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Theorem. Let ¢ be a quasi-nilpotent bounded linear opera-
tor on a complex normed space X of dimension greater than
one. Suppose further that there is a sequence {p.(t)} of poly-
nomials in ¢{ and a nonzero compact operator s on X such that
P.(t)— s (in norm) as n — o, Then ¢ has a proper closed in-
variant subspace.

In [3], Feldman proves this theorem in the case when X is a
Hilbert space. By adapting the proof given by Bonsall [2, Theorem
(20.1)] of the Bernstein-Robinson invariant subspace theorem [1], the
result can be shown to hold when X is a normed space, the necessary
changes in the proof given in [2] being suggested by [3]. For the
sake of completeness, the proof below repeats the relevant arguments
in [2]. We need the following notation and simple results.

(i) If E is a nonempty subset of X and « ¢ X, the distance from
x to E, d(z, E), is defined by

d(z, E) = inf{||lz —yll:yec £} .

(ii) Given a sequence {FE,} of linear subspaces of X, define
lim inf F, = {x € X: 3 a sequence {z,} with x,e E, and =z, — «}. It is
clear that lim inf E, is a closed linear subspace of X and

liminf £, = {x e X: d(z, E,)—0 as #n- o},

(iii) Given a finite dimensional subspace Fof X andxc X, 3uc F
such that ||x — u || = d(z, E). We call such a u a nearest point of
E to x. Also, if F is a finite dimensional subspace of X such that
Fo>FE, F+ E, 3 veF such that ||v| =1 = d(v, E).

Proof of theorem. Let ec X, |le]] = 1. Clearly we may assume
that X has infinite dimension, and that e, te, t%, --- are linearly in-
dependent. Let E, be the linear span of {e, te, ---, t"’¢}, and choose

e, € K, such that
e ]| =1 = d(e,, E,) .

Since E, is the linear span of {E,_,, t""'¢}, for each integer » there is a
unique «,€C, «, = 0, such that

(1) e, —a,t"lec K, , .
Since tE,_,C E,, (1) gives
67
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(2) tren - antn—i-rmle € En+7—~1

for n =1, »r = 1. Also, replacing » by n + 7 in (1),
(3) Cntr — an+rtn+r_le € En+r—~1 ’

and hence, by (2) and (3),

4) te, —

Cnir € En+r-—1

ntr

for n =1, r = 1. We note that, since d(e,, E,_,) = 1, it follows from
(4) that

d(t"en, Fpyry) = |, | n,r=1.

l ntr l

We show that there is a subsequence {a;,,/®;u, 1.} of {a,/a,.,} such
that ®;.)/®;m1— 0 as m— o, (This corresponds to the lemma in
[3]). Suppose not. Then

. . (44
lim inf i
noe an-H

=A>0,

and so there exists %, such that

|ih—>xmifngnw

an-H

Since

112 el 2 e, By = | %]
an+r
ntr—1 X
Nt = I (2.

g=n 10y,

Taking n = n,, this gives

=z ™2y  (rz1l),
and so

lim ||| = N2> 0,

contradicting the quasi-nilpotence of ¢. Therefore we can find a sub-
sequence {j(n)} such that

i)

—0 as n— oo,
Xjiny+1

i.e. such that
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) d(te;my, i) — 0 as n— oo,

Define linear mappings ¢,: £, — E, (n = 1) by

bn | Buoy = 0| By tul€n) = Uy
where u, is a nearest point of K, to te,. We show that
(6) te — t,x|| < d(te,, E,)||x]l (veE,nz=1).
Let e E,. Then =y + e, for some neC, yec E,_,.
[[te — t2|l = [ Mte, — M, || = [N]d(te,, E,) ,
and also
2]l = d(z, E,_) = d(\e,, E, ) = [\|d(e,, E,.) = |M].
Therefore
[te — tx]l < d(te,, E)[lal]  (@eE,nz=1).

From (5) and (6) we see that, if {x,} is a bounded sequence with
x, € K., then

(7) tx, — i || —0 as m-— oo,

From (7) it follows that if {H,} is a sequence of subspaces with
H, c Ej;,, and H,, invariant for ¢;,,, then liminf H, is invariant
for ¢.

We prove next, by induction on %, that for each integer & there
is a constant A, such that

(8) It — o || = Ad(te,, EL) ll2l] (e E,, nz=1).

The case when k£ = 1 is given by (6), (4, = 1). Suppose that (8) holds
for some k. Then, for x ¢ E,,

[tiw || < [| tha || + Awd(te,, E,) ]| ||

< (I tF]] + Ad(te,, E,)) ||« ]|

= (1] + Al eib el

:Bka[iy say .
Since t*E,cC E,, (6) gives

= B.d(te,, E,)||z]| .
Therefore
|| tF e — thtin || < ||t e — ttka || + || ttke — thtia ||

= HtH Htka/ — tfbfLH -+ Htt:ﬂ} _ ti‘,“x”
< (||t]| A, + Byd(te,, E,) || ]| .
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Hence, by induction, (8) is proved.
It follows immediately from (8) that, given a polynomial p(¢) in
t, there is a constant M such that

Hence we can find positive constants {M,},., such that

for xcE,, n=1, r = 1.

Since st = ts and s = 0, we may assume that s~'(0) = (0), for
otherwise s~'(0) is a proper closed invariant subspace for ¢. Therefore
se = 0, and we can choose a with 0 <a <1 and «al|s|| <]||sel.
Choose sequences {E}/ of subspaces of Ej;,, such that

(0) = E,DLCE,}LC A CE;,'(M = Ej(n) 9

where dim E} = 1 and E; is invariant for ¢;,,. Since d(e¢, E) = |le]| =1
and d(e, Ei™) = 0, for each n there is a greatest ¢, 7, say, such that
d(e, Ei»y > a. Put F, = Ei», G, = Ei»*', Then

die, F,) >a, d G)=a (nzl),
and so
10) e¢lim inf F,,

for any subsequence {n,}. Let y,, 2z, be nearest points of G, to e, se
respectively, and let v, € G, with ||v,|| =1 = d(v,, F,). We can write

Yu = &, + B0,
Ry = Tp + 8oV, ,

where z,, 2,¢ F, and 8,, 5, C. We have

=Y. —ell +llell = dle, G.) + |le]l = 2][e]l .

Similarly
|8, = 2| sell .
Also, for n = 1,
(11) syall = llsell — || sy, — sefi = [|sell — |Is|l |y, — ell
= [ se|| — |[slld(e, G,) = [isel| — afls][>0.

By the compactness of s and the boundedness of {|| v, I}, {| 5.1}, {81},
we can find a subsequence {n,} such that

Bay— B 5 B, — B, 8Y,,—Y as k— oo,
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We show that yclim infG,,. Let ¢ > 0. 3 =, such that

€
s — pa @) || < el

By (5), 3 k, such that

Atejinys Einy) < if k=>k,.

&
AM, |l el|
Since ||y, || = 2[lell (n = 1), by (9)
H pno(t)ynk - pno(tj(nk))ynk H é Mnod(tej(nk)y Ej('nk)).z ” e H
for k = 1. Therefore &k = k, implies that
H synk - pno(ti(nk))ynk H é || Sy'nk - pno(t)ynk ||
+ H pno(t)ynk - pno(tj(nk))ynk H

=18 = D) 1 Y, 1l
+ 2Mn0 ” € H d(tej(nk)! Ej(‘lbk))

6 . O—————_—e =
§4He|| 2llell + 2M,, || 1, o] €.

Since sy,, — ¥, 3 k, = k, such that |[sy,, — vyl <e if k= k,. Thus if
k=k,

Y = DaCiap) VUi | S 1Y — Y || + 1| Yy — Dag(Eicn)) Yy |l
<e+e=2e,

But 9,,(t()¥a, € Ga, since G,, is invariant for ¢;,,,, and so
d(y’ Gnk) é H Yy — pno(tj(nk))ynk H < 2 if k g kl .

Therefore d(y, G,,) — 0 as k— oo, and yeliminfG,,.

Now by (11) ¥ # 0, and so lim inf G,, will be a proper closed in-
variant subspace for ¢ unless lim inf G,, = X. Thus we may suppose
that liminf G,, = X, and hence that ¢, secliminf G, , i.e.

and
d(se, G,,) = ||se — z,,||—0 as k— oo,
Therefore
Bp, + BuVa,—e and a, + B,0,,—se as k— oo,
Hence

B;thnk - B’nkﬁ;;lk - /8’6 - Bse as k —> co ,
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and so

B'e — Bseelim inf F,

P e
If 8 =0 then ,, — ¢ and eclim inf F, , contradicting (10). So 8 = 0.
If B¢ — Bse =0 then (8'/B)e = se = 0 and so 8’ + 0. Then s = (8'/8).#
since s is compact and X has infinite dimension (_# being the identity
operator on X). Therefore

O;tee(s—%' >_1(0)

and {s — (8'/B)_~}7%0) is a proper closed invariant subspace for ¢t.
Finally, if B¢ — Bse =0 then liminf F, =+ (0), and so, by (10),
lim inf F', is a proper closed invariant subspace for ¢.
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