AN INVARIANT SUBSPACE THEOREM OF J. FELDMAN

THOMAS ALASTAIR GILLESPIE
AN INVARIANT SUBSPACE THEOREM OF J. FELDMAN

T. A. GILLESPIE

Theorem. Let t be a quasi-nilpotent bounded linear operator on a complex normed space X of dimension greater than one. Suppose further that there is a sequence $(p_n(t))$ of polynomials in t and a nonzero compact operator s on X such that $p_n(t) \to s$ (in norm) as $n \to \infty$. Then t has a proper closed invariant subspace.

In [3], Feldman proves this theorem in the case when X is a Hilbert space. By adapting the proof given by Bonsall [2, Theorem (20.1)] of the Bernstein-Robinson invariant subspace theorem [1], the result can be shown to hold when X is a normed space, the necessary changes in the proof given in [2] being suggested by [3]. For the sake of completeness, the proof below repeats the relevant arguments in [2]. We need the following notation and simple results.

(i) If E is a nonempty subset of X and $x \in X$, the distance from x to E, $d(x, E)$, is defined by

$$d(x, E) = \inf \{\|x - y\| : y \in E\}.$$

(ii) Given a sequence $\{E_n\}$ of linear subspaces of X, define

$$\liminf E_n = \{x \in X : \exists \text{ a sequence } \{x_n\} \text{ with } x_n \in E_n \text{ and } x_n \to x\}.$$

It is clear that $\liminf E_n$ is a closed linear subspace of X and

$$\liminf E_n = \{x \in X : d(x, E_n) \to 0 \text{ as } n \to \infty\}.$$

(iii) Given a finite dimensional subspace E of X and $x \in X$, $\exists u \in E$ such that $\|x - u\| = d(x, E)$. We call such a u a nearest point of E to x. Also, if F is a finite dimensional subspace of X such that $F \supset E$, $F \neq E$, $\exists v \in F$ such that $\|v\| = 1 = d(v, E)$.

Proof of theorem. Let $e \in X$, $\|e\| = 1$. Clearly we may assume that X has infinite dimension, and that e, te, t^2e, \cdots are linearly independent. Let E_n be the linear span of $\{e, te, \ldots, t^{n-1}e\}$, and choose $e_n \in E_n$ such that

$$\|e_n\| = 1 = d(e_n, E_{n-1}).$$

Since E_n is the linear span of $\{E_{n-1}, t^{n-1}e\}$, for each integer n there is a unique $\alpha_n \in C$, $\alpha_n \neq 0$, such that

$$e_n - \alpha_n t^{n-1}e \in E_{n-1}.$$

Since $tE_{n-1} \subset E_n$, (1) gives
(2) \[t^r e_n = \alpha_n t^{n+r-1} e \in E_{n+r-1} \]

for \(n \geq 1, r \geq 1 \). Also, replacing \(n \) by \(n + r \) in (1),

(3) \[e_{n+r} = \alpha_{n+r} t^{n+r-1} e \in E_{n+r-1} \]

and hence, by (2) and (3),

(4) \[t^r e_n = \frac{\alpha_n}{\alpha_{n+r}} e_{n+r} \in E_{n+r-1} \]

for \(n \geq 1, r \geq 1 \). We note that, since \(d(e_n, E_{n-1}) = 1 \), it follows from (4) that

\[d(t^r e_n, E_{n+r-1}) = \left| \frac{\alpha_n}{\alpha_{n+r}} \right| \quad (n, r \geq 1) . \]

We show that there is a subsequence \(\{ \alpha_{j(n)}/\alpha_{j(n)+1} \} \) of \(\{ \alpha_n/\alpha_{n+1} \} \) such that \(\alpha_{j(n)}/\alpha_{j(n)+1} \to 0 \) as \(n \to \infty \). (This corresponds to the lemma in [3]). Suppose not. Then

\[\liminf_{n \to \infty} \left| \frac{\alpha_n}{\alpha_{n+1}} \right| = \lambda > 0 , \]

and so there exists \(n_0 \) such that

\[\left| \frac{\alpha_n}{\alpha_{n+1}} \right| > \lambda/2 \text{ if } n \geq n_0 . \]

Since

\[\| t^r \| \geq \| t^r e_n \| \geq d(t^r e_n, E_{n+r-1}) = \left| \frac{\alpha_n}{\alpha_{n+r}} \right| , \]

\[\| t^r \| \geq \prod_{j=n}^{n+r-1} \left| \frac{\alpha_j}{\alpha_{j+1}} \right| . \]

Taking \(n = n_c \), this gives

\[\| t^r \| \geq (\lambda/2)^r \quad (r \geq 1) , \]

and so

\[\lim_{r \to \infty} \| t^r \|^{1/r} \geq \lambda/2 > 0 , \]

contradicting the quasi-nilpotence of \(t \). Therefore we can find a subsequence \(\{ j(n) \} \) such that

\[\frac{\alpha_{j(n)}}{\alpha_{j(n)+1}} \to 0 \text{ as } n \to \infty , \]

i.e. such that
(5) \[d(te_{j(n)}, E_{j(n)}) \to 0 \quad \text{as} \quad n \to \infty. \]

Define linear mappings \(t_n : E_n \to E_n (n \geq 1) \) by
\[
t_n | E_{n-1} = t | E_{n-1}, \quad t_n(e_n) = u_n,
\]
where \(u_n \) is a nearest point of \(E_n \) to \(te_n \). We show that

(6) \[||tx - t_nx|| \leq d(te_n, E_n)||x|| \quad (x \in E_n, \ n \geq 1). \]

Let \(x \in E_n \). Then \(x = y + \lambda e_n \) for some \(\lambda \in C, \ y \in E_{n-1} \).

\[||tx - t_nx|| = ||\lambda te_n - \lambda u_n|| = |\lambda|d(te_n, E_n), \]

and also
\[||x|| \geq d(x, E_{n-1}) = d(\lambda e_n, E_{n-1}) = |\lambda|d(e_n, E_{n-1}) = |\lambda|. \]

Therefore
\[||tx - t_nx|| \leq d(te_n, E_n)||x|| \quad (x \in E_n, \ n \geq 1). \]

From (5) and (6) we see that, if \(\{x_n\} \) is a bounded sequence with \(x_n \in E_{j(n)} \), then

(7) \[||tx_n - t_{j(n)}x_n|| \to 0 \quad \text{as} \quad n \to \infty. \]

From (7) it follows that if \(\{H_{n_k}\} \) is a sequence of subspaces with \(H_{n_k} \subset E_{j(n_k)} \) and \(H_{n_k} \) invariant for \(t_{j(n_k)} \), then \(\liminf H_{n_k} \) is invariant for \(t \).

We prove next, by induction on \(k \), that for each integer \(k \) there is a constant \(A_k \) such that

(8) \[||t_kx - t_k^x|| \leq A_kd(te_n, E_n)||x|| \quad (x \in E_n, \ n \geq 1). \]

The case when \(k = 1 \) is given by (6), \((A_1 = 1)\). Suppose that (8) holds for some \(k \). Then, for \(x \in E_n \),
\[
||t_k^x|| \leq ||t^x|| + A_kd(te_n, E_n)||x|| \\
\leq (||t^x|| + A_kd(te_n, E_n))||x|| \\
\leq (||t^x|| + A_k||t||)||x|| \\
= B_k||x||, \quad \text{say}.
\]

Since \(t_k^xE_n \subset E_n \), (6) gives
\[
||tt_k^x - t_k^{x+1}|| \leq d(te_n, E_n)||t_k^x|| \\
\leq B_kd(te_n, E_n)||x||.
\]

Therefore
\[
||t_k^{x+1} - t_k^x|| \leq ||t_k^{x+1} - tt_k^x|| + ||tt_k^x - t_k^{x+1}|| \\
\leq ||t|| ||t^x - t_k^x|| + ||tt_k^x - t_k^{x+1}|| \\
\leq (||t||A_k + B_k)d(te_n, E_n)||x||.
\]
Hence, by induction, (8) is proved.

It follows immediately from (8) that, given a polynomial \(p(t) \) in \(t \), there is a constant \(M \) such that

\[
\| p(t)x - p(t_n)x \| \leq Md(te_n, E_n) \| x \| \quad (x \in E_n, \ n \geq 1).
\]

Hence we can find positive constants \(\{M_r\}_{r=1}^\infty \) such that

\[
(9) \quad \| p_r(t)x - p_r(t_n)x \| \leq M_rd(te_n, E_n) \| x \|
\]

for \(x \in E_n, \ n \geq 1, \ r \geq 1 \).

Since \(st = ts \) and \(s \neq 0 \), we may assume that \(s^{-1}(0) = (0) \), for otherwise \(s^{-1}(0) \) is a proper closed invariant subspace for \(t \). Therefore \(se \neq 0 \), and we can choose \(\alpha \) with \(0 < \alpha < 1 \) and \(\alpha \| s \| < \| se \| \).

Choose sequences \(\{E^{i_j}_n\}_{i_j=0}^{i_n} \) of subspaces of \(E_{j(n)} \) such that

\[
(0) = E^0_n \subset E^1_n \subset \cdots \subset E^{i_n}_n = E_{j(n)},
\]

where \(\dim E^i_n = i \) and \(E^i_n \) is invariant for \(t_{j(n)} \). Since \(d(e, E^0_n) = \| e \| = 1 \) and \(d(e, E^{i_n}_n) = 0 \), for each \(n \) there is a greatest \(i, i_n \) say, such that \(d(e, E^{i_n}_n) > \alpha \). Put \(F_n = E^{i_n}_n, G_n = E^{i_n+1}_n \). Then

\[
d(e, F_n) > \alpha, \quad d(e, G_n) \leq \alpha \quad (n \geq 1),
\]

and so

\[
(10) \quad e \in \lim \inf F^k_n
\]

for any subsequence \(\{n_k\} \). Let \(y_n, z_n \) be nearest points of \(G_n \) to \(e, se \) respectively, and let \(v_n \in G_n \) with \(\| v_n \| = 1 = d(v_n, F_n) \). We can write

\[
y_n = x_n + \beta_n v_n, \quad z_n = x'_n + \beta'_n v_n,
\]

where \(x_n, x'_n \in F_n \) and \(\beta_n, \beta'_n \in \mathcal{C} \). We have

\[
| \beta_n | = d(\beta_n v_n, F_n) = d(y_n, F_n) \leq \| y_n \| \\
\leq \| y_n - e \| + \| e \| = d(e, G_n) + \| e \| \leq 2 \| e \|.
\]

Similarly

\[
| \beta'_n | \leq 2 \| se \|.
\]

Also, for \(n \geq 1, \)

\[
(11) \quad \| sy_n \| \geq \| se \| - \| sy_n - se \| \geq \| se \| - \| s \| \| y_n - e \| \\
= \| se \| - \| s \| d(e, G_n) \geq \| se \| - \alpha \| s \| > 0.
\]

By the compactness of \(s \) and the boundedness of \(\{|y_n|\}, \{|\beta_n|\}, \{|\beta'_n|\} \), we can find a subsequence \(\{n_k\} \) such that

\[
\beta_{n_k} \rightarrow \beta, \quad \beta'_{n_k} \rightarrow \beta', \quad sy_{n_k} \rightarrow y \text{ as } k \rightarrow \infty.
\]
We show that \(y \in \lim \inf G_{n_k} \). Let \(\varepsilon > 0 \). \(\exists \ n_0 \) such that

\[
\left\| s - p_{n_0}(t) \right\| < \frac{\varepsilon}{4\| e \|}.
\]

By (5), \(\exists \ k_0 \) such that

\[
d(t_{j(n_k)}, E_{j(n_k)}) < \frac{\varepsilon}{4M_{n_0}\| e \|} \quad \text{if} \quad k \geq k_0.
\]

Since \(\| y_n \| \leq 2\| e \| \) \((n \geq 1)\), by (9)

\[
\| p_{n_0}(t)y_{n_k} - p_{n_0}(t_{j(n_k)})y_{n_k} \| \leq M_{n_0}d(t_{j(n_k)}, E_{j(n_k)}) \cdot 2\| e \|
\]

for \(k \geq 1 \). Therefore \(k \geq k_0 \) implies that

\[
\| sy_{n_k} - p_{n_0}(t_{j(n_k)})y_{n_k} \| \leq \| sy_{n_k} - p_{n_0}(t)y_{n_k} \| + \| p_{n_0}(t)y_{n_k} - p_{n_0}(t_{j(n_k)})y_{n_k} \| \\
\leq \| s - p_{n_0}(t) \| \| y_{n_k} \| + 2M_{n_0}\| e \| d(t_{j(n_k)}, E_{j(n_k)}) \\
\leq \frac{\varepsilon}{4\| e \|} \cdot 2\| e \| + 2M_{n_0}\| e \| \cdot \frac{\varepsilon}{4M_{n_0}\| e \|} = \varepsilon.
\]

Since \(sy_{n_k} \to y \), \(\exists \ k_1 \geq k_0 \) such that \(\| sy_{n_k} - y \| < \varepsilon \) if \(k \geq k_1 \). Thus if \(k \geq k_1 \),

\[
\| y - p_{n_0}(t_{j(n_k)})y_{n_k} \| \leq \| y - sy_{n_k} \| + \| sy_{n_k} - p_{n_0}(t_{j(n_k)})y_{n_k} \| < \varepsilon + \varepsilon = 2\varepsilon.
\]

But \(p_{n_0}(t_{j(n_k)})y_{n_k} \in G_{n_k} \) since \(G_{n_k} \) is invariant for \(t_{j(n_k)} \), and so

\[
d(y, G_{n_k}) \leq \| y - p_{n_0}(t_{j(n_k)})y_{n_k} \| < 2\varepsilon \quad \text{if} \quad k \geq k_1.
\]

Therefore \(d(y, G_{n_k}) \to 0 \) as \(k \to \infty \), and \(y \in \lim \inf G_{n_k} \).

Now by (11) \(y \neq 0 \), and so \(\lim \inf G_{n_k} \) will be a proper closed invariant subspace for \(t \) unless \(\lim \inf G_{n_k} = X \). Thus we may suppose that \(\lim \inf G_{n_k} = X \), and hence that \(e, se \in \lim \inf G_{n_k} \), i.e.

\[
d(e, G_{n_k}) = \| e - y_{n_k} \| \to 0 \quad \text{as} \quad k \to \infty
\]

and

\[
d(se, G_{n_k}) = \| se - z_{n_k} \| \to 0 \quad \text{as} \quad k \to \infty.
\]

Therefore

\[
\beta_{n_k} x_{n_k} \to e \quad \text{and} \quad \beta'_{n_k} x'_{n_k} \to se \quad \text{as} \quad k \to \infty.
\]

Hence

\[
\beta'_{n_k} x_{n_k} - \beta_{n_k} x'_{n_k} \to \beta'e - \beta se \quad \text{as} \quad k \to \infty.
\]
and so
\[\beta' e - \beta se \in \lim \inf F_{n_k}. \]
If \(\beta = 0 \) then \(x_{n_k} \to e \) and \(e \in \lim \inf F_{n_k} \), contradicting (10). So \(\beta \neq 0 \).
If \(\beta' e - \beta se = 0 \) then \((\beta'/\beta)e = se \neq 0 \) and so \(\beta' \neq 0 \). Then \(s \neq (\beta'/\beta)\mathcal{F} \) since \(s \) is compact and \(X \) has infinite dimension (\(\mathcal{F} \) being the identity operator on \(X \)). Therefore
\[
0 \neq e \in \left(s - \frac{\beta'}{\beta} \mathcal{F} \right)^{-1}(0)
\]
and \(\{s - (\beta'/\beta)\mathcal{F}\}^{-1}(0) \) is a proper closed invariant subspace for \(t \).
Finally, if \(\beta' e - \beta se \neq 0 \) then \(\lim \inf F_{n_k} \neq (0) \), and so, by (10), \(\lim \inf F_{n_k} \) is a proper closed invariant subspace for \(t \).

REFERENCES

2. F. F. Bonsall, Compact Linear Operators, Lecture Notes, Yale University.

Received August 18, 1967. This work was done at Yale University; the author was supported by a NATO Research Studentship.

EDINBURGH UNIVERSITY
SCOTLAND
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. ROYDEN
Stanford University
Stanford, California

R. R. PHELPS
University of Washington
Seattle, Washington 98105

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA	STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY	UNIVERSITY OF TOKYO
UNIVERSITY OF CALIFORNIA	UNIVERSITY OF UTAH
MONTANA STATE UNIVERSITY	WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA	UNIVERSITY OF WASHINGTON
NEW MEXICO STATE UNIVERSITY	*
OREGON STATE UNIVERSITY	*
UNIVERSITY OF OREGON	*
OSAKA UNIVERSITY	AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF SOUTHERN CALIFORNIA	CHEVRON RESEARCH CORPORATION
	TRW SYSTEMS
	NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efraim Pacillas Armendariz</td>
<td>Closure properties in radical theory</td>
<td>1</td>
</tr>
<tr>
<td>Friedrich-Wilhelm Bauer</td>
<td>Postnikov-decompositions of functors</td>
<td>9</td>
</tr>
<tr>
<td>Thomas Ru-Wen Chow</td>
<td>The equivalence of group invariant positive definite functions</td>
<td>25</td>
</tr>
<tr>
<td>Thomas Allan Cootz</td>
<td>A maximum principle and geometric properties of level sets</td>
<td>39</td>
</tr>
<tr>
<td>Rodolfo DeSapio</td>
<td>Almost diffeomorphisms of manifolds</td>
<td>47</td>
</tr>
<tr>
<td>R. L. Duncan</td>
<td>Some continuity properties of the Schnirelmann density</td>
<td>57</td>
</tr>
<tr>
<td>Ralph Jasper Faudree, Jr.</td>
<td>Automorphism groups of finite subgroups of division rings</td>
<td>59</td>
</tr>
<tr>
<td>Thomas Alastair Gillespie</td>
<td>An invariant subspace theorem of J. Feldman</td>
<td>67</td>
</tr>
<tr>
<td>George Isaac Glauberman and John Griggs Thompson</td>
<td>Weakly closed direct factors of Sylow subgroups</td>
<td>73</td>
</tr>
<tr>
<td>Hiroshi Haruki</td>
<td>On inequalities generalizing a Pythagorean functional equation and Jensen’s functional equation</td>
<td>85</td>
</tr>
<tr>
<td>David Wilson Henderson</td>
<td>D-dimension. I. A new transfinite dimension</td>
<td>91</td>
</tr>
<tr>
<td>David Wilson Henderson</td>
<td>D-dimension. II. Separable spaces and compactifications</td>
<td>109</td>
</tr>
<tr>
<td>Julien O. Hennefeld</td>
<td>A note on the Arens products</td>
<td>115</td>
</tr>
<tr>
<td>Richard Vincent Kadison</td>
<td>Strong continuity of operator functions</td>
<td>121</td>
</tr>
<tr>
<td>J. G. Kalbfleisch and Ralph Gordon Stanton</td>
<td>Maximal and minimal coverings of ((k-1))-tuples by (k)-tuples</td>
<td>131</td>
</tr>
<tr>
<td>Franklin Lowenthal</td>
<td>On generating subgroups of the Moebius group by pairs of infinitesimal transformations</td>
<td>141</td>
</tr>
<tr>
<td>Michael Barry Marcus</td>
<td>Gaussian processes with stationary increments possessing discontinuous sample paths</td>
<td>149</td>
</tr>
<tr>
<td>Zalman Rubinstein</td>
<td>On a problem of Ilyeff</td>
<td>159</td>
</tr>
<tr>
<td>Bernard Russo</td>
<td>Unimodular contractions in Hilbert space</td>
<td>163</td>
</tr>
<tr>
<td>David Lee Skoug</td>
<td>Generalized Ilstow and Feynman integrals</td>
<td>171</td>
</tr>
<tr>
<td>William Charles Waterhouse</td>
<td>Dual groups of vector spaces</td>
<td>193</td>
</tr>
</tbody>
</table>