Vol. 26, No. 1, 1968

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 325: 1
Vol. 324: 1  2
Vol. 323: 1  2
Vol. 322: 1  2
Vol. 321: 1  2
Vol. 320: 1  2
Vol. 319: 1  2
Vol. 318: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Subscriptions
Editorial Board
Officers
Contacts
 
Submission Guidelines
Submission Form
Policies for Authors
 
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
Special Issues
Author Index
To Appear
 
Other MSP Journals
Dual groups of vector spaces

William Charles Waterhouse

Vol. 26 (1968), No. 1, 193–196
Abstract

Let E be a topological vector space over a field K having a nontrivial absolute value. Let Ebe the dual space of continuous linear maps E K, and Ê the dual group of continuous characters E R∕Z. Ê is a vector space over K by ()(x) = φ(ax), and composition with a nonzero character of K is a linear map of Einto Ê. This map is always an isomorphism if K is locally compact, while if K is not locally compact it is never an isomorphism unless Ê = 0. When K is locally compact, Eis in addition topologically isomorphic to Ê if each is given its topology of uniform convergence on compact sets. This leads to conditions on E which imply that E is topologically isomorphic to (Ê).

Mathematical Subject Classification
Primary: 46.01
Milestones
Received: 20 December 1966
Published: 1 July 1968
Authors
William Charles Waterhouse