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This paper is concerned with compact subsets of £ which
are the intersection of a properly nested sequence of compact
3-manifolds with boundary each of which is the union of a
finite collection of pairwise disjoint 3-cells, Such sets are
characterized by a property of their complements. Related
results are stated in terms of embeddings of compact 0-dimen-
sional sets and upper semicontinuous decompositions of E?,

Theorem 1 below gives an affirmative answer to a question raised
by Stan’ko in [10].

1. Definitions and notation. We use E? to denote Euclidean
3-space. In [10], a compact set K E® is defined to be cellular-
divisible if there is a sequence {M;} of compact 3-manifolds with
boundary such that

(1) if ¢=1,2,..., then M, , cInt M,,

(2) ifi=1,2,.--, then M; is the union of a finite collection
of pairwise disjoint topological cubes (3-cells), and

(3) K=MNZ M.

We shall use the terminology of [9] and say that such a set is
definable by cubes. By the approximation theorem for 2-spheres [3]
there is no loss of generality in supposing that each M; in the above
definition is polyhedral. If K is a continuum (i.e., compact and con-
nected) and is definable by cubes, then K is said to be cellular. If
K is compact and O-dimensional, then K is tame (wild) if and only if
K is (is not) definable by cubes. Tameness in this case is equivalent
to the existence of a homeomorphism of E*? onto itself carrying K
into a straight line interval. See [5] or [7].

We use C1 for closure, Bd for boundary, Ext for exterior, and
Int for interior. Int may mean “combinatorial interior” or “bounded
complementary domain” with context providing the proper interpreta-
tion in each case. If K is a subset of E* and ¢ > 0, we use V(K ¢)
to denote the e-neighborhood of K.

2. Subsets of E° which are definable by cubes. The following
theorem affirmatively answers question 2 of [10]. An example of
Kirkor [8] shows that the hypothesis that J can be separated from
K by a 2-sphere cannot be replaced by the weaker hypothesis that J
can be shrunk to a point in E® — K.

THEOREM 1. Suppose K E*® is compact and fails to separate
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E*. Then K 1s definable by cubes tf and only if for each polygonal
simple closed curve J — E® — K, there is a 2-sphere separating K and J,

Proof. We only consider the “if” part of the proof since the
“only if” part is evident. Let J be as above. We first show that
there is a 3-cell C c E® — K such that Jc Int C. Let S, be a 2-sphere
separating K and J. By the approximation theorem S, may be supposed
to be polyhedral, and so if JcIntS, we may take C = S, U Int S,.
If JCExtS,, let S, be a polyhedral 2-sphere whose interior contains
S, UJ. Let a be a polygonal arc from a<c S, to be S, whose interior
fails to intersect S, U S, U J. Fatten a to a polyhedral 3-cell B whose
intersection with S, U S, U J is the union of a pair of polyhedral disks
D,c S, and D,c S,, and let A denote the annulus Bd B— (Int(D, U D,)).
Now let S; be the polyhedral 2-sphere (S, — D) U (S, — D,)U A and
let C =8S,UIntS,. From this and Lemma 7 of [4] it follows that
each polygonal finite graph in E® — K lies in the interior of a poly-
hedral 3-cell in E® — K.

To show that K is definable by cubes we need only show that
for each open set U containing K there is a finite collection of pairwise
disjoint 3-cells in U whose interiors cover K. Let M be a compact
polyhedral 3-manifold with boundary such that KcInt Mc Mc U.
Let F' be the 1-skeleton of Bd M. By the remark at the end of the
preceding paragraph there is a polyhedral 3-cell E such that
FcInt Ec Ec E* — K. Using Bd E and the argument of the preced-
ing paragraph, we construct a polyhedral 2-sphere S such that
KcIntS and Fc ExtS. Now, using S, Bd M, and Lemma 1 below,
we obtain pairwise disjoint polyhedral 2-spheres R,, R,, ---, R, with
pairwise disjoint interiors such that K< U, Int R, and Bd M lies in
each Ext R;. There is no loss of generality in supposing that K
intersects each Int R;. It then follows that if 1=1,2,.--, or m,
R, UInt R,cInt M. Hence R,UIntR,R,UIntR,, ---, R, UIntR, is
a collection of pairwise disjoint 3-cells lying in U whose interiors
cover K, and the proof of Theorem 1 is complete.

LemmA 1. Suppose T, T, ---, T, 18 a collection of pairwise
disjoint polyhedral 2-spheres with pairwise disjoint interiors, K is
a compact set that lies in Ur,Int T;, N is a compact polyhedral
2-manifold (with or without boundary) in E°* — K whose 1l-skeleton
lies in each ExtT;, and ¢>0. Then there is a collection R, R,, +++, R,,
of patrwise disjoint polyhedral 2-spheres with pairwise disjoint
interiors such that

(1) KcUr,IntR,,

(2) N lies in each Ext R;, and

(3) UL R, (UL T) U V(N,e).
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Proof. We may suppose without loss of generality that each T,
is in general position with respect to N so that (Ur,T;) N N is the
union of a finite collection of pairwise disjoint polygonal simple closed
curves, Consider a 2-simplex 4 of N which intersects [J7., 7; and
let J be a component of (Jx, T;) N 4 with the property that if D is
the subdisk of 4 bounded by J, then Dn(Ur, T, = J. Suppose J
lies on T;. Thicken D slightly to a polyhedral 3-cell C such that

(1) Cc V(D,¢e),

(2) CNUx.T;) is an annulus A in T; N BdC,

(3) CNN=D,

(4) DNnBAdC =J, and

(5) KnC= 0.

Let J, and J, be the boundary components of A and let D, and D,
be the subdisks of 7; bounded by J, and J, respectively such that if
1 =1 or 2, then D, N A = J,. Similarly, let D/ and D] be the subdisks
of Bd C bounded by .J, and .J, respectively such that if 7 =1 or 2,
then DiNA=J,. Let T;, =D,UD; and T,,= D,UD;. We now
consider the following two cases.

Case 1. IntDcIntT;. In this case T, T, ---,T;., T;, T,

Tisy -+, T, is a collection of pairwise disjoint polyhedral 2-spheres
satisfying all of the hypotheses of the Lemma and intersecting N in
one less component than T, T,, ---, T,.

Case 2. Int DC ExtT;. In this case either T; CIntT;, or
T;,,cInt T;. We suppose that T; CInt T,,. Since the 1-skeleton of
N lies in Ext T;, either Bd4C Ext T;, or Bd4cInt T,. We shall
only consider the case Bd 4 < Ext T,, since the proof in the other
case in entirely analogous. Let ab be a polygonal arc from a point
acJ toapointbed — Dsuchthat abN K= @,abc V(D,e),abN C =
{a}, and b N N = {b}. Now let ¢ be a point of Bd 4 and let bc be a
polygonal arc from b to ¢ lying in 4 —~ D. Then ac=abUbc is a
polygonal arc from ae T; to ce Ext T;,, Ordering ac from a to ¢,
let a, be the last point of ac lying in T; and let b, be the first point
of ac which follows a, and lies in T,;. Then ab, is a polygonal arc
from a,€ T;, to a,e T;, which spans the annular region between T},
and T;. Now push a,b, slightly off 4 so that the adjusted arc, which
we denote by alb], fails to intersect N U K and lies in V(4,¢). Since
the 2-spheres T\, T, - -+, T, have pairwise disjoint interiors, ab] fails to
intersect |J?, T except in its end points. As in the first paragraph of
the proof of Theorem 1, we use T}, T;,, and a}b] to construct a polyhedral
2-sphere T; such that KNInt T, = KN (Int7), T'Nn (U, T: — T,) =
@, ;N N=(T;,UT;)N N, and Int T; cExt T;. Now T}, T, ---,
T; 4y T;, Tisy -+, T, is a collection of pairwise disjoint polyhedral
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2-spheres satisfying all of the hypotheses of the Lemma and inter-
secting N in one less component than T, T,, -+, T,.

By the above two cases, we may inductively eliminate all com-
ponents of (Jr_, T;) N N to obtain a collection of pairwise disjoint
polyhedral 2-spheres R, R,, ---, R, satisfying conditions (1)-(3) of the
conclusion of Lemma 1.

The following corollary is a special case of Theorem 1 which gives
another characterization of tame compact 0-dimensional subsets of E°,
For other characterizations see [5] and [7].

COROLLARY 1. Suppose K is a compact 0-dimensional subset of
E?  Then K is tame if and only if for each polygonal simple closed
curve J C E* — K, there is a 2-sphere separating K and J.

Bing [2] has given an example of a wild compact 0-dimensional
subset K of E® and a polygonal simple closed curve Jc E* — K such
that, if p e K, there is no 2-sphere in E*® — K whose interior contains
p and whose exterior contains J. This example suggests the following
result, which is an improvement on Theorem 1.

THEOREM 2. Suppose K E°® is compact and fails to separate
E? Then K is definable by cubes if and only if for each point
pe K and each polygonal simple closed curve JC E* — K, there is a
2-sphere lying in E* — K separating p and J.

Proof. As in the case of Theorem 1, we consider only the “if”
part of the proof. Let J be a polygonal simple closed curve in
E* — K. For each pe K, let S, be a polyhedral 2-sphere lying in
E?® — K which separates p and J. By the first paragraph of the
proof of Theorem 1 there is no loss of generality in supposing that
pelnt S, and JC ExtS,. By compactness of K there is a finite
collection S,, S,, +--, S, of such 2-spheres such that Kc |~ Int S,.
Now by Lemma 2 below, applied to S, and S,, there is a finite collec-
tion S, S}, ---, S, of pairwise disjoint polyhedral 2-spheres with
pairwise disjoint interiors such that K N (U Int S;) c U~,Int S} and
J lies in each Ext S.. Another application of Lemma 2 to the collec-
tion S, S;, ---, S, and S; yields a finite collection S/, S/, .-+, Sy of
pairwise disjoint polyhedral 2-spheres with pairwise disjoint interiors
such that K N (Ui, Int S;) c UL, Int SY and J lies in each Ext S’. Con-
tinuing in this manner we finally obtain a collection R, R,, ---, R; of
pairwise disjoint polyhedral 2-spheres with pairwise disjoint interiors
such that K < |Ji., Int R; and J lies in each Ext B;. Running polygonal
arcs lying in E® — J between various members of the collection R,, R,,
-++, R; and using (once again) the idea of the first paragraph of the
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proof of Theorem 1, we construct a polyhedral 2-sphere S such that
KcIntS and JCExtS. By Theorem 1, K is definable by cubes.

LEMMA 2. Suppose T,, Ty, ---, T, ts a collection of pairwise
disjoint polyhedral 2-spheres with pairwise disjoint inleriors, K is
a compact set that lies in Ui, Int T;, N is a polyhedral 2-sphere in
E?* — K, L is a compact set that lies in Ext N and each Ext T;, and
¢ > 0. Then there is a collection R, R,, ---, R,, of pairwise disjoint
polyhedral 2-spheres with pairwise disjoint interiors such that

(1) KcU® IntR,

(2) Nn(UxLR) = o,

(3) L lies in each Ext R;, and

(4) R (Uk T) U V(N,e).

Proof. The proof of Lemma 2 only differs slightly from that of
Lemma 1. There is no difficulty in carrying over the proof through
Case 1, so we begin here at Case 2, where the notation has been
carried over directly.

First consider the case where T; NN =2 = T;,N N. In this
case T; cInt N and T; c Ext N. The cube C has been constructed
so as to miss L, so LcExtT;. We then obtain a collection of
pairwise disjoint polyhedral 2-spheres satisfying the conclusions of
Lemma 2 by replacing T; by T;, and throwing out any T.’s lying in
Int T},

Now suppose T;, N N = @. The proof in the case T;, NN # @
is analogous. Let ab be a polygonal arc from acJ, to be N— D
such that abN(KUL) = @, abc V(D,¢),abNC = {a}, and abN N = {b}.
Now let ¢ be a point of T;, N N and complete the proof as in the
proof of Lemma 1.

COROLLARY 2. Suppose K is a compact 0-dimensional subset of
E, Then K is tame if and only if for each point pe K and each
polygonal simple closed curve JC E® — K, there is a 2-sphere lying
wn E® — K separating p from J.

The following theorem is a slight improvement of Theorem 4 of
[10] and will be proved here using Theorem 1.

THEOREM 3. Suppose L C K are compact subsets of E* such that
K is definable by cubes, L fails to separate E*, and K — L s at
most 1-dimensional. Then L s definable by cubes.

Proof. Let J be a polygonal simple closed curve in £* — L. By
Lemma 3 below there is a homeomorphism h of E° onto itself which



618 R. B. SHER

is fixed on L and moves J onto a polygonal simple closed curve in
E? — K. By Theorem 1 there is a 2-sphere S in E® — K separating
K and #(J). Then AY(S) is a 2-sphere in E® — L separating L and
J. By Theorem 1 L is definable by cubes.

LEMMA 3. Under the hypotheses of Theorem 3, if J is a polygonal
simple closed curve in E® — L, then there is a homeomorphism h of
E? onto itself which is fized on L and moves J onto a polygonal
simple closed curve in E* — K.

Proof. Since K — L is at most 1-dimensional, there is no problem
in moving the vertices of J into E° — K. We suppose that this has
been done. We now show how to move J into E?® — K moving one
simplex at a time.

Let I be a 1-simplex of J with end points @ and b. Then I spans
a polyhedral solid cylinder C with bases D, and D, such that

(1) aeIntD, and belnt D,

(2) (D,UD)NJ = {a,bd},

(3) CnJd=1,

(4) I is an unknotted chord of C, and

(5) CnNnL=g.

Denote the annulus Bd C — (Int (D, U D,)) by A. We now show that
no component of KN A separates Bd D, from Bd D, in A,

Since C N K is at most 1-dimensional, there is an arc «, from a
to b such that Inta,cIntC and KNa, = @. Similarly there is an
arc «, from a to b such that Inta,cExtC and KNa,= @. Now
let N be a component of KN A, and suppose N separates Bd D, from
Bd D, in A. Since K is definable by cubes there is a 3-cell E such
that NcInt E and «, U, c Ext E. Using the fact that N separates
Bd D, from Bd D, in A, one can construct a simple closed curve J’ in
AnNInt E such that J' separates Bd D, from BdD, in A. Since
J cInt E and a, U a,Cc Ext E, J' can be shrunk to a point in E® —
(a, U a,). But this is a contradiction, since J’ and a, U a, are linked.
Hence, no component of K N A separates Bd D, from Bd D, in A.

By the above paragraph, there is a polygonal arc I’ from a to b
in BdC — K. Since I is an unknotted chord of C and CNL = @,1
can be pushed onto I’ by a space homeomorphism without moving
points of L or J — I. Adjusting each l-simplex of J in turn, we
move J into E® — K,

The following two results are special cases of Theorem 3.

COROLLARY 3. Ewery compact 0-dimensional subset of a cellular
1-dimensional continuum in E*® 1s tame.
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COROLLARY 4. If M is a continuum and A is a l-dimensional
set such that AU M is cellular, then M is cellular.

The following result is an application of Theorem 3 and the result
of [6]. Here we use G to denote a monotone upper semicontinuous
decomposition of E® H to denote the union of the nondegenerate
elements of G and P to denote the natural map from E® onto the
quotient space E°/G. For definitions see [1].

COROLLARY 5. Using the above motation, suppose that P(ClH)
18 a compact O-dimensional subset of E*/G and that there is a 1-
dimensional set A E* such that AU CLH 1is cellular. Then G 1is
a cellular decomposition and E*/G is homeomorphic to E°.

3. Remarks. In Theorem 3 it is necessary that K — L be at
most 1-dimensional. One can embed, for example, a noncellular are
in a cellular, and in fact polyhedral, book with one page. Every
compact 0-dimensional subset of a 2-dimensional polyhedron is tame,
but there are wild compact 0-dimensional sets which lie on a 2-dimen-
sional cellular continuum,

I wish to thank Professors W. R. Alford and K. W. Kwun for
interesting conversations held during the preparation of this paper.
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