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The complex-valued functions defined on a subset S of the
plane such that (S~ — S)~ n S is empty which give strong-
operator continuous mappings from the set of normal operators
on a Hubert space with spectra in S into the set of all normal
operators are characterized as those which are continuous on
S, bounded on bounded subsets of S and O(z) (Theorem 4.2).
In the process of proving this result, it is shown that the
adjoint operation is strong-operator continuous on the set
of normal operators (Theorem 4.1).

In proving his fundamental Density Theorem [1], Kaplansky needs
and establishes the fact that continuous real-valued functions vanishing
at co define strong-operator continuous mappings of the set of bounded
self-adjoint operators into itself. He extends this result to bounded
continuous functions as well.

While the Kaplansky Density Theorem has become an indispensable
tool in the study of operator algebras, the various strong-operator
continuity results are themselves important and useful. The purpose
of this note is to give a precise delineation of the class of functions
which define strong-operator continuous mappings. The technical de-
sirability of having these results for normal operators forces us to
consider functions of ^-tuples of commuting self-adjoint operators
(couples would suffice, but w-tuples add no difficulties). The results
for π-tuples appear in §3; their application to functions of normal
operators, in §4.

The reduction from functions of normal operators to functions of
pairs of commuting self-adjoint operators involves the (topological)
behavior of the adjoint operation on the normal operators. Now, it
is well-known that the the adjoint operation is not strong-operator
continuous on the set of all bounded operators. The most familiar
example illustrating this discontinuity is the "one-way shift" operator
V. With {xn}n=1,2, an orthonormal basis, V is defined by Vxn = xn+1,
so that V maps the Hubert space isometrically into itself. The same
is true for Vm, for each positive integer m. Thus || F m # | | = 1 for
each unit vector x and all positive m; so that (Vm) does not tend
strongly to 0. However, if En is the orthogonal projection with
range spanned by aΛ+1, a?n+2, - --, EnV

n = Vn. Thus (Vn)*En = (Vn)*\ and
(Vψ tends to 0 strongly (since || (Vn)* \\ = 1 and En tends strongly
to 0). Despite this lack of continuity of the adjoint operation on the
set of all bounded operators, it is strong-operator continuous on the
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normal operators. This fact (which seems to be new) is proved in
Theorem 4.1.

2Φ Notation and preliminaries* We deal with complex Hubert
space 2(?. The algebra of all bounded operators on Sif is denoted
by &(£ίf). We use the notation Rn for real Euclidean π-space, and
C for the set of complex numbers. The strong-operator topology on
&{έ%f) is the point-open topology on ^{^f) induced by the metric
topology on ^f (so that (An) converges to A in the strong-operator
topology when (Anx) converges to Ax for each x in Sff). The strong-
operator topology on the Cartesian product &{&?) x x &(S(f)
is the product strong-operator topology (with similar terminology for
each subset of &(£%?) x x

DEFINITION 2.1. If Au •••, Aw is a commuting set of bounded
self-adjoint operators on J^% the subset {(piAj), * ,/θ(Aw))} of Ru,
where p ranges through the nonzero multiplicative linear functionals
on the C*-algebra 21 generated by A1 , An and / is called the
spectrum of (Al9 , An) (= A) and denoted by σ(A). If S is a subset
of J2", the set of such A with σ(A) S S is denoted by &(£(?)s. Since
21 is commutative, it is isomorphic to the algebra of continuous complex-
valued functions on some compact Hausdorff space X. If A—>A is
the isomorphism and / is a real-valued continuous function defined on
S, we denote by f(Alf •••, An) the (self-adjoint) operator in 21 corres-
ponding to x-^fiA^x), •••, An(α)).

In accordance with this definition, &(3ίf)R will denote the set
of all bounded self-ad joint operators on ^ίf. We use the notation
&(£ίf)s to denote the set of bounded normal operators on ^f with
spectra in S, when S is a subset of C. Accordingly, ^{^f)c will
denote the set of all bounded normal operators on ^g^. With / a
continuous real-valued function defined on a subset S of Rn, we use
the symbol /, again, to denote the mapping of ^{Sίf)s into ^?(3ίf)R

described in Definition 2.1. By means of Spectral Theory, we can
ascribe a meaning to f(Alf , An) for certain noncontinuous functions
/ on S.

For a point x = (xly — , xn) in Rn, we denote by \x\ the sum
I ffi I + + I a* I a n d by || x || the number ( Σ x)Y12. We use the notation
" / is O(x)9\ for a function / defined on a subset S of Rn, to mean
x—*f(x)l\\x\\ is bounded on S outside some bounded subset of S.

3* Operator functions of several variables* We determine con-
ditions, in this section, for real-valued functions defined on certain
subsets S of Rn to be strong-operator continuous on έ@(£ίf)s Basic
to this discussion is the:
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REMARK 3.1. The mapping (Au , An) —• Aι An is strong-
operator continuous on bounded subsets of ^?(£ίf) x x

LEMMA 3.2. If f is a continuous mapping of Rn into R which
tends to a limit at ^ then f is strong-operator continuous on

Proof. Let X be the one-point compactification of Rn; and let
be the algebra of finite linear combinations of products fx fn

where f3- is a continuous real-valued function on R of bound not ex-
ceeding 1 and tending to a limit at oo. The constant function 1 is
in Ssf. If a and b are distinct points of X and both lie in Rn, suppose
a and b have distinct j th coordinates αy, bό. We can construct fd

on R such that \\fj\\ = 1, fj(a3) = 1 and f3- vanishes outside an open
interval about aά not containing b3. Choosing fk to be 1 for k Φ j ,
f\ ' fn is in s/ has the value 1 at a and 0 at b. If α is in Rn, say
a = (a19 -. ,αft), construct /, on JB with /..(α,.) = 1 = H/y || and /y

vanishing at oo. Then f fn is 1 at α and 0 at ^ , Thus jzf
contains the constants and separates points of X. From the Stone-
Weierstrass Theorem, j^f is uniformly dense in C(X).

If we have established the strong-operator continuity of each
function in sf on &{£ίf)Rn, then that of / will follow. In fact,
given Ai, * ,Aft commuting self-adjoint operators and x in 3(f,
select vectors y\?\ k = 1, , m; j = 1, , n in 3ίf such that if
|| [A3 - B3]yl5) | | < U = l, , m ; i = l , . . . , n , with Bίf -- ,Bn com-
muting self-ad joint operators, then

| | [g(Alf , An) -g(Bl9 - ,Bn)]x \\ < 1/3 ,

w h e r e g i s a f u n c t i o n i n j ^ s u c h t h a t ( | / — g\\ < l/3\\x[\. F o r t h i s

[g(A, • •

[g(Bιt • •

Aj -

,An

,Bn

-g{

) -

A, ,
giPu -
f(Bίt -

An)]x\\
-,Bn)]x

,Bn)]x

The continuity of # in j y will follow from that of the products
/i Λ used in the definition of jy\ Since each /y is strong-operator
continuous on &{£ϊf)R [1; Lemma 5] and (Au , AΛ) —> Ax An is
strong-operator continuous on ,^{^f)γ x x &{3(f\, where
is the unit ball in £%?{£ί?)y the composite mapping

, Bn) - , (^(B,), , Λ(5 )) ̂ /i(Bi) fn(Bn)
= (fi - fn)(Blf - ,Bn)
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(recall that \\fj\\ ^ 1 so that 11/,•(!?/) || ^ 1, and compare Remark 3.1)
is continuous.

With / a real-valued function defined on a subset S of Rn, a jump
point for / is a point in S~ for which (ϊίϊn/)(p) — (lim/)(p) > 0. If /
is continuous, the jump points for / lie in S~ — S. We shall need
the following lemma whose proof is a slight variation of the proof
of [l; Th. 2] to suit the present circumstances.

LEMMA 3.3. If h is a bounded, real-valued function on the subset
S of Rn and the set J of jump points for h is such that J~ Π S is
null, then h is strong-operator continuous on

Proof. Suppose (Au •-, Am)(= A) is in &(2ίf)s. Then σ(A) is
a compact subset of Rn disjoint from J~ (by assumption). Let 0 be
a bounded open set containing σ(A) with closure O~ disjoint from J~.
Since no jump point for h lies in O~ Π S~, assigning (Tim h)(p) to each
p of this set defines a continuous extension of h to it. Finally, let
h0 be the function on Rn which is some continuous extension hγ to
O~ of this function (Tietze Extension Theorem), h on S and 0 else-
where. We note that, with k continuous on Rn, 1 on σ(A) and 0
outside O, hok( = p) and 1 — k + hjc(= q) are continuous on Rn. On
the complement of 0", k and hence p are 0; so that p is continuous
at points of this complement (an open set). On O~ — O, k is 0; so
that p is 0 and continuous at points of O~ — O, since p = hjc on O~
with hγ continuous, hence bounded, on O~. On O, an open set, p is
the product of the two continuous functions ht and k. Since p and
q — 1 vanish outside 0 and are continuous on Rn, they are strong-
operator continuous on &(r%f)Rn (from Lemma 3.2).

As p — q — h on σ(Ά), p(A) = q(A) = h(A). Combining this with
the identity h0 = (1 — ho)p + hQq which becomes h = (1 — h)p + fe<? on
S; we have, for each 5 in

h(B) - Λ(A) - [1 - h(B)][p(B) - p(A)] + h(B)[q(B) - q(A)]

The strong-operator continuity of h on &(<%f)s follows from that of
p and q, this last identity and the fact that h is bounded on S.

THEOREM 3.4. If f is a real-valued function defined and O(x)
on a subset S of Rn, bounded on bounded subsets of S and such that
J- Pi S is null, where J is the set of jump points of /, then f is
strong-operator continuous on

Proof. We note, first, that if g is bounded, with jump points
in J, and real-valued on S, and h is strong-operator continuous on
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then gh is strong-operator continuous on &(£ίf)s. This
follows from the strong-operator continuity of h, of g (from Lemma
3.3), and the inequality:

\\[g(A)h(A)-g(B)h(B)]x\\

^ || g(A) || !| [k(A) - h(B)]x || + || [g(A) - g(B)]h(B)x \\ ,

where A = (Aίt --,An) and B = (β 1 ; '- ,Bn) are in
Let £(*) be /(*)/(l + | * |) for x in S,

x = ( « ! , • • • , £ „ ) , | * | = I * ! I + ••• + \ x n \ ( ^ \\x\\

= ( Σ I x, I2)1'2)

From the hypothesis, g is bounded on S; and its set of jump points
is contained in J. Once we note that x —• | a; | is strong-operator con-
tinuous on .^?{3f)Si the strong-operator continuity of g on &(3(f)s

(Lemma 3.3) and the argument of the first paragraph gives the strong-
operator continuity on &{£(?) s of h defined by h(x) = (1 + \x\)g(x),
for x in S. Since | (Alf , An) \ = \ A, | + + | An |, the strong-
operator continuity of x-+\x\ on &(£ΐf)Rn will follow from that of
A -> I A I on &(2tf)R. Let r(a ) be a; f or | x \ ̂  1 and | x \/x for 1 ^ | a? |;
s(a?) be ajr(a?); and ί(a ) be \x\ — s(x). Since r is bounded, t vanishes
outside [ — 1,1] and both are continuous on JR, [1; Th. 2, Lemma 5]
shows that both are strong-operator continuous on ^?(Sίf)R. So is s,
from the argument of the first paragraph. Thus, x —> | x \ = s(x) + t(x)
is strong-operator continuous on ^(βέf)R.

Our thanks are due to R. J. Blattner for suggesting Ί + \x\y in
place of ' | x \' to define g thereby correcting and simplifying the
argument.

LEMMA 3.5. With S a subset of Rn, if the real-valued function
f is strong-operator continuous on ^{^f)s it is continuous on S,
bounded on bounded subsets of S, and O(x).

Proof. Assuming / is defined on &(3ίf)s (by Spectral Theory)
and restricting / to {(aj, , anl) : (au , an) in S}, we see that /
must be continuous on S if it is to be strong-operator continuous on
&(J%f)s. With x0 in S, the translated set, S — x0, contains 0; and
g defined on S — xQ by g(x) — f(x + xQ) — f(x0) is bounded on bounded
subsets of S — xQ and O(x) if and only if / is bounded on bounded
subsets of S and O(x). We may assume that 0 lies in S and /(0) is 0.

Suppose that / is not O(x). Then there is a sequence (xm) in S
with | | £ m | | - > c o such that m || xm \\ ̂  | f(xm) |. Taking ^f2(0,1) for
£%f (relative to Lebesgue measure), we show that / is not strong-
operator continuous at (0, •••,()) on w-tuples of multiples (by coordi-
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nates of the xm's) of a projection in the multiplication algebra of
£f2(0,1). More specifically, given ψ[j), , ψ{j\ j = 1, . ., n, in
=£^2(0,1), we find a subset X of (0,1) having positive measure and r
such that, with g5 — aό on X and 0 on the complement of X, where

xr = (a19 ", an), \I gάf
{

v

j) |2 ^ 1 for j = 1, . •, n; p = 1, - , m; while

J ° ^ I 2 ^ 1 , where flr(s) = (flr̂ s), •• >flrΛ(s)) for s in (0,1). With

Mg. the multiplication operator (on =S^2(0,1)) corresponding to gd,
(Mβl, - ,M9n)e and f(M9l,

\\f(Mβl,--;M

, MJ = Mfog. Thus

, m; j = 1,

I ΨP']

despite the fact that || Mg.ψ
{

p

j) || ^ 1 for p = 1,
Hence / is not strong-operator continuous on

It remains to locate X and r as described. With ψ =
let Xfc be the subset of (0, 1) at which | ψ \ does not exceed k, for
k = 1, 2, . Since α/r is in ^ 2 ( 0 , 1 ) , X^ has positive measure a for
some k. Choose r larger than k so that | |# r | |

2αA;2 ^ 1; and let b be
(|| xr ||2 α/c2)-1. Then 0 < 6 ^ 1, and there is a subset X of X, with
measure ab. Defining gό to be aό at points of X and 0 at points of
the complement of X, where xr = (αlf •• ,α n ), we have

\\ 9jf I2 = \ = k* \ as \2ab ^
2α6 =

while

Since

9 I2 ^ ^ r 2

we have l| gjψι

p

j) |2 ^ 1, for p = 1, , m and j = 1, , n.

Suppose, next, that / is not bounded on some bounded subset of
S. Then there is a sequence (xm), with xm in S, tending to some
point x0 in Rn such that m S I f(xm) |. As before, translating by -a?0,
we may assume that xQ = 0. Select (bl9 •••,&«) in S with | δ, | ^ 1,
J = 1, , w.

We shall show t h a t / i s not strong-operator continuous at (bj, , 6W/)
on &(£ίf)s. Given ψiJ<), i = 1, , n; k = 1, , m in .Sf2(0,1); let
^ = Σ P , * I ̂ i p ) l There is a subset X of (0,1) with positive Lebesgue

measure a such that I | ψ |2 ^ 1/4. Choose r so that 1^-1^1,^ = 1,
JX

, n,
where xr = (al9 , α j ; and so that a | /(x r) — /(6j, , bn) |2 ^ 1. Let
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g3- be a5 on X and bό on the complement of X in (0,1).
As before, f(Mffι, , MgJ = ΛΓ/O,, where g(s) = foφ), , £n(s))

for 8 in (0,1). Thus || [f(Mgv , Jlf,n) - /(δ j , , 6W/]1 || ^ 1, since

) I2

» , 6.) I2 = α I /(α r ) - / ( δ l f , δn) |2 ^ 1 .

B u t

\ I (δy - flrymi} I2 ̂  51 δ y - g, | 2 ( Σ , , , i ̂ ί w i)2

- j I (δy - gjH I2 - \j (δy - αy)ψ I2 ̂  4 J J 1 1 2 ^ 1

so that \\(bsl- M^φPW^l, for i = l, . . . , n and fc = 1, . . . , m .
As (M^, , Jlί^Λ) £&{S%f)Sy f is not strong-operator continuous at
(δiJ, -- ,bnl) on &(J%*)S, completing the proof of this lemma.

Combining Theorem 3.4 with the foregoing lemma, we have:

THEOREM 3.6. If S is a subset of Rn such that (S~ — S)~ n S is
empty then a real-valued function f defined on S is strong-operator
continuous on &(£%f)s if and only if it is continuous on S, bounded
on bounded subsets of S, and O(x).

Proof. In view of Theorem 3.4 and Lemma 3.5, we need note
only that the set of jump points of a function continuous on S is a
subset of S~ - S.

For a closed set S, S~ — S is empty; and, for an open set S, S~ — S
is closed. In both cases (S~ — S)~ Π S is empty; from which we have:

COROLLARY 3.7. If S is a closed or open subset of Rn, a real-
valued function defined on S is strong-operator continuous on έ$(3(f)s

if and only if it is continuous on S, bounded on bounded subsets of
S, and O(x).

Of course, the continuity assumption makes the hypothesis of
boundedness on bounded subsets superfluous when S is a closed set.

4* Functions of normal operators* The key to applying the
results of §3 to the normal operators &(3ί?)c is:

THEOREM 4.1. The adjoint operation is strong-operator continu-
ous on
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Proof. The assertion follows from:

|| (JB* - A*)x ||2 = || Bx ||2 - || Ax ||2 + (x, (A - B)A*x)

+ {{A - B)A*x, x) rg || (A - B)x || (|| Ax || + || Bx | |)

(Our original proof of Theorem 4.1 was somewhat longer. A.
Hoppenwasser found a simpler proof which led us to the argument
above.)

THEOREM 4.2. With f a complex-valued function defined on a
subset S of C for which (S~~ — S)~ D S is empty (in particular, for
S open or closed), f is strong-operator continuous on &(3ίf)s if and
only if f is continuous, bounded on bounded subsets of S, and O(z).

Proof. Adopting the usual identification of C with R2, we may-
view S as a subset of R2. With z — a + ib, a and b real, let f(z) =
g{a, b) + ih(a, b), g(a, b) and h(a, b) real. Then g and h are defined
on S. Moreover, g and h are continuous on S, bounded on bounded
subsets of S, and O(z), if and only if the same are true for /. This
is the case if and only if g and h are strong-operator continuous on
^ ( < ^ % , from Theorem 3.6.

We conclude the proof by showing that

A, + %A% — g(Au A2) + ih(A19 A2) = f(A1 + iA2)

is strong-operator continuous if and only if g and h are. Since

A, + iA2->( — [A1 + %A2 + (A, + iA2)*] ,

-i^[Λ + ίA2 - (Ax + iA2)*]) = (A, A2)2̂  /

is a strong-operator homeomorphism of &(<%?) c with &(3ίf)R2, from
Theorem 4.1, it will suffice to show that (Au A2) —> (̂A1? A2) + i^(Aly A2)
is strong-operator continuous if and only if g and h are. All that requires
proof is the strong-operator continuity of g and h on &(<§ίf)s from
that of (Ax, A2) —• flf(Ai, A2) + ih(Au A2) on &(3ίf)&. From Theorem 4.1,
(Ai, A2)-^[^(Ai, A2) + ΐ/^Ai, A2) + (̂ (Au A2) + ih(Al9 A2))*]/2 = g(A19 A2)
is strong-operator continuous on &(£έ?)s, and similarly for (Ax, A2) —>
Zi//I /I \
/t/l^ίjLj, JΓΛ.2J .

We have made no distinction between &(§ίf)s with S a subset
of C, referring to the normal operators on §ίf with spectra in S, and
^(<^f)s with S a subset of R2, referring to pairs of commuting self-
adjoint operator with joint spectrum in S. The context makes clear
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the sense in which this notation applies; and the argument indicates
that there is no essential distinction between the sets designated. Of
course, a theorem analogous to Theorem 3.4 holds for functions of
normal operators.
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