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In many finite classical linear groups and permutation
groups, certain Sylow subgroups have weakly closed direct
factors. In this paper we establish a sufficient condition for
this to occur in arbitrary finite groups.

The purpose of this paper is to prove the following result:

THEOREM A. Let p be an odd prime, and let P be a Sylow p-
subgroup of a finite group G. Suppose Q and R are subgroups of
G such that P=Q x R. Assume that no indecomposable factor of
R is isomorphic to a subgroup of Q. Then P contains a weakly
closed direct factor that is isomorphic to R.

Our notation is taken from [3]. In addition, for every finite p-
group P, we let
d(P) = max.{|A|| A is an Abelian subgroup of P}

and
J(P) =<A|A an Abelian subgroup of P and |A| = d(P)).
The following lemma is a special case of a result of Wielandt

(Satz 6 of [9]).

LEMMA 1. Let A and B be subgroups of a finite group G such
that G = AB. Suppose p is a prime, A, is a normal p-subgroup of
A, and B, is a normal p-subgroup of B. Then {A,, B,> is a p-group.

Proof. By Sylow’s Theorem, <(4,)’, B,> is a p-group for some
geG. TakeacAandbe Bsuchthat ab=g. Then (4,) = ((4,)) =
(4,). Also, (B,))”" = B,. Thus

{4y, B,y = (4,), (Bo) ™0 = K(4,), B,y

which is a p-group.

An automorphism « of a group G is said to be central if g*g~' € Z(G)
for all geG. We say that an element (or a subgroup) of Aut G
Jfizes a subgroup H of G if it (or its elements) map H onto H.

THEOREM 1. Let 7 be a set of primes and G be a finite mw-group.
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Suppose G = H x K and no indecomposable factor of H is isomorphic
to an indecomposable factor of K. Let A = AutG and let C be the
group of central automorphisms of G. Then G has the following
properties:

() IfH* =z H, K*= K,and G =H* X K*, then G =H* X K =
H x K*.

(b) The groups H x Z(K), Z(H) X K, H', and K' are character-
istic subgroups of G.

(¢) There exists a normal, nilpotent m-subgroup D of A that is
contained in C and permutes transitively the pairs (H*, K*) such
that

H*=H K*=K, and G = H* x K*.

(d) If B s a n’-subgroup of A then there exists a pair (H*, K*)
such that

H*=H K*=K,G=H*x K*,

and B fires H* and K*. Moreover, if B fixes H, we may take
H* = H.

Proof. (a) Represent H and K as products of indecomposable
factors, say, H=H, x --- x H, and K=K, X --+- X K,. Then G =
Hx K=H; X +++ X H, X K, X +++ XK, Since H* = Hand K* = K,
we have a similar representation

G=H*xXK*=H X -+ X Hf XKfx -+ x K*.

Obviously, there exists a one-to-one correspondence ¢ between the
factors F' of the first representation and those of the second represent-
ation. By the Krull-Schmidt Theorem |7, p. 81], ¢ may be chosen to
have the properties that ¢(F') = F for each F' and

G=¢H) X -+ Xx6(H,) X Ky X «++ X K, .

Clearly, for every H;, ¢(H;) is some Hj. Hence G = H* x K. By
symmetry, G = H X K*,
(b) LetaecA. Then G = H* x K*. By (a), G = H* x K. Thus

(C(K))* = (H X Z(K))*< H*Z(G) < C(K) .

Hence H x Z(K) is a characteristic subgroup of G. Since H' =
(H x Z(K)), H' is also a characteristic subgroup of G. By symmetry,
Z(H) x K and K' are characteristic in G.

(¢) For each acC, define o« — 1 by g**' = g~'g® for all geG.
Since a¢eC, @« — 1 is an endomorphism of G and G“*' & Z(G). Thus
g¢t = g*g~* for all geG.
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Let D, be the group of all « € C for which g* =g for all ge H
and g*'e Z(H) for all g G. Then

(1) H'=1 and G*'g Z(H), for aecD,.

Define D, similarly.
Suppose o€ D,. Let » =a — 1. Take geG, and let h = ¢g”. By

(1), it is clear by induction that
g =ght for 1=1,2,8,.--.

Thus
(2) the order of «, the exponent of G*!, and the exponent of

G/Ker (&« — 1) are equal.
We also observe from (1) that if «, 8¢ D,, then a8 = Ba. Thus
(8) D, is an Abelian 7m-group.

Suppose « e D,, Be D,, and & and S have relatively prime orders.
Let ge G, and let h = g~ and k = g/~'. Then he Z(H) and k ¢ Z(K).
By (2), the order of h divides the order of a. Since an analogue of
(2) also holds for elements of Dy, € Ker (8—1). Similarly, k € Ker (a¢—1).
Hence

gaﬁ - (gzv)ﬁ — (gh)ﬁ — gﬂhﬁ — gﬁh — gkh — ghk

and
gﬁa — (gﬁ)/\ — (gk)a — gak(x — gak — ghk — gaﬁ .

Thus a8 = Ba. In particular, if p and ¢ are distinct primes,
(4) the Sylow p-subgroup of D, centralizes the Sylow g¢-subgroup of

D,.
Suppose H* = H, K* = K, and G = H* x K*. By (a),

G=HxK=HXxK*=H*"XK.

Define a mapping %: G — G as follows: For each ke K, take h'e H
and k* ¢ K* such that £ = h'k*. Letk”=h'. Forhe Hand ke K, let

(hky = k7 .

Then 7 is an endomorphism of G. Since K and K* centralize H,
G" = K" < Z(H) < Z(G). Hence the mapping a: G — G given by ¢g* =
(9")'¢g is an endomorphism of G. Since H*= H and K*= K* «a is
an automorphism of G. Clearly, a«e€D,. Thus D, permutes trans-
itively all the direct factors of G that are isomorphic to K. Similarly
D, permutes transitively all the direct factors of G that are isomorphic

to H.
Let A, be the set of all a«e€ A such that H* = H. Define A,

similarly. Then
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(5) D, <]A; and D, <JAx.

Let «c A. Then H*= H, K*= K, and G = H* x K*. Hence there
exists @€ D,, such that K? = K*, Therefore K~ = K, and a8~ ¢ A,.
Thus ac A A,. So

(6) A= AKAH = AHAK .

Let I = A,NAg, and take awc 4,,. As in the previous paragraph,
there exists 8¢ Dy, such that K¢ = Kf, ThusaB'eAyNAx =1. So
A, = ID, = D,I. Similarly, Ay = ID, = D,l.

Let p be a prime. By (5), 0,(Dy) is a normal subgroup of A4,
and 0,(Dyg) is a normal subgroup of A;. Let D, = <0,(Dy), O,(D)>.
By (5), (6), and Lemma 1, D, is a p-group. By (3) and (4), every
p'-element in D, or D, centralizes D,. Since D, normalizes itself,
D, and Dy normalize D,. Since I normalizes D, and Dy, I normalizes
D,. Hence

N(D,) 24Dy, Dg, I)> =<Dyl, Dxl> = AyAx = 4.

Let D be the subgroup of C generated by the groups D, for all
primes p. Then D, = D and D S D, by (3). Suppose H* = H,
K*= K, and G = H* X K*. Then there exists ac D, and Bec D,
such that H** = H and ((K*)*)* = K. Now afeD,H**¥ = H, and
K#*«¢ = K, This completes the proof of (c).

(d) Retain the notation of (¢). Then I = A,NAx and A = ID.
Since D= BD &£ A= 1ID,BD = (BDNI)D. Note that D is nilpotent
and |B| and |D| are relatively prime. By Schur’s Theorem [10, p.
162], BDN1I splits over DN 1. Let B* be a complement of DN I in
BDNI. Thus B* is a complement of D in BD. By the Schur-
Zassenhaus Theorem [10, p. 162], B* is conjugate to B in BD. Take
« ¢ BD such that B = a'B*a. Since B* & A, N Ay, B fixes H* and
K-,

If B fixes H, then BS A, = ID,. An argument similar to the
previous one shows that aBa— & I for some ae BD,. Then B fixes
H<« and K%, and H* = H. This completes the proof of Theorem 1.

LEMMA 2. Let p be a prime and P be a p-subgroup of a finite
group G. Suppose H is a p'-subgroup of G that normalizes P. Then:

(@) P =[P, H]CxH);

(o) [[P, H], H] =[P, H]; and

(¢) tf P is Abelian, then P = [P, H] X C(H).

Proof. This result is well known. Parts (a) and (b) appear as
Corollary 3 of Theorem 1 of [4]. Part (c) follows directly from part
(a) and from the lemma on page 172 of [10].



WEAKLY CLOSED DIRECT FACTORS OF SYLOW SUBGROUPS 7

LEMMA 3. Let p be a prime and P be a p-subgroup of a finite
group G. Suppose H is a p’-subgroup that normalizes P. Assume
that

(a) P is Abelian and H centralizes 2,(P)
or that

(b) P has mo Abelian direct factors and H centralizes P|Z(P).
Then H centralizes P.

Proof. (a) By Lemma 2, P=[P, H]|xC,(H). Hence 2,(|P, H])=1.
Therefore, [P, H] = 1, i.e., H centralizes P.

(b) Let Q =[P,H]. Then Q < Z(P), so @ is Abelian. By
Lemma 2, P = QC,(H),Q = [Q, H], and QNC (H) = [Q,H] NCo(H)=1.
Since Q < Z(P), Co(H) <{| P. Hence P=Q x Cx(H). By (b), @ = 1.

LEMMA 4. Let P and Q be mormal Abelian p-subgroups of a
finite group G. Suppose that Q@ S P and that some Sylow p-subgroup
of G mormalizes some complement of @ in P. Then G mnormalizes
some complement R of Q@ in P.

Proof. By constructing a semi-direct product if necessary, we
may assume that G is a splitting extension of P by a group E that
is isomorphic to G/C(P). Let S be a Sylow p-subgroup of E. Then
S normalizes some complement R* of O in P. Now, SP is a Sylow
p-subgroup of G and SR* is a complement of @ in SP. Thus SP
splits over Q. By a theorem of Gaschiitz [6, p. 246], G splits over
Q. Let C be a complement of @ in G, and let R = C N P.

The following result is a special case of a theorem of Wielandt
(Satz 12, page 193, of [8]).

LEMMA 5. Suppose p is a prime and P is a Sylow p-subgroup
of a finite group G. Let n = |N(P)/P|. LetV be the transfer of G
into P/P’.

(a) If ac PN Z(N(P)) and a* = 1, then V(a) = a"P’.

Furthermore, suppose P =& Q S P and suppose W is the transfer
of G into P/Q. Then:

) IFAS PNZ(N(P)) and ANQ =1, then ANG' = ANKer W=1.

() If @ < N(P), then 2,Q N Z(P)) < Ker W.

Proof. (a) Let » =|G: P|, and let Px;,©=1,2,+-.,7, be the
distinct cosets of P in G. We may assume that

@y o, @, € N(P); Poa = Pr(l < < s);
Pra+#Pr(s+1<i1<7),
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where s > n. Since a? = 1, Lemma 14.4.1, page 206, of [6] yields

V(a) = P’ [ zax7t.

Since a € Z(N(P)),
(7) V(a) = P'a™ 1] zax7'.

n<i<s
Suppose ze P and n <i<s. Then (Pz)x = Px; for some j.
Since

Px;a = Prxa = Px,aw = Prx = Pu;

and since x;¢ N(P),n < j <s. Thus P permutes the cosets Pz,
n < 1 < s, by right multiplication. We may assume that Pzx,.,, ---, Pz,
are representatives of the distinct orbits of P. For i =% + 1, .-+, ¢,
let P; be the subgroup of P fixing Px;, and let vy, -+, ¥;., be re-
presentatives of the distinct left cosets of P; in P. Then the orbit
of Px; is Pryy;, 1 <7 < m,.

Suppose n + 1 <1 < t. Since z;¢ N(P), Px;P =+ Px; Thus P,cP
and

(8) m; = |P:P;|] =0, modulo p.

We may assume that, for k =mn + 1, ---, s, every z, has the form
x;Y;; for some (unique) 7 and j. By (7) and (8),
V(e) = P'a™ 11 11 w0y

n<ist 1Sj<m;

= Pa* I (x.az;7'y™ = P'a”,

n<i<t

as desired.

(b) Suppose ac A and a* = 1. Now, W is simply the composi-
tion of V with the natural mapping of P/P’ into P/Q. Hence W(a) =
a"Q@, by (a). Since p does not divide n» and since a¢ Q, W(a) = Q.
Thus A N Ker W has no elements of order p, so AN Ker W = 1. Since
G S KerW,ANG = 1.

(¢) Let B=2,(QN Z(P)) and N = N(P). Since N/Cy(B) is a p’-
group,

B =[B, N] X CxN),

by Lemma 2. Obviously, [B,N]S G < Ker W. Let aecCyN).
From (a),

W) = (@"P)Q =a"Q = @,

so a € Ker W. Thus B & Ker W. This completes the proof of Lemma 5.
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We now require the following proposition, which is the main
result of [5]:

THEOREM 2. Let p be an odd prime, and let P be a Sylow p-
subgroup of a finite group G. Suppose xe PN Z(N(J(P))). Then
g~ vy = © whenever g€ G and g~'xg € P.

THEOREM 3. Let p be a prime, and let P be a Sylow p-subgroup
of a finite group G. Suppose @ and R are normal subgroups of
N(P) and P=@Q X R. Assume that R = 0,(G) and that no indecom-
posable direct factor of R is isomorphic to a subgroup of Q. Then
R' is a normal subgroup of G, and there exists a mormal subgroup
R* of G such that P =Q X B*. Moreover, if p is odd and R/R' is
a normal subgroup of Ny (J(P/R')), we may take R* = R.

Proof. Let @, =0,(G)NQ. Since REO0,(G=P=RxQ, 0G)=
R x @Q,. Now, no indecomposable factor of R is isomorphic to an
indecomposable factor of @,. By Theorem 1, RZ(Q,) and R’ are
characteristic subgroups of 0,(G) and are therefore normal subgroups
of G.

Let T = RZ(Q) = Z(Q,) x RE. Represent R as a direct product
of an Abelian subgroup R, and a subgroup R, having no Abelian
direct factors. By Theorem 1, we may assume that R, and R, are
normalized by a complement of P in N(P) and are therefore normal
in N(P). If R, =1, let »* be the minimum of the exponents of the
indecomposable factors of R,. If R, =1, let p° = p| T'|. Then let

T, =< |xeT>.
Now T, <] G and
(9) QR)S T, S R.
Since @Q centralizes R, Q centralizes T, and T/Z(T). Let
C=C/T/ZT)NCLT,) and H=CT.

Then C and H are normal in G and P = QR S CT = H.

Let K be a complement of P in N,(P). Since HIC = T/(CN T),
K= C. Thus [T,K]< Z(T) and K centralizes T,. Therefore
[R,, K] S Z(R,) and, by (9), K centralizes 2,(R,). By Lemma 3, K
centralizes R, and R,. So K centralizes R.

Let H= H/R',R=R/R', K= KR/R', and so forth. Then R < Z(P)
and Nz(P) = PK, so

(10) Nz(P) centralizes E .
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Let W be the transfer of H into P/Q. By Lemma 5(b),
(11) RNnH SRnKerw=1,

By the Frattini argument,
12) G = HN(P) .

Suppose p is odd and R < Nz(J(P)). Then by (11)
[R, Na(J(P)]SRNH =1.

Thus by Theorem 2 no element of E is conjugate to any other ele-
ment of P. Since R < 0,(G) S P, we must have R = Z(H). There-
fore, R < H. By (12) R is normal in G, as claimed.

Let us return to the general case. Now, P=@Q x R. By (11),
RNKer W=1. Since

|Image (W) | < | P/Q| = |R|,

R is a complement to Ker W in H. Hence R is a complement to
TNnKer Win T. Since W depends only on H and @ and since N(P)
normalizes H and @, N(P) normalizes Ker W. By (12), G normalizes
Ker W. Hence TNnKer W <{G. Now T’ = R’ =1 and P normalizes
R. By Lemma 4, there exists a complement RB* of TnKer W in T
such that R* < G. Let R* be the subgroup of 7T that contains R’
and satisfies R*/R' = R*.

By Lemma 5, 2,(Z(Q)) < Ker W. Since 2,(Z(@Q)R'/R’ < 2.(Z@)),
(11) yields

QUZRYNR* S 2(ZQHNRSRNRER=1.

Hence @ N R* is normal in @ but intersects Z(Q) in1,so @ N R* = 1.
Consequently, |QR*| = |Q||R*|=|Q||R| = |P|. Since @, R* < P,
P =Q x R*. This completes the proof of Theorem 3.

We now require the following concepts and results of Alperin and
Gorenstein (§ 2 of [2] and § 5 of [1]):

DEFINITION. Let G be a finite group and » be a prime. Let 5#
be the set of all nonidentity p-subgroups of G. A conjugacy functor
W on 57 is a mapping from S# into S5# that satisfies the following
two conditions for each H in 2#:

(@) W(H) <& H;

(b) W(H?®) = W(H)" for all zeg.

THEOREM 4. Let p be a prime and P be a nonidentity Sylow
p-subgroup of a finite group G. Let W be a conjugacy functor on
the set of monidentity p-subgroups of G. Then there exists a class
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of mownidentity subgroups of P, called well-placed subgroups, having
the following properties:
(1) If H is a well-placed subgroup then N(H)N P 1is a Sylow
p-subgroup of N(H), and W(N(H) N P) is a well-placed subgroup.
(2) Suppose RS P,ge@G, and R°S P. Then there exists a

sequence of well-placed subgroups H,, ---, H, and elements x,, ---, 2,
of G such that
(@ g=u---2,

(b) x,eNH),1<1<n, and
(¢) RS H and RS H;,,,1<1<n -1,

Theorem 4 easily yields the following result:

COROLLARY. Let p be a prime and P be a Sylow p-subgroup of
a finite group G. Suppose Q@ S P and Q is not weakly closed in P
with respect to G. Then there exists H < P and g e N(H) such that
H is well-placed, Q@ S H, and Q7 = Q.

THEOREM 5. Let p be a prime, and let P be a Sylow p-subgroup
of a finite group G. Suppose P=Q x R and no indecomposable
direct factor of R is isomorphic to a subgroup of Q. Let J be the
subgroup of P that contains R’ and satisfies J/R' = J(P/R'). Then

(a) There exists R* < N(J) such that P = @ x R*,

(b) If p is odd and R* satisfies (a), R* is weakly closed in P
with respect to G.

Proof. (a) Let K be a complement of P in N(P). By Theorem
1, we may assume that K normalizes @ and R. Hence Q, R <{ N(P).
Since R/R' = Z(P/R'),

R < J< 0,(N(J)) .

Thus, (a) follows from Theorem 3,

(b) Assume p is odd and R* satisfies (a) but is not weakly closed
in P. We may assume that R = R*., By a theorem of Burnside [6,
p. 46], there exists a subgroup P, of P such that P,2 R and
R 4 N(P;). Since

RSP, &S P=RxQ, P,=R x(P,NQ).

By Theorem 1 and our hypothesis on @ and on R, R’ <| N(P,). There-
fore, R is not weakly closed in P with respect to N(R'). Since
P < N(J) S N(R'), we may assume that R’ < G.

We define a conjugacy functor W on the set of nonidentity sub-
groups H of G as follows:
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W(H)=H, if RR&E H;
and
R < W(H) and W(H)/R = JH/R), if RS H.

By the Corollary of Theorem 4, there exists a well-placed sub-
group H of G having the properties that H =2 R and R | N(H).
Choose H such that PN N(H) has maximal order subject to these
conditions. Let P, = PN N(H). Since H is well-placed, P, is a Sylow
p-subgroup of N(H). By Theorem 3, E/R’ <\ N (J(P/R')). Hence
P,C P by (a). But J(P,/R') = W(P)/R'. Thus R< P, and R | N(W(P)).
Since H is well placed and P,c P, W(P,) is well placed and

P, Cc PN N(P)<S PNN(W(P)) .

But this contradicts the choice of H. Thus we have proved Theorem
5. Theorem A obviously follows from Theorem 5.

REMARK. Let A™ and S™ be the alternating and symmetric groups
of degree n, for n = 4,6. Since Theorem 2 holds for » = 2 when
S* is not involved in G [5], Theorem A holds for p = 2 when S* is
not involved in N(R')/R’.

Let H = A° and let R be an indecomposable 2-group of order
greater than eight. Take a transposition 7 in S°® and a subgroup R,
of index two in R. Consider R as an operator group on H by defin-
ing h* = h when rc R, and h" = t~'ht when rc¢ R and r¢ R,. Let G
be the semi-direct product of H by R, and embed H and R in G in
the natural manner. Then C,(R) contains a Sylow 2-subgroup @ of
H. Let P=@Q x R. Then P is a Sylow 2-subgroup of G and R is
not isomorphic to any subgroup of @, but P has no weakly closed
direct factor isomorphic to K.
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