Pacific Journal of

Mathematics

ON THE ESSENTIAL SPECTRUM OF SCHROEDINGER
OPERATORS WITH SINGULAR POTENTIALS

JAMES SECORD HOWLAND




PACIFIC JOURNAL OF MATHEMATICS
Vol. 25, No. 3, 1968

ON THE ESSENTIAL SPECTRUM OF SCHROEDINGER
OPERATORS WITH SINGULAR POTENTIALS
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In this paper, we show that under certain conditions the
self-adjoint Schroediner operator —4, + V(x) on Ly(R,), n =1,
has essential spectrum [0, ). The theorems improve previous
results by permitting V{(x) to be more singular locally, The
proof employs a factorization V(x) = A(x)B(x) of the potential.

The essential spectrum of a self-adjoint operator is defined to
consist of all points of the spectrum which are not isolated eigenvalues
of finite multiplicity. Let V(z) be a real-valued function on the #-
dimensional Euclidian space R,, and 4, the n-dimensional Laplacian.
In a recent paper [6], Rejto gives conditions on V such that the op-
erator T = — 4, + V() is self-adjoint with domain < (T) = =2(4,)
and has essential spectrum [0, o). His method consits essentially in
proving compactness of the operator VR,(z), where R, (z) = (—4, — 2)~.
The condition =2(V)2 2(4,), which accounts for the equality of the
domains of T and 4,, is essential to this method, and corresponds very
roughly to local square-integrability of V(x).

Recent papers of Kato [3] and Kuroda [5] on the continuous
spectrum and of Konno and Kuroda [4] on the discrete spectrum
employ a method according to which one factors the potential into
V{(x) = A(x)B(x) and considers the operator AR(z2)B. In this theory,
the operator T is defined by first defining its resolvent, and there is
no guarantee that the domains of T and 4, are equal. This is rather
an advantage, since it removes the requirement of local square-integra-
bility. For example, Kato [3, §6] shows that if, for n = 3, the norm
of V in L,,(R;) is sufficiently small, then T is unitarily equivalent to
— 4,

In the present paper, we shall apply the factorization technique
to the problem of invariance of the essential spectrum, extending
Rejto’s results to include potentials which are locally more singular.
In particular, we remove certain seemingly artificial restrictions of
[6] in the case of low (» < 3) dimensions. For = = 3, our results
will apply to V(x) = {z|= for any a < 2.

For n = 3, the definition and semi-boundedness of T are treated
in §1, and the essential spectrum in §2. §3 is devoted to the proofs
of the essential estimates for » = 3. The special cases n = 1, 2 are
discussed in §4.

For references to other work on essential spectra, we refer to the
extensive bibliography of [6].
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1. Definition and semi-boundedness. In order to define precise-
ly the Schroedinger operator —4, + V(x), we shall use the following
theorem of Kato [3], as formulated by Konno and Kuroda [4]. </(T),
o(T) and p(T) denote respectively the domain, spectrum and resolvent
set of the operator 7.

LemmA 1.1 (Kato). Let T, be a self-adjoint operator on a separa-
ble Hilbert space 577, and Ry(z) = (T, — 2)™* its resolvent. Let A and
B be closed, densely defined operators on 52 such that

ga(T) s (A N = (B)
and
(Az, By) = (Bw, Ay)

for all z, y in <A N <(B). Suppose that for some z in
o(Ty), the operator AR z2)B has a bounded extension to 27 such that
max {|| AR(2)B ||, || AR,(z)B ||} < 1.

Then AR(2)B has a bounded extension for every z in o(T,) and
there exists a self-adjoint extension T of T,+ B*A such that if
2eo(Ty) and I + AR(2)B has a bounded inverse, then ze o(T) and

(1.1) R(z) = Ry(z) — |BR,(R)|*(I + AR(2)B)""ARy(z) .
where R(z) = (T — z)~.
The operator 7, = —4, is self-adjoint on 2 = L,(R,) and has

purely continuous spectrum o(T,) = [0, «). If n = 3, then for z in
o(T,) the resolvent Ry (2) = —(4, + ?)~' is convolution by a function

9., k) = [T F.(k|o])

where k* = 2, Imk = 0. F,(2) can be expressed in terms of a Hankel
function [7, p. 79, formula (13.7.2)] and satisfies the following inequali-
ty for Imz = 0

| F.(2)| < C.(1 + [2]"7) exp (—Im 2)
where C, depends only on n. In particular, if & = 247, » > 0, then
(1.2) [Fukla))| = Chei®!

where C, = C, max {(1 + ¢ ¥%e 2 0 <t < oo},
Let B(x, 6) be the closed ball with center z and radius 6. For
any measurable function gon R, we define for 1 < p <~ and 0 <o <1

1/p
I,.(g, 0) = sup (S le —y |7 9(y) I’"dy>
TER, B(x.0)
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and I,.(9) = I,,(g, 1), a notation that differs from that of [6] in the
sign of v. Observe that I, (g, ) is increasing in v and ¢ and that if
p<q and pga = (n — Y)p — (n — v — €)q¢ > 0, then by Holder’s ine-
quality

Ip,y+s(g’ 5) é Caan,u(gy 3)

where C depends on %, » and q.

THEOREM 1. Let V(x) be a real-valued, measurable function on
R,, n = 3. Asswme that there exists a p, 1 < p < oo such that either

(@) Lp V) <+ o for some v>n—p
ar

(0) LpV)<+ o for v=n-—p and

(1.3) lim | o -y V) Py = 0.
|z} — o0,) B{x,5)
Then there exists a self-adjoint extension T of —4, + V(x) which
18 bounded below.

Proof. Let A and B be the multiplication operators defined by the
functions A(x) = | V() |'* and B(x) = | V(2)|"* sgn V(z). If k= 2,
n =17, >0, then by (3.3) the operator BR,(k* is bounded, which im-
plies that &Z/(B) = 27(4)2 2(T,). Furthermore, by (3.2),

VAR(K)B || = C[L,,(V, 0)0" + L, (V)" 7]

where ap = p +v — 1, bp = n(p — 2) and C depends on =, v, p and
7. Note that b > 0, while ¢ > 0 in case (a) and ¢ = 0 in case (b).
Choose a fixed 6 sufficiently small that the first term on the right is
less than unity. (In case (b), where a = 0, I,,.(V, 0)—0 as 6 — 0+.
This ecan be proved by using (1.3) to restrict consideration to a bound-
ed set, where absolute continuity yields the result.) Then for all
sufficiently large 7, we have

| AR(k)B|| <1

so that the theorem follows from Lemma 1.1.

REMARKS (1) In the special case v = 0, we obtain p > » in con-
dition (a), so that if V is a function of » = |« | only, the result ap-
plies to singularities at the origin of order »—* for a < 2. If u(r) is
a spherically symmetric L,(R,)-eigenfunction of T with eigenvalue X\,
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then v = r*-Y%y ig an L,(R)-solution of the ordinary differential equa-
tion

(1.4) —" + [V(r) + e Jrv = W

where ¢, = (n — 1)(n — 3)/4. However, [2, Vol. 2, pp. 1462-9, esp.
Th. XIII. 7.40] if

lim sup »*V(r) < —¢, — 1/4
7 -0

it follows that (1.4) has a point spectrum which is unbounded below.
Thus if V(r) has a singularity at the origin of order r—¢, & = 2, there
may be no lower semibounded extension of —4, + V. Theorem 1
therefore seems near the *‘ best’’ with regard to the local behavior
of V.

(2) Note that if v < 0, then

. lo@1dy = @] jw =yl o) dy

B(zg,6)

whenever | — x,| = 6/2. Hence, negative values of v add noting to
Theorem 1, and one might as well assume that v = 0. A similar
remark holds for Theorem 2 of the next section.

2. The essential spectrum. The essential spectrum o, (T) of a
self-adjoint operator T is defined to consist of those points of o(T)
which are not isolated eigenvalues of finite multiplicity. Two self-
adjoint operators 7 and T, are resolvent congruent if and only if
B(z) — R(?) is compact for some z in o(T) N o(Ty). It is well-known
that if 7 and T, are resolvent congruent, then o,(7) = o,(T,). We
refer to [6] for references.

LEMMA 2.1. Let T and T, be as in Lemma 1.1 and assume that
AR\(2)B and [BR,(z)]*AR\z) are compact for some z in o(T) N o(T,).
Then T and T, are resolvent congruent, and hence o (T) = o (T,).

The proof is immediate from (1.1) and the identity
I+ K)y*=1I- K+ K)* with K = ARy(?)B.

THEOREM 2. Let V(x) be a real-valued measurable function on
R,, n =8, for which there exist p and v, 2< p < o and Yy >n — p,
such that

@) [, 17— v~ V@) ray

ts bounded on R, and vanishes as |x| tends to infinity. If T is the
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extension of —4, + V defined in Theorem 1, then o (T) = [0, o).

Proof. Define 4 and B as in the proof of Theorem 1. We shall
first prove that AR(k*B is compact for &k = 2in, 7» > 0. Let S denote
the image under AR,(k*)B of the unit ball of L,(R,). We shall show
that S is pre-compact. For every f = AR(¥)Bu, ||u{| <1 in S, we
have, by Lemma 3.2,

(2.2 [ @) Fde = CL, (a0 4)

where C is independent of f in S, and y denotes the characteristic
function. Since I, ,(4, ) vanishes at infinity, the right side of (2.2)
vanishes as N tends to infinity. It therefore suffices by Rellich’s
Theorem [2, Vol. 1, Th. IV, 8.21] to prove that S is equicontinuous
in L,-norm.

For an arbitrary f, let f,(x) = f(x — h) and write R(k*)u = gxu,
where * denotes convolution. Then for every f= AR,Bu in S, we
have

(2.3) o — Il = 1 A(gn — 9)(Bu) || + [[(Ay — A)gs* (Bu | .

Let oz, h) = e+ g~ Then for each fixed x, p(z, 2) vanishes
as h tends to zero and does not exceed 1 + ¢’ in absolute value for
[h| <1, In order to estimate || A(g, — g)*x(Bu)||, one repeats the
arguments of Lemma 3.2 (with, say, 6 = 1), carrying along a factor
|p(x — y, k)|. We obtain as a result that for {|u|| <1 and |k| £ 1,
| A(g, — g)*(Bu)|| does not exceed

C(Sm,n 28| o, ) 1adx>”“ + CSRn e | p(z, h) | dz

where C is independent of w and h, 8= (n — 2 — v)a + v and a = p/(p — 2).
As h tends to zero, these terms vanish,

Choose ¢ and ¢ such that 2 < g<pand » — ¢ < ¢ <vy. Then
since I, .(A4, ) is increasing in both subsecripts, I,,.(4, ) is also bound-
ed and vanishes at infinity. Moreover, we claim that I,.(4, — A)
vanishes as & tends to zero. For since I, (A, x) vanishes at infinity,
we may assume that A has compact support K. In this case 4 is in
L,(R,), since

1A, = C(K)L,(A) = C(K)I,,.(4)

where C(K) is the number of balls of unit radius necessary to cover
K + B(0, 1). Hence by (3.4),

I(A— A) = CL(A, — A) S CllA, — Al|,
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which vanishes as % tends zero. We now observe that by Lemma 3.2,
(4, — A)g*(Bu) || = CI,, (A, — A4)

where C is independent of f in S. Hence S is equicontinuous in L,-
norm and AR(k*)B is compact.

If we now remark that AR,k is compact by the results of [6,
§2], then Theorem 2 follows from Lemma 2.1. Alternatively, Lemma
4.26 and the above procedure can be used to obtain a proof of the
compactness of R,(k)A and hence of its adjoint ARy(%?). The proof
is simpler, since the second part of the argument—that involving
(4, — A)—does not occur. This method also yields a proof of Theorem
2.1 of [6] which avoids approximation by smoothed resolvent kernels.

REMARK In Theorem 2, it suffices to assume that for some p, v,
2<p< o and v >n — p the function (2.1) is bounded on R, and
that for some g >0

lim SM| Vig) |"dy = 0 .

[a| = o0

This assumption is similar to that of [6].

For the proof, assume without loss of generality, that 0 < 2p¢ <p,
and let 0<s, t<1, s+t=1 Writing /2 = (p'/2 — ps) + ps, we
obtain by Holder’s inequality

[, 1o — w1 v 7edy = (], 1 V@) 1ay) G V)

where p’ = ip + pus < p and ¥’ = tv < y. By choosing s sufficiently
small, the inequality v > » — p’ can be made to hold, so that the
hypotheses of Theorem 2 are satisfied for p’ and ',

3. The basic estimates for # = 8. The quantities I, ,(g, 6) and
I,.(9) have been defined in §1.

LEMMA 3.1. If0<n, <79 and n =1, then

sup | &1 | f(y) | dy = C, ML) -

zeR,

Proof. For a fixed z, we have

@y | e sy s S W] eyl i)y

AN

where A(z, N) is the ‘‘ annulus’ B(x, N + 1) ~ B(z, N). If B(, 1)
is a ball of unit radius with center & in A(N, «) then for N> 1
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SB(E,le — ?/i#“ lf(y) l dy = SB(e,ulE —_ y‘—» If(y) i dy < I}_,y(f) )

Since A(xz, N) can be covered by O(N"') such balls, the right side of
(3.1) does not exceed

CL(f) 5, e (N + 1
=0
where the sum is bounded uniformly for n = n > 0.

LEmMA 3.2. Let A(x) and B(x) be measurable on R,, n =3,
k=2inp,n=n>0and 0<0<1.
@) If2<p<c and p+ v =mn, then

(8.2)  ||AR(F)B|| = ClL,.(4, 0)I,,.(B, 6)5° + I, (A),.(B)o*")~*]
where ap = 2(p + v —n), pb=n(p — 2) and C depends on n, v, p

and 7,
by If2<p< o and v + 2p = n, then

(3.3) | BR(k") || = [| B(K)B|| = C[L,,(B, 6)d" + 0" "L, (B)p~"]

where rp = 2p + v — n, and C depends on n, v, p and 7,

Before proceeding with the proof, we remark for reference the
elementary inequality

(3.4 =gl = WSl glls

where * denotes convolution and ||-]|, is the norm of L,(R,).
Proof. For part (a), let w e Ly(R,). Then by (1.2)

(3.5) | Ro(k")Bu() | = CS o —y 7| Bly)wy) | dy

B(zx,5

+ 52""53 e™"==v | B(y)u(y) | dy

n

where C depends only # and 7,

Let 2< p< o and p* + ¢! = 1. Using Holder’s inequality with
respect to the measure |2 — y|*dy, we find that the first term of
(3.5) does not exceed

(3.6) 5,.8,5(] 12— yl~luwdy)”

where @ = (n — 2 — v)q + v. Multiply (3.6) by A(x). The L,norm
of the resulting function is, except for a factor I;,.(B, 9), the L, ,-norm
of
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) = 1A@ P e -y )y
Let ve L}, = Ly,_, and form the inner product (v, f). Interchanging
the order of integration and applying Holder’s inequality with respect
to the measure |2 — y|~*dx, we obtain

(v, N =LA, )] ul?, g7)

where

0@ = | oyl @) e
/o) + (g/p) =1 and B =(n—2—vog+vy.

But

(Tt g7 < [ w [l 11 97 eie -0
= llulillgll"

while ||gll, < Co" 7 ||v}l, = C* || v ||§s_p, DProvided that g < mn. (If
n > B, This follows from (3.4), while if % = B, one uses Sobolev’s
inequality |1, p. 220, part (c)].) Combining all these estimates yields
the first term on the right side of (3.2), provided we note that 8 < n
if and only if p + v = n and that a = (n — B)/oq.

If we apply Holder’s inequality with respect to the measure
¢~ v'dy, we find that the integral in the second term of (3.5) does
not exceed

(3.7) (1, e 1B pay) ([, e pay)

By Lemma 3.1, the first factor does not exceed C(,, v)I,,(B). If the
second factor is multiplied by A(z), we find as above that it suffices
to estimate

| @ ia@ ] e ju) dydo
Rn “n

where v e L,. Interchange the order of integration and use Holder’s
inequality with respect to the measure ¢ "* ¥ dx. The resulting ex-
pression is easily estimated using (3.4), and we find that the L,-norm
of the product of A(x) with the second factor of (3.7) does not exceed
CI,.(Ay~, where we note that b = n/oq. This yields the second
term of (3.2).

For part (b), return to (3.5). In the first term, observe that since
|w|?is in L,,, Holder’s inequality implies that the L,-norm of the
second factor of (3.6) does not exceed
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cooiejjul,

for « < n. For a = n, the same is true by Sobolev’s inequality [1,
p. 220, part (¢)]. In the second term, estimate the second factor of
(8.7 by (8.4) and the first factor by Lemma 3.1. Combining these
results yields (3.3), if we observe that (n — @)/g = r, so that a < n
if and only if v + 2p = u.

4. The cases # =1 and » = 2. The cases of lowest dimension
must be considered separately because of the different form of g,(x, k).
For n = 2, we have

9., k) = (I/HHM (k| x])

where | H,(4t)| does not exceed t~'¢~* for ¢ > 0, nor log {t| for 0 < ¢t < 1.
Let 0 < § =1 < 7, and use the first estimate for g,(z, %) for pjx| = ¢
and the second for »|x| < d. One then obtains estimates like those
of §3, except that the use of Sobolev’s Theorem in Lemma 3.2 is not
justified, due to the presence of a logarithmic factor. This results in
the failure of the proof of Theorem 1(b) for n = 2. Theorems 1(a) and
2 hold for m = 2,
If » =1, we have

03, k) = ke,

Sinee there is no singularity at « = 0, only the second of the terms
estimated in the proof of Lemma 3.2 appears, and the estimates are
greatly simplified. As a result, Theorems 1 and 2 hold for n =1,
without the hypothesis p +v >1; v may be completely arbitrary.
The case n = 1 has been studied extensively by the special techniques
of ordinary differential equations; see [2, Chapter XIIL].
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