. our proofs of
Theorems 12-14 apply equally to integral and nonintegral g.
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(13.8)
0 1 (* 1)\ ioy | 90 /
11691 = 75 (o ) 7 1906 | % 5 Kaw, 0, 6,04 0)

THEOREM 14. Suppose that the hypotheses of Theorem 13 hold,
and that in addition s <2 < p. Suppose also that w = (w,) s «a
sequence of numbers such that |w,| <1 for all n, and let

Yu(?) = i ¢, d,w,2" (ze4).

If r < +o0 (so that 1/p + 1/q > 1), then
///r(Xw) é KA(ﬁy Q7 By )’)‘//s(¢) 9

and, in particular, 1f

1@ = 3 led, |2 (@ed),
then

\(13-4) ~//1‘(X*) é KA(p; q, 181 )’)*/Zs(¢) .
If r = + o (so that 1/p + 1/q = 1) and s < 1, then

(13.5) S e, | < KA®, ¢, 8, M)A (@) .

Proofs of the cases 8 =1, » < + o of Theorems 12 and 13 are given
by Hardy and Littlewood in [16, 17]. They have also proved in [13,
14] the cases 8 = 1 of the inequalities (13.3) and (13.5). The proofs
of Theorems 12 and 13 given here are similar in principle to those of
the cases 8 =1 in [17], but we have made some simplications.

In the proofs of Theorems 12-14 we may assume that K = 1, and
in Theorem 12 we may assume B8 > 0. We write B for a constant
depending on some or all of the parameters concerned, and we suppose
that

p=1, g=1, L=L241 150, 0sr=zp, 8>0,
r » q

and
M (%5 0) = (log 1/0)~* .

We observe now that, by Parseval’s theorem, for any real v we
have

= Tploe = 9ap(pedt

98+ 2010) —
X(ee) = 5
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and hence, by Theorem A,

(13.6) M, (57775 0°) = M, (8"p; 0)M(F°; 0)
= (log 1/p)* M, (¢ p; p)

Consider first the proof of Theorem 12. Here p <2< r < + oo
and » = B, and we choose 7 in (13.6) to be a fixed positive number
(e.g. ¥ = 1). Applying successively Theorem 4 with ¥ = 2 and B re-
placed by & + v, Minkowski’s inequality, the inequality (13.6), Mink-
owski’s inequality again, and Theorem 3, we obtain

(l & %>Zﬁ+27 | 95+ (0e?) (2L dp }712}1/7
1

23+2

= 5] ]

B{| (10g
B{| (1og
o s
<ol ol

é B‘/%p(q)) ’

=

A

Mty P)d‘o }”2

SN——"

28+27—1

Il

‘ do '
2(Q8+Tye N
M5y p)——p}

2y 41

D= D= R
~

N—"

1
0
1
0
1
0

IA

e @ 1/2
;93 04}

log %>27+1| Fp(pe') |2d?(o}p/z}1,1g

i
/\

and this is the required result.
We prove next the case s <2, r < +c of Theorem 13. Let
k = min {r, 2}. Then, by Theorem 6 and the case k¥ = 2 of Theorem 4,

(13.7) A L) = B{S;dﬁ{S:(log %)k'ml 7y (0e™) l"%”}”k}w :

Applying successively Minkowski’s inequality, the inequality (13.6)
with v = 0, and Theorem 7, we obtain

AN = B{S:(log %)kﬂ_lMI;(l?ﬁX; ‘0)%0}%
= 5 (1og %)kﬂle EC pz)%)’i}”k

< B{S:<Iog %)kﬁ*u_lM s p)%‘o}”k
= B.Z (p),

since 0 <s<p, s<k, 8—n=1/s —1/p. This proves the appro-
priate part of Theorem 13. Similarly, by applying (13.7) to yx, and
using Theorem 8 in place of Theorem 7, we obtain the case r < + o
of Theorem 14,
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To prove the case s <1, » = + o of Theorem 13, we note that
if 0 £ R <1, then

; 1 { 1)6 N7
(13.8 Rei?) =~ ————-S log =) &*y(Rpe'?)~= .
) URe = o (log =) 9 u(Rpe)
Let 0 < 6 < 1. Then, by the increasing property of M and the in-
equality (13.6) with v =0,

sup S:(log -?)-)ﬁwlﬂﬁx(Rpe”)—c-lf-i

R,6

IA

[, (1o ) " bez; )2
2¢ S <log ;)ﬁﬁlM(ﬂﬁX; pz)%‘o—

B|" (1og ;)ﬁ"‘”Mp(zp; p)ﬁlpﬁ

ll

A

Further, by Theorem 7,

(o 2) " Mies 0% 5 B 5

It follows that the integral on the right of (13.8) is convergent,
uniformly in (R, #), and this implies that y is continuous in 4, and
that (13.3) holds. A similar argument, using Theorem 8 in place of
Theorem 7, gives the corresponding case of Theorem 14.

There remains the case s > 2 of Theorem 13, which is deduced
by a conjugacy argument from the case already proved. The argu-
ment here is identical to that used by Hardy and Littlewood in their
proof for the case B = 1, but since the proof is short, we give it for
the sake of completeness.

Let s > 2, so thatalso r = p > s> 2. As in the proof of Theo-
rem 4, it is enough to prove that if V is a trigonometric polynomial
satisfying .#,.(V) =1, then for 0 < R <1

(13.9) '2 S Y(Ree ‘”’)V(ﬁ)dﬁ‘ <B.7,9).

Let V(0) = 3 __y ke, and let &) = 32, k_,2". Then

2

(13.10) LST: X(Rzemﬂ)v(e)de — 1 Sl V(ﬁ)dﬁg @(Re”)@[f(Rew ”)dt
21 )= 4
= o=\ PR (Rt

where
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L(Re') = El?{S VOWp(Re*+ )t = 3 k_d,Rrem .
Hence &, 4, { are related as ¢, 4, ¥ are related in the main theorem,
Since also 1 < ' <8 <2, ¢ < s and

we may apply the case of Theorem 13 already proved to &, 4, £, with
7', 8’ in place of s, . Using also Theorem G, we thus obtain

(13.11) A Q) £ BANE) = BA,(V)=B.

Applying Holder’s inequality with indices s, s’ to the integral on the
right of (18.10), and using (13.11), we obtain (13.9), and this com-
pletes the proof.

14. An alternative definition of fractional integral and deriva-
tive. An alternative definition of fractional integral which has been
used by a number of authors is as follows. As before, let ¢ be re-
gular in 4, and let

P(z) = 2 e.2”  (zed).

Then for any « = 0 we define the fractional integral D,p of ¢ of
order « by

Fn+1) . o T+l | ..

14.1 D, st St B2 D "
( ) @(Z) 4 %r(n_!_l_f_a) n=0r(n+1+af)

’

where z* has its principal value, i.e.
z* = exp (a(log | z | + 7 arg z)), —nm<argzsm,

This definition is also due to Hadamard [7]. By term-by-term integra-
tion, we have

. atf 3
Duplpe) = S| (0 — 0F-iglae)do

where ¢*? has its principal value.
The definition of the fractional derivative D’ of order 8 =0
normally associated with the definition (14.1) is that

(14.2) Digp(z) = (%)mDm-w(z) ,
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where m = [8] + 1 (see Hadamard [7, p. 156]). With this definition
we have the series expansion

s IF+1) .

8 =
(14.8) Dipe) = 3, i

’

where z~# has its principal value, and 1/I'(n + 1 — B) is interpreted
as 0 when £ is an integer v > n + 1. When £ is a positive integer,
D?p is the Bth derivative of ¢ in the ordinary sense.

The definition (14.2) is satisfactory for 0 < 8 < 1, but is less
satisfactory for nonintegral 8 > 1. In particular, the function D3p
defined above is, for some purposes, too large in the neighborhood of
the origin when B8 > 1.°

In the sequel we use another definition which avoids these difficul-
ties. For 0 < B < 1, we define Dy by the series (14.3), and then for
B =1 we define D’p by the relation

(14.4) Dig(z) = Dﬂ—m(%)mqa(z) .

With this definition, we have the series expansion

S _Tm+1) s

3 =
Dol = T+ 1o

for any B8 = 0, where 2~ has its principal value. Further, if z = ps
and v > £ = 0, then

(14.5)  Dip(z)
71—t F(n + 1) A " elr—R1io S

= T 1 o [ AR ° — r—B—-1T)r i
T + 1 — B) TG =5 (0 — o) —*-'Dip(ge)do ,

0

where ¢~ hag its principal value. When £ is a positive integer,
Dép is the Bth derivative of ¢ in the ordinary sense, so that in this
case the definitions (14.2) and (14.4) agree.

The analogue of Theorem 1 for the derivative D’p is as follows.

THEOREM 15. If @ is defined as in Theorem 1, then for 8 >0
| D’p(0e”’) | < A(B, MO™~ (1 — )~ @(f) (0<p<1).

The proof is similar to that of Theorem 1, and we omit it.

15. The function associated with the derivative D? correspond-

6 For instance, with the definition (14.2), the integral on the right of (14.5) below
is divergent at the origin for all nonintegral y > 1.
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ing to the function «,, is defined by

Gk,ﬁ(a) — {S:(l _ p)kﬁ—l‘o(k—l)(ﬁ—[ﬁl) iD‘an(pe”) ["dp}l/k .

Here it is necessary to insert some power of p in the integral to
ensure the convergence of the integral at 0 when 8 — [8] = 1/k. The
particular choice of the power made here enables us to carry over to
G,; the argument of Theorem 5, using Theorem 15 in place of Theo-
rem 1. The function G, is precisely the Littlewood-Paley g-function.

The analogue of Theorem 2 for G, ; is more difficult than Theo-
rem 2 itself, and we confine ourselves here to the case [ = k.

THEOREM 16. If k=1 and v > B > 0, then for each 0
(15.1) Gral®) = Alk, £, (S o] + Gor(®)]
The proof of Theorem 16 depends on the following lemmas.
LEMMA 2. Let a >b>0, ¢>0, y >0, and let
I = g:(x + y)ytwt (1 — ) de .
Then

(15.2) I< Aa, b, e)yt~(1 + y)~° .
Let B denote a constant depending on some or all of a, b, ¢. If
y>1/2and 0 <2 <1, then y < 2 + y < 3y, whence
I é By—aglxb-—l(l _ x)c—ldaz,- — By—«u ,
]

and this trivially implies (15.2). We may therefore suppose that
0 <y £1/2, and here it is enough to prove that I < By*—*. Write

Y 1/2 1
IZS"‘S “I"S :Il+Iz+Isa
0 2

¥ 1/

Inl,y=2z+4+y =<2y and (1 — 2)"* < B, whence
I < By““gyx”“dm = Byt~ .
0

Inl,, =2+ y <2r and 1 — 2)** < B, whence

I < BSmxw—ldx < By .

Y

In I, 172 22+ y £ 3/2 and #*' < B, and therefore
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LgBYa—mHM:B.
1/2

Hence I < By*~* + B < By**, as required.
When a = b + ¢, the integral I can be evalued explicity, viz.,

7 IO

nb+®y”ﬂ+w”

(see, for example, [1, i, p. 10, formula (11)]).

We actually use two inequalities derived from Lemma 2 by simple
changes of the variable, namely that if a > b > 0, ¢ > 0, then for
0<p<1

(15.3) Yﬂ—@ﬂp~®MW%0§A@bmmWﬂl~mM,
and for 0 <o <1
15.4) [ (o — o)7L — pdo = Ala, b, L — oo

The next lemma is essentially an extension of the case [ =k of
Theorem B.

LEMMA 8. Let h be a function measurable on the interval 10,1f,
let h(p) > 0 for 0 < p <1, and let

Ho) = %gj@ — o) *h(o)do

If k=1, 8>0,6>0, p<1/k, then

(15'5) S:(l _ p)kﬁwlpkn—kaﬂlg(p)dp
= Ak, 8,0, )| (L = 010" hH(o)dop .

Choose p, @, depending on k, 8, 4, 7, such that
o <p<B+ok, n<owlk.

Writing B for a constant depending on some or all of %, 8, 4,7, we
obtain from Holder’s inequality and (15.3) that for £ > 1

(15.6) {I'(O)H,(o)}*
= {S:(l — e - W"’G"‘"h’ﬂ(a)d"}{gf (L — o) ™o — 6)5“10"°"”d0}

< Bpkalk’—-kw(l _ p)kS/k’——kySﬂ(l _ o.)k#(p — oy-'atn(g)do ,

kik!
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since ¢ > 6/k', 6 >0 and w < 1/k’. If k =1, the final inequality in
(15.6) holds trivially (where 1/k’ is interpreted as 0). Writing

a=0+ ko —ky, ¢c=kB + koK — kp ,
we therefore obtain from (15.6) and (15.4) that for k=1

gl(l _ p)kﬁ—lp""‘“H’;(p)dp
0
< BS‘(l - p)c—1p~wdp§”(1 — 0)*(p — a)-'a*h¥o)do

= B 1 - oyro* 1oyl p-+(0 — 0y~ — o

< Bgl(l _ O-)kp+5+c—lo-kw+5-ahk(0-)d0- ,

since @ > 6 > 0, ¢ > 0, and this is the required inequality.

The relation of Lemma 3 to the case ! = & of Theorem B can be
seen by substituting o = x/(1 + ), ¢ = y/(1 + y) in (15.5), and setting
f@)=QQ + )" h(zx/1 + ), kp = —1 — kN, ké =k — kB — kp — 1,
We thus obtain

(15.7) S“’(l )R-k Y )
< A(k, 6, \, 5)§+°°(1 + )FaE ) de
0

where k=1, d >0, v > —1, £ <1+, and F), is defined as in Theo-
rem B. For £ < 0 this is an immediate consequence of Theorem B
with f(x) replaced by (1 + x)*f(x), but for 0 < & <1 + A it requires
an independent proof. There is presumably an extension of (15.7)
with index ! < k on the right, but we do not pursue this point.

Lemma 3 does not apply if k¥ =1, » =0, and here we have an
almost trivial result, namely

LEmMmA 4. Let h, H; be as in Lemma 3, and let 8> 0, 6 > 0.
Then

[ - oy Hiordp = Ag, O] (1 — o) *(oNdp .

Consider now the proof of Theorem 16. In view of the definition
(14.4), it is enough to prove the inequality (15.1) when 0 < B < v <1
and when 8=1 and [B] = B8 <v=|[B]+ 1. It is therefore enough
to prove it when [v] = [8] and when v = [B] + 1.

If [v] = [B], then, by (14.5),

| Dip(oe)| = ——

1 V% - o+ D i0
- F(”/—*ﬁ)go(p o)~ D'p(oe’) | do .



492 T.M. FLETT

For k¥ = 1 we have only to apply Lemma 4 withd =v—- 8. Fork >1
we apply Lemma 3 with 6 = v — 8, » = (v — [Y])( — 1/k); this gives
1
— kEB—1 n(k—1)(f—[B1)—8 3 0\ &
[ = oo | D¥p(pe) dp
1
< A(k, B, ,Y)S (1 _ p)kr—-lp(k—1)(r~[ﬂ) l qu)(pew) ‘Iadp ,
0
and this obviously implies (15.1) for this case.
If v =[B] + 1, then (14.5) gives

. 1 0 X
Dép(oei’) | < A e —B—I8) | __S — o)~ Dip(ge’) |do .
| Dip(pe) | < AB) | etn| 0 T g0 — oV Dplee)]
Here we have only to apply Lemma 3 with 7 = 0, and again we ob-
tain the required result.

16. Lemma 3 enables us also to prove a theorem similar to
Theorem 16 for the function g, ; defined by (5.5).

THEOREM 17. If k>1, v > B > 0, then for each 6

(16.1) 9i.5(0) = Ak, B, 7)9:./(0) .

Let 0 = v — B. It is clearly enough to prove (16.1) when 6 < 1.
Since #*p = &,(Fp), we then have (exactly as in the proof of Theorem 1)

5—1 | 9 9 1 (¢ o )\o—1l5—1| .97 0
0 wﬁqa(pe)lgm—)&(p o)-iot | ' p(oe) | do .

Applying now Lemma 3 with » = 0, we obtain (16.1).

17. In view of Theorem 16, the argument of §7 can be applied
to G,,5, and gives a result corresponding to Theorem 3. However, we
can cover a number of such cases by using Theorem 3 directly, and
we conclude with a proof of this. There are similar analogues of
Theorems 4, 9 and 10.

THEOREM 18. Let p >0, 8> 0, ¢ =max{0, 1/p — 1}, and let
(d,) be a sequence of mumbers such that, as m — oo

(17.1) dn = /nig i a»/n—-v + O(,nﬁ.—m__l) ,
v=0
where m 18 a fixed integer such that m > p, and ,, «--, &, are fived

numbers. Let also ¢ be defined as usual, let ¥(z) = X, ¢, d,2", and
let
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B 1 _1_ kf—1 00 ki& 1k
(17.2) rs0) = {] (log ) el 120 9L

where ¢ is bounded on the interval [, 1] for 0 <o <1, and the in-
tegral in (17.2) is convergent at 0. Then for k = 2

A i p) = Ak, D, B)AZ o(P) .

We may obviously suppose that ¢(0) =¢, = 0. Let C = _Z ,(p),
let B denote a constant depending on some or all of k, p, 8, and write
1/2 1
ba0) ="+ | =g
4] 1/2
By Theorem D, |¢,| < BC,., and since |d, | < Anf, it follows that

| x(0e?) | < BCp for 0 < p < 1/2, whence also J, < BC*.
Next, by (17.1), we can write

Mz

y =S a5 + &= i a9 B3p) + & .

il
=3

v

Here
|£(0e”) | £ A3 "¢, | 0* < BC 3y mitr==tp" < BC(L — o)™
if 8+ p¢— m =0, where v = max {0, 8 + ¢ — m}, and
|£(pe*’) | = BClog (1/(1 — 0))
if 84+ p¢—m=0. Hence in either case
J, 1oz )" 1<t0en) 11 < BC

Using Theorem 3, it follows now that

A ([ef) S BC + BY|a| A ,09) .

A simple argument shows also that
///p(z?»@) = k///:n((p) (!J = 11 2: ¢ ') )

and this completes the proof.
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