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Let C[a,b] denote the space of continuous functions x(f)
defined on [a, b] 2 2(a) = 0. This space is called Wiener space.
Using the Wiener integral we define, for each nonnegative
integer JM, what we call the M Ilstow, JM complex Wiener,
M Feynman, limiting M complex Wiener, and limiting M
Feynman integrals of a functional F'(x) on C[a, b] and show
various relationships which exist between these integrals. In
particular we give necessary and sufficient conditions for a finite
dimensional functional F'(x) to be M Ilstow integrable on
Cla, bl.

We consider the set of linear functionals x(t,),---, x(t,)
wherea = t, < t; < --- < t,= b and obtain conditions on g;(u) 3>
the functional

(1.1 () = gu[x(€)] - - - gufat)]
is M Ilstow and limiting M Feynman integrable on CJa, b].

We then apply these results to the functional
F(i, &, x) =exp (S

"ot — s, w(s) + E]ds)o[w(t) 4

where 0 <t <t,, —o<&<o and x€(C[0, {,] and show that for
approprialze functions 6(¢, &) and ¢(¢), the limiting M Feynman
integral G(t, &, q) of F(t, &, x) exists for

(ty 5: Q> € (07 tO) ® Rl ® {Rl - {O}}
and satisfies there the integral equation

A i\ 1/2fw -
Gt & q) = ( e > S o(m) exp (ﬂ%)du

(1.2) + <—_2iq>”2gt(t — sy 2 ds
e 0

e A o qi(E—wu)?
X S‘mﬂ\s, w)G(s, u, ¢) exp <m—>du
For M = 0 the definitions of the above mentioned integrals reduce
to the definitions of the Ilstow, complex Wiener, Feynman, limiting
complex Wiener, and limiting Feynman integrals as defined by R. H.
Cameron in [2]. He used the Ilstow integral as an intermediate
integral in his definition of the Feynman integral. The word “Ilstow”
is a contraction of “inverse Laplace Stieltjes transform of Wiener’s”.
Many of the theorems in this paper are generalizations of theorems
in [2]. However, the techniques developed in § 4, applied when M = 0,
allow us to reduce the hypothesis of several theorems of [2]. In
particular, we obtain a condition for the Ilstow and limiting Feynman
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172 D. L. SKOUG

integrability of F'(x) defined by (1.1), that only requires each g} to be
essentially of bounded variation on any bounded interval, instead of
each ¢/ being continuous as required by Theorem 7.2 of [2].

These more general integrals allow us to weaken the conditions
required on ¢ and still obtain the existence of @(t, g, q).

2. Generalized Ilstow and complex Wiener integrals and the
banach space B(M, \).

DEeFINITION 2.1. Let M be a nonnegative integer. Let F'(ox) be
Lebesque @ Wiener integrable on [0, o] ® Cie, b] and assume 3 f,(s)
on [0, =) > f,(0) =0, f,, is left continuous and of bounded variation

on every bounded interval [0, s], T |dfy(s)| < o for some \ > 0,
and for almost all sufficiently large A,

S FOvta)de = wffzre~/“~sdfu<s> .
Cla,b] 0

Then F(x) will be said to be M Ilstow integrable on Cla, b] and f,(s)

is called the MHIlstow integral of F(x) with parameter s and we
LMW,

write f,(s) = S . F(x)de.

Notation. Let I, = {F(x)|F(x)is M Ilstow integrables on Cla, b]}.
We use the next lemma in the proof of several theorems.

LEMMA 2.1, Suppose f is of bounded variation on every bounded
interval of [0, =) such that for some \, = 0, S e | df(s)| < ->. Then
0
Jfor A >\,

2.1) S:e—“df(s) - x%gje"‘sdg(s)
where
(2.2) 9(s) = 253’ — ) s (o)

In addition, g is absolutely continuous on every bounded interval
[0, s} arnd g(0) = 0. Finally for x> X,

(2.3) e 1dg(s) | = 32w df @)

Proof. Same as proof of Lemma 5 on pp. 346-347 of [2].
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THEOREM 2.1. I,&1,., for M=0,1,2, . Furthermore if
F(x)el, then

(2.4) Furi®) = 203 (6 — Pl (o)
and
(2.5) Funsl®) = 2573 (s = 0y (o) = | Fulo)do

so that the (M + 2) Ilstow integral of F'(x) is differentiable a.e. on
[0, ) and its derivative is fy(s).

Proof. Assume F'(x)el,, with M Ilstow integral f,(s). Define
Fu+(8) by equation (2.4) and note that (2.1)-(2.3) imply F(x)e I,.,.
To obtain the second equality of (2.5), integrate the middle expression
by parts, substitute for f,., from (2.4) and interchange order of
integration.

DEFINITION 2.2. Let X0 be 3 Ren=0. Let F(x)e I, with M
Ilstow integral f,(s). Then if

(2.6) [Cledsus) | < e

we say that F'(x) is M complex Wiener integrable on Cla,b] with
revar parameter ) (A is called the reciprocal variance or revar
parameter since in [1], »~* denoted the variance parameter) and we
define the value of the M complex Wiener integral to be

1"}[ o
SI Y F@)de = wzg e=df(s)

Cla,b] 0

where if M is odd the square roots have values in the right half
plane. If Rex = 0 the M complex Wiener integral will be called an

M Feynman integral. For A = —1iq, ¢ real, we denote the M Feynman
M

integral of F'(x) by g ‘; F(x)dx.

Note that a functlonal F'(x) is M Feynman integrable if and only
if its M Iistow integral is of bounded variation on [0, «). In order
to remove this somewhat restrictive condition we shall generalize the
above definition slightly.

DEFINITION 2.3. If in Definition 2.2 we replace (2.6) by

(2.7) gwl e dfy(s) | < oo
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for all > Re»n > 0 and if the right member of

—wl o

S Y F(e)ds = M lim S e AL (s)
Cla,b] 7-0 0

(Re?7>0)

exists, we say that F(x) has a limiting M complex Wiener integral
with revar parameter » and we give it the value and notation
specified above.

Notation. The symbol A= B shall mean the existence of A
implies the existence of B and the equality A = B.

In terms of the analytic Wiener integral, defined by Cameron on
anW
p. 289 of [2], and denoted by S zF(oc)olx, we have the following
Cla,b]
theorem.

THEOREM 2.2. For Rex =0

wy —wal antv,
S Fo)ds = SC[ b]F(x)dm;SC[ (P (@)de

Cla,b]

and if Fel, then for almost all sufficiently large positive . we have

v

‘ S F(\2x)de = S‘ * F(x)dx .
Clasb) Clab)

Proof. Same as proof of Theorem 1 of [2] as the additional
factor A" doesn’t affect analyticity.

Notation. Let W(M,\) = {F(x)| F(x) is M complex Wiener inte-
grable on Cla, b] with revar parameter A},
W(M,\) = {F(x)| F(z) is limiting M complex
Winear integrable on C[a, b] with revar pa-
rameter \}.

The following theorem follows directly from Lemma 2.1 and
Theorems 2.1 and 2.2.

THEOREM 2.3. WM, \)E WM + 1,\) for Rex>0 and M =
0,1,2,--. W(M,\)S WM + 1,\) for Rex=0 and M =0,1,2,--.
Furthermore 1f F(x)e W(M,\) then the M and (M + 1) complex
Wiener integrals of F(x) are equal (both being equal to the analytic
Wiener integral of F(x) by Theorem 2.2). A similar statement holds

i case F(x)e W(M, ).
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We now define for M = 0,1,2,--- and A = 0, a space B(M,\) of
functionals of Cla, b] and discuss some of its properties. In particular
B(0,\) = B; where B; was defined on p. 297 of [2].

DEFINITION 2.4. Let =0 and Mec{0,1,2, --.} be given. Let
F(x) be a functional defined on Cla, ] F(ox) is Lebesque @ Wiener
measurable in (o, ) on [0, v 2] ® Cla, b] and >

2.8) NAF) = [Temrdo| | F(ot)dw < o

2 Cla,b]
where we interpret A% to be + oo if » = 0. Assume further that
there exists a left continuous function f(s) of bounded variation on
every bounded subinterval of [0, ) 3

(2.9) NUM, F) = | e |df (s) | <

and such that for almost all o > )

(2.10) p“”zre“"sdf(s) - g Fo-bw)ds .
0 Cla,bl

Then we say F'e B(M,)\) and define the norm of F to be Ny(M, F) =
N(F) + NJ(M, F). Note that N, = N; where N] is defined by (2.1)
of [2] while N[(M, -) = NJ'(-) if and only if M =0 where N is
defined by (2.2) of [2].

DEFINITION 2.5. We say that two elements F, and F, of B(M,\)
are equivalent if for almost all (o,2) on [0, 23] Cla,b] we have
F\(px) = Fy(ox). We define B(M,)) as the space of equivalence
classes of elements of B(M, \).

THEOREM 2.4. The space B(M,\) has the following properties:
(a) BM,\)SI, forn=0and M=0,1,2, «-.,

(b) B(M,N\) s a Banach space with norm N,(M, -).

(¢) BM,MSBM+ 1,7\) for x>0, and M =0,1,2, ---.
(d) 0§>"1§)\42:B(M, 7\'1)gB(JWy )\42)-

Proof. Property (a) follows from the definitions of B(M, \) and
I,. Property (b) follows from Theorem 2 of [2]. Property (c) follows
from equations (2.3), (2.4), (2.9) and (2.10). Property (d) follows as
0 =<\ =\, implies that N, (M, F) < N, (M, F).

3. Finite dimensional functionals. Let a,(t), ---, @,(t) be real
functions of bounded variation on [a, b] and let g(u,, ---,u,) be a real
or complex function defined almost everywhere on R,. Let
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3.1) F(a) = g[S:aq(t)dx(t), S:an(t)dx(t)] :

Then F(x) will be called an “n-dimensional functional” on Cfe,b]. If
g(,, +++,u,) is Lebesque measurable on R, we call F a measurable
n-dimensional functional. If a.(¢), ---, a,(t) are an orthonormal set
on [a, b], (3.1) will be said to express F'(x) in “normalized form”.

Our next theorem is a generalization of Theorem 3 of [2] and
gives necessary and sufficient conditions that a finite dimensional
functional be M Ilstow integrable and a formula for the M Ilstow
integral.

THEOREM 3. Let F(x) be a measurable n-dimensional functional
on Cla, b] expressed in normalized form by (3.1). Let Me{0,1,2,---}.
Let K=0 if n <M while if n>M let K equal (n — M)/2 or
(n +1— M)/2 whichever is an integer. Then F(x) is M Ilstow
integrable on Cla,b] 1f and only if the following four conditions
are satisfied:

(1) For sufficiently large )\, the quantity N(F') is finite, where

NiF) = @my|erdo|

k3

AR +u3‘)>du.

X | g(o™ gy + o+, 070,,) | eXp( 3

(2) The function I,(M,s) defined by

(M +2k)

3.2 LM, s>:§2 - Sg(ul,---,un)dui---du}mk
uyFe Uy 0 <2

has (K — 1) continuous derivatives all of which of course vanish for
s<0.

(3) The(K—1)thderivative I.*~" (M, s) has a left hand derivative,
which we denote by I\X(M,s), which is of bounded variation on every
bounded interval and which is a true Kth derivative of I, (M, s) except
on the countable set where it has jumps.

(4) For sufficiently large N, the quantity N(F, M) is finite,
where

2k 2( o0
NiE M) = () e oo )|

Moreover when conditions (1) through (4) are satisfied we have
for s = 0

M ok 4
S”Ws F(z)de = (%y SR raw o, s)

Cla,b]
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Note that when K = 0, conditions (2) and (3) reduce to I,(M,s) being
of bounded variation on every bounded interval.

COROLLARY TO THEOREM 3. For
M= 112y "'yIM—lngy B(M— 1: O)
Z B(M,0), B(M,0) £ B(M — 1,0), WM — 1, 0)
Z WM, 0 and WM ONZLWM-—-1,0).

Proof. Let g(u,, --+,u;) be the characteristic function of a j-
dimensional sphere of radius 1”2 about the origin. Let ay(¢), ---,
o,;(t) be an orthonormal set on [a, b]. Let

Fi) = g[SZal(t)dx(t), Siaj(t)dx(t)] .

Then for M =1,2, -+, F, . (x)el, and F, ()¢, ,. This follows
by noting that by use of (2.4) and (3.2) we obtain for s = 0

(27-['-)(M+2)/2

(%5

Ly o(M, s) = min {1, s¥+212}

so that by Theorem 3, F,..(x)¢c I, while

Lo M — 1y 3) = IJII+2(M + 1, s)
2(2ms) Ve

, 0<sg1
P<M+5>
B 2
212 (2m) M+ (1 12 a2
n(=57)

so that lim,,. I}#,(M — 1,s) = — o and hence F(x)¢ I, ..
Similarly for M =1,2, .--, one can show that

Fy(x)e B(M, 00N W(M,0) and Fy(x)¢ B(IM+1,00U WM+ 1,0).

For M =3,4,--- it follows that F,(x)e B(M — 2,0)n W(M — 2, 0)
while Fy(x)¢ B(M — 3,0) U W(M — 3,0). Finally letting g(u,, u,) = 1
and writing F(x) in form (3.1) one obtains F'(z)e B(0, 0) N W(0, 0)
and F(z)¢ B(1,0) UW({,0).

4. Products of functions of (xf;). In this section we consider
the set of linear functionals, «(t), ---, 2(f,), and obtain conditions
under which products of the form
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(4.1) F(x) = g.[(2,)] « - - g.[2(2,)]

are M Ilstow and limiting M Feynman integrable on Cla,b]. F(x)
as given by (4.1) is an n-dimensional functional but here we wish to
obtain simpler conditions for M Ilstow integrability than those given in
Theorem 3. In Theorem 7.1 of [2], R.H. Cameron showed that each
gY being continuous and g¢; and gy both being absolutely integrable
on R was sufficient to insure Ilstow integrability. Here we will only
require each of the g!s to have a derivative essentially of bounded vari-
ation on any bounded interval, and satisfy certain growth conditions.

In Theorem 4 we will find it necessary to express certain Lebesque-
Lebesque Stieltjes iterated integrals as Laplace Stieltjes transforms.
We shall now develop the required notation and lemmas to achieve
this objective.

LEMMA 4.1. Assume f(u) ts absolutely continuous on [c,d] and
has a derivative f'(w) which 1is essentially of bounded variation on
[e,d]. Let ¢(u) = ess,_o: lim f'(w + k) and assume Var (3, [¢, d]) < .
Let a€le,d] and let g(u) = {f(w) — fl@)}/ (v — a) for uele,d], u # a
and let g(a) = ¢(a). Then g(u) is of bounded variation on [c, d] and
Var (g, [¢, d]) = Var (g, [c, d]).

Proof. This lemma follows from the observation that for all
u €le, d] we have g(u) = S dl(w — a)t + aldt.

LEMMA 4.2. Assume fi(u), ---, f.(u) are of bounded variation
on [e,d]. Let 1 <k <mn and assume that g,(u) and g.(u) are such
that for all wele, d] we have | fi(u)| < g(w) for 1 =1,2,---, k, while
| fw) | < g(u) for i =k+1,---,n. Let K, = maX,.,q9.(w) and
K, = max,.;,q 9.(w). Then

var(IT 7, le, d1) = K&~ K[ K, Var (£, [e, d)) +
K3, Var (£, le, d) |

Notation. Let m be a positive odd integer. For ¢ =1,2,---,m,
let k&, be a positive constant and let g¢,(s) = (s9/(k;). Let u, =0,
vi(w) = 20 ¢ty — wiy), and  Pro(u) = Ul + ga(us) + DUy Galus — Uiy).
For 6 = 0 and j =1, 2, let S;(0) = {u]|+;(u) <o}. Note that S;(o) is
an open m-dimensional ellipsoid with its center at the origin.

LeEMMA 4.3. For ¢ =1,8, ---, m, assume g, u;) s bounded and
Lebesque integrable on every bounded interval of R,. For 1 =2,4, ++-,
m — 1, assume h;(u;_;, ;, U;y,) 1S Borel measurable in tts three vari-
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ables and 1is right continuous and of bounded variation with respect
to u; on every bounded interval [—2d,2d] for any w;_,, u;_,€[—d,d].
For notational purposes we will denote the function hi(u;,,, w;, W;.,)
by hi(u;). Also assume that Var (hy(s), —2d < s < 2d) is bounded on
Uiy, Ui €[ —A, d]. Then for j =1,2, A,(0) exists and is of bounded
variation on 0 <o =y for any v >0 where A;,(0) is the iterated
Lebesque-Lebesque Stieltjes integral

40 =" g -+ | guudu,|” dopw)|” du
: S_me]-(o)(uly Usgy =2, um)dum_lhm—l(um—l)
which for notational purposes we shall write as

(m) (m—1)/2 (m+1)/2
40 =7 e [ i) T dug ) - dud,

0V j(w) <o

Further if f(o) is continuous on [0, v] then

v (m) (m+1)/2
[r@aae =" o LT )
(4.2) 0 og/f(j(u:f)c/; k=1

X ( k]'_[ oluzkhzk(uzk))clumclu,,,_2 < duydu, .
In addition if f(g) is continuous on [0, ) then the existence (as a
Sinite number) and absolute convergence of the right side of the

Sollowing equation implies the existence of the left and equality.

(m+1)/2

S (T ()

k=1

lim | Fo)aa0) = |”_

(4.3) -
X ( klel duzkhzk(uzk)>dum oo dudu, .

Proof. As S;(o) is an open set in R, one can show that
| | dupuw) -\ gm0y (100

is bounded and Borel measurable in its (m + 1)/2 variables u,, %, « -+, u,,.
Hence A;(0) exists for 0 < o < v. By breaking up the g¢;’s and &;’s
appropriately one can write A4,(g) as the difference of two monotonic
increasing functions and so A;(g) is of bounded variation on every
bounded interval. Equation (4.2) follows from the general limiting
sum type of argument. As y— oo, S;(0) — R,, and so by dominated
convergence in each variable we obtain (4.3).

In the following lemma and theorem we will use the notation
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developed by Cameron in Theorem 7.1 of [2].

LEMMA 4.4. Assume h(u) 1s absolutely continuous on every
bounded interval of R, and ¢(u) = €ss, .. imh' (v + h) s of bounded
variation on every bounded interval of R,. Also assume that for some

A>0,B=0and 0 =v <2 we have | h(u)| < Ae® and SV | da(s)| <
—v

Ae? for all we R, and V> 0. Then for 0 <i1<j <k, A>0 and

ui, e R, we have

| mwBiBidu; = x=rrin@)) + " B hw;)du,

(4.4) == K_Ilsz,k[h(uj)] + )\:_Ia{{,k(tj - tz)
% Sw E]Ek]du[ h(u;) — h(ufk)]
e Ly — i,

where the integral in the last term of (4.4) exists both as a Riemann
Stieltjes ntegral and as o Lebesque Stieltjes integral and where
'8 h(ug) = h(uw;) — h(ul).

Proof. The first equality follows directly by noting that
NEES = S‘” EiEidu,

while the second equality follows from integration by parts which is
justified by the above growth conditions.

THEOREM 4. Let a =t, <t, <-++<t,=b. For i=1,2,---,m—1
assume ¢ (u) is absolutely continuous on every bounded subinterval
of R, and ¢ (u) = ess,_.. limgi(uw + h) is of bounded wvariation on
every bounded subinterval of R,. Furthermore assume for some
0<vy<2and B>0

(4.5) lgsw)| = B

(4.6) CICES:
@) | ds)| = Ber
(4.8) | ldos)| = Ber
(4.9) |$:w)| < Bers

for =12, «.-- n—1L ueR and V>0, Furthermore assume

| lous)lds = B.
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Let F(x) be given as in (4.1). Then there exists a function r(\),
analytic for Rex > 0, continuous for Rel = 0, and which for real
A > 0 satisfies

F\) = S FOb)de .
Cla,b]

Furthermore F(x) is M Ilstow and limiting M Feynman integrable
Jor all values of the parameter for M =1 and F(x)e B(1,\) for all
N> 0,

Proof. By using techniques similar to those used by Cameron in
proving Theorem 7.1 of [2] (in particular using (4.4) in place of (7.8)
of [2]) we obtain for A > 0

_ - ® (0, ,) AUl
2\ 1/2 F \ 112. l.“ — S g%(un)gﬂ,n( y W . n >d 'n
SC[a,b] ( @) —=  1/271(b — a) P ( 20 — a) *

= Gt (= h40)9.(04:1)
t, 2 - Var( Ty, — T,)

2

U Q;(n—1) B
=1

! g?p(pw)azﬂ:l (T@ - Ti:)llz )
X 1 22 Yi+1
H( 27[(T’ . . 1)1/2

X exp{ 2(2—(%—% + ; (; _ ((1)"22>}

i=1

4.10)  x @1 d, H¥(0;, 0., piﬂ))d‘oqﬂd‘oq o do,
= G 9u(004)%,0(Ts — TY)
+ 93%1) S S~w 2x12x(T)., — T
& g (0T — THPails . >
X K2 2Yi+1
<"1;Iz 27t(TI, - Ti~1)1/2

e (B R )

X <Ig[ dain((Oiy Uiy (0i+1)>d10q+1d10q M dedpzdw
=1

—oco

where Q;(n — 1) is the class of all finite sets of integers v, v,, - -+, v,
satisfying

Qn —1) ={y,--,vuv=L v, =2y, +2,1=1,2,---,q9,v,., = 0}
Qz(nbl):{vu" Yy 1!-)1>1 Vit 1~v +2 'L—l 2:"':(]7 Vq;—L::n}
Q(n — 1) ={y,---,v Yo lvi=0,v,, =2y, +2,1=1,2,---,¢, Yo = 1}
(4.11) Hio;, 05, 0s:1)

vi41~1 vi+1—1

k k k k
k:ll+1gk(a”i+l’”i+lo-i + Bu,ﬁ-l,vi_H(oi—Fl) - lc:];,‘[+lgk ayi,ui_H(Oi + B”i"’i+lpi+1)
0; — aii’tiﬂp% - :i:iﬂ
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and where in the sum over Q,n — 1), o, = 0, and the integrals in the
two sums exist both as iterated Riemann-Riemann Stieltjes integrals
and as iterated Lebesque-Lebesque Stieltjes integrals.

Now define ¢%(g;, 0;1,) by the equation

Vit1—1

¥o;, 0i) = 20 afi+1,ui+1¢k(afi+1,u~ O + Bf,;-i—l,vi Oi+1)
E o i+ +

=v;+

(4.12) vit1—1 . .
X _7'~—];~[+1 95(0 41,06 + /8ﬂ.;+1,»i+lpi+1)} .
Ak

Then as g, = ¢, a.e. we see that

d Vit1—1
do. [k=£l+1 91(Q 11,05 + Blyci+1,ui+1pi+1):| = ¢¥0;, 0i11) 2.€.
Thus for any d >0 and p;, 0;r,€[—d,d] we apply Lemma 4.1 and
4.2 and obtain

Var (H{(0, s, 0:11), —2d < s < 2d)
(4'13) § Var (¢f(sy lo'H—l)r —2d é s é Zd)
< (Vi — v — 1)PBriniie?5(3d)T .

Hence we see that H} is of bounded variation as a function of o; on
every bounded interval and as 0 < v < 2 the integrals on the right
side of (4.10) converge absolutely for » > 0.

Next we apply Lemma 4.3 to the right side of (4.10) and obtain
by use of (4.3)
(4.14) SC[ FOoyds = x%»-gje—“df(u)

where f(u) = fi(w) + fo(w) + fi(u) and

_ 9.(8)98.(0, s)ds
Hiw) Sw) 1V2rn(b — a)

(Z.Q.H.) gn(pq+1)h#(p1) {q gvz(lo‘b)a::j;t 1(Ti —I)”
> o) S [27(T}., — T)]"* L 277:(T,.’+— T; )" )

Sow) =

2
U @;(n—1)
j=1"7

X <J_jl d, Hp;, 0, [0i+1)>d10q+1 - dp,dp,

_ 0 £ g (0g) (T, — TI)"
fa(%) Qs(;in Svg(u) S 27E[27t( T;H - Tq)]”2
b g e)eil (T: — T )
X 4 ¥itl
(I 2a(T! — Tr)'™
q
X <]:[ dvsz(pu g, pi-H))leq-H °tc dlo2dw

=1
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Vi) = {s|s* < 2u(d — a)}
Vz(u) = {[{01, **y Ogt1y Oyy =0 0, Uq]

X ;S‘; ((01 1’:—1) Z‘; (0 T} < 2%}

Va(u) = {[w’ IO21 ct loq+1y (ZTIRERN o'q] w

R e iR LR

In order to show that F'(x) is M Ilstow integrable for M =1 we
need to obtain bounds on the variation of f(u) for w = 0. First we
note that for 7 = 1,2, and 3, f;(u) is left continuous (by definition
of V,(u)) and of bounded variation on every bounded subinterval of
[0, ). Now for j =1,2 and 3, let f;(u) denote what we obtain be
replacing ¢, #%, g.,, and do H¥0:, 04y 0i11) by |08 l, [P, 19| and
| do HH0:y 05, 0511) | respectwely in f;(u). Then clearly f;(w)1 and for
0 < u, <u, < c we have

Var (f, [, w]) < Var (f;, [w, w,]) = Fius) — Fiu)

Thus we see that it will suffice to obtain bounds on fF;(u). First note
that for all w = 0

7 7 194(8)98.(0, 8) | " )
Fiw = | LEBCAL ds < Briant — o).

Next we see that Vy(u) < V,(u) and Vi(u) < Vi(u) where

I72(“) = {[(01’ ***y Ogt1y 01y "’:o'q]H(oil = 4, lo; ] .—-<_2ﬁ}
VS(“) = {[w’[om "'rpq+1’ gy, "'yaq] | l(oz| éﬁs l()',b! gZﬁ,, wzgzu}

and @ = [2u(b — @)]!. Thus for [0 ) Pgsss Ouy + =+, 0] € Vi(ur) we
have ;i o, + Bl 0 €[—24,2a] for ¢ =1,2,---,q, so that by
Lemmas 4.1 and 4.2 and equation (4.13) we see that

Var (H¥0;, 8, Pi+1), —28 < s < 2@1)
= (Vip — v; — 1)YBrivivi—texp 2B(34)" .

Hence by replacing V,(u) by Vi(u) in f,(u) we obtain
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folw) < \ > <@1i[1 (Visr — Vi — 1)2B”i+1—”i—1623‘3’:)7>(ﬂ asitt (T; — T')IIZ)

r ’ 1/2
U Qj(n—1) = ZTE(T "”_)

j=1

A

8 S:‘ (?T”S:u [;::(T'(');i?nip?:))]luz (111 l9.,(0:) |>d.0q+1 ceedpy

Bn 2Bq( 3u)7

o (T; — T))P(Vip, — v — DPasill
P 127( T — To)]'"* El on(T! — T..)'”

UQ"L1
i=1"7

2n—1Bn6BM3(2u(b—a))1/2]7

3[27(t, — a)”

<

since q¢ < (n/2), while by (2.6) of [4] and (7.38) of [2],
(T; — T} vy — v; — 1yazit!

2n( Ty — T iy
S 2T — TP IT T

U Q;(n—1)
%%

<2t -l 5 (4

U Q;(n—1)
=1 J

< [27(t, — )] "3 " exp {(n — L)z}
< 2" 137 2x(t, — a)] 7M.

) I s — v = 17

=1

27

Thus 0 < v < 2 implies Swe—"“dﬂ(u) < = for » > 0.
0
Similarly we can show that for « > 0

Faw) < 22%2B" exp (RB(3[2u(b — a)]2))3~'w*[2u(b — a)]*

and hence for A > 0, S e*dfy(u) < . Thus for » > 0

NAF) = [Terdo| [P0t do < B°
and
Nt B) = [T dren) = 3 o) < -

so that F(x) e B(1,\) for » > 0 and in particular, F(x) is M Ilstow
integrable for M = 1.
Next for A2 Rex = 0 let

4.15) w(\) = wg‘”

—oo

(n) o
A7) o g B e B, - duy

Then by (7.5) of [2] we have v(\) = S Fovtnds for all 1> 0.
Cla,
Clearly +(\) is analytic for ReXx > 0 and contlnuous for Rex = 0.
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Hence F(\-%x)de has an analytic extension throughout the right
half plail[gb]continuous up to the imaginary axis. But for almost all
0>0, SC[  F(otoydw = 2] erdf().  Thus as S:e~w |df(s)| < o for
all o >0 we know that ,02 S e °°df(s) is analytic in the right half
plane and equal to the analytic extension of XCMF(‘o 3x)da there.
Thus \? S e *df(s) approaches a limiting value on the imaginary axis
when we 0a,pproach from the right hand plane and so the limiting M
Feynman integral of F' exists for M =1 which concludes proof of

theorem.
If we restrict the bounds on Var ¢, Varg;, and ¢, we obtain the
following corollary which proves useful in a later section.

COROLLARY TO THEOREM 4. Assume the hypotheses of Theorem 4
are satisfied where conditions (4.7)-(4.9) are replaced by

| lds:)| = BIL + v,
|| |dos)| < BIL+ V<], and |gw)| = BIL+ [ul]

Jor ¢+ =1,2, - n—1,uecR, V>0, and d>0. Then the con-
clusions of Theorem 4 hold and in addition we have N(F) < B* and

v 1) = f"[jfff;?(ff B 1+ [Bo =] t2 )
32 (t, — a)]'" » .

2B (L + 39" (4 20— ]W”/Z r{-dn s3]
+ 3(2m) < T N 2 > '

REMARK. Let us point out at this time that the techniques used
in Theorem 4 allow us to strengthen Theorems 7.1 and 7.2 of [2].
For, clearly, if we put the same restrictions on g, as we put on
each ¢;,1=1,2,--.,m — 1, then the conclusions of Theorem 4 hold
for M = 0. Also if condition (4.6) was relaxed so that

SV \gi(S)ldS‘éBerr, forizlyzy"'ynv
-7

then one can show, using the techniques of Theorem 4, that Fe I,
and Fe B(0,\) for all »x > 0. However these same techniques do not

imply Fe W(M, 0) since in this case +(\) as defined by (4.15) is not
necessarily continuous up to Rex = 0.

5. Entire functions of integrals of #(s, x(s)). Our first theorem
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deals with M Ilstow and limiting M Feynman integrability of
functionals of the form

(5.1) Fi(z) = a[SZo(s, x(s))ds]g(x(b)) :

THEOREM 5.1. Assume @(z) is an entire function satisfying
| @(2) | < Ae®*'. For each scla,b] assume 0(s,u) is absolutely con-
tinuous as a function of u on every bounded interval of R,. Also,
for each s e [a,b], assume O(s, u) = ess,_.. im 0,(s, u + h) is of bounded
variation as a jfunction of wu on every bounded interval of R,.
Furthermore assume |6(s, V)|, Sw [g(w) | dw, and Sw | O(s, w) |dw are

bounded by B while |8(s, V)|,
4 v A
|, 106, w) | and | |d.(s, w)]
—V -V

are bounded by B+ |V|%) for each scla,b], VeR, and some
d20=d<2. Then for M=1,2,---, the functional F¥(x) as defined
by (5.1) is M Ilstow and limiting M Feynman integrable for all
values of the parameter and F*(x)e B(M,\) for all X > 0.

Proof. Since @(z) is an entire function such that |@(z)| < Ae®'”
we obtain, by use of Cauchy’s inequality, that @(z) = 3\7_,a,2" for
all z where a, = 1 and for » > 0

(5.2) la,| < A(%E)" :

Thus on Cfa, b] we have Féx) = >\=,a,F¥(x) where
b n

Fi@) = g@®)| | 2(s, o(s))ds]

for n =0,1,2, ---. Now for » > 0 we have
b (m) b
Fi@) = |- [ Fuw; s)ds, - ds,
where
F(w;9) = Fu(; 55, -+, 5,) = g(@(b) I 6(s:, w(s.))

when s, ---, s, are distinct elements of (a,b) but F,(x;s) =0 when
8, -+, s, are elements of [a, b] but a,s,, ---, s, b are not distinct.

We note that for each n > 0 and each se€[a, b]", F,(x;s) satisfies
the hypotheses of the Corollary to Theorem 4. Hence for each s in
[a, b]* we have for A > 0
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NyF.(-;s) < B*,
Ni@, F(+; 8)) < H(s)
= B**'[2r(b — a]? + K\(n) + Ky(n)[min {s,, ---, s,} — a]*

where

K,(n) = 27B(1 + 8)"+13-}(2m)~2
2(b — @) Jem+n+iz F iy + 1) + 3
O R e B B

and
K,(n) = 2"B™+\(1 + 8%)"+13-(27)~"

% (1 n [E(b—;)_—al][d(ﬂ+l)]/2r[—d(_n_t;)—+2‘]> .

Moreover for each s, F, (x;s) is M Ilstow and limiting M Feynman
integrable for each value of the parameter for M =1,2, ..., and
F,(x;s)e B(1,\) for all A > 0. By Corollary to Theorem 6.4 of [2]
(which can be generalized to apply here) we obtain

b (n) b
i, Fy < | Heds, - ds,
< B0 — a)"[27(b — a)]* + (b — a)"K,(n) + 2n(b — a)"Ky(n)

where the last inequality follows from (8.12) of [2]. Clearly
Ny(F? < B (b — a)" so that for x > 0

Ni(1, 3 a.F?) = 3, Ni(L, 0, F)
< (226 — ) + 1) 3, B0 — a)'a,
+ 30— a)'a[K(n) + 20K n)]

where K (0) = K,(0) = 1. By use of (5.2) the above series converge
for 0 <d <2 by the ratio test and thus the series >7 ,a,F} con-
verges in the B(1, \) topology for each N > 0 and since the series
also converges uniformly to F* it converges in the B(1, \) topology
to F'* and so F'*c B(1,\) for all A > 0. In particular F* is M Ilstow
integrable for M = 1,2, --..,

Next we will show that F'* is limiting M Feynman integrable
for M =1. First apply Corollary to Theorem 4 to the functionals
F,(x; s) and obtain functions +,(\, s) which are analytic for Rex > 0
and continuous for Re\ = 0 for each n > 0 and s¢[a,b]*. In addition
for Ren = 0 we have
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oo

o (n+1) n
PN, 8) = N‘”“”Zg e S (W ir) 11 O(siy w)EYEY -« ExYdu,,, -« - du,
—oo —co =1
so that for sc[a,b]” and Rex =0, |+, (x, s)| < | M|+, Hence
letting

b (n)

i) = [ [ s, - ds,

we have
(5.3) [PEQN) | = [N|H0Em (b — a)*

for Rex =0 and n = 1,2, ..-. Clearly +%(\) is analytic for Rex > 0
and continuous for Rex =0 for n =1,2, ..., Similarly we apply
Corollary to Theorem 4 to F§ and obtain +{(\) with the same
properties.

Next we see that as the series 3.7 ,a,Fi(x) converges uniformly
in & over Cla, b] we have for each real A» > 0

S Fiotayde = S anS Fivtu)da
(5.4) Cla,b] n=0 Cla,b)
= Sl avi@ .
But by (5.2) and (5.3) the last member of (5.4) converges uniformly
in » for any closed subset of Rex = 0 and hence the first member of

(5.4) has an analytic extension throughout ReX > 0. New let f?¥
denote the M Ilstow integral of F# for M = 1. Then

Nyt B = e |dste).
for each N > 0 and for almost all o > 0

I, Fitotadn = o] "erdsis)
Cla,b] 0

Hence p% re““dﬁ(s) has an analytic extension in the half plane

Rep > 0, continuous for Rep = 0, and so the limiting M Feynman

integral of F'* exists for M = 1 which concludes proof of theorem.
Next we will show that for appropriate functions ¢ and o, the

analytic Wiener and limiting M Feynman integrals of the functional

(5.5) F(t, &, ©) = exp [S;@[t — s, 1(s) + S]ds]o[x(t) + ¢

satisfy a certain integral equation.
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THEOREM 5.2. Assume 6(t, &) s bounded and continuous on
[0, t] ® (— o=, =) and satisfies for all te]0,t]

(5.6) S‘;l o(t,¢)|d: < B .

Assume o(&) is bounded and continuous on (— oo, ) and satisfies
(5.7) ["le@us= 5.

Then the analytic Wiener integral

(5.8) Git, &) = SC[::]F(t &, w)dz

exists for (t, &, M) e H =(0,%) QR (—o, =) R {Rerx = 0} and satisfies
wn H the integral equation

G(t, &, \) = (—%ﬂ—)lnsejwo(u) exp <——)”—(§2_t—ui>du

+ (%)1/28:@ - S)_”stgojmg(s’ uw)G(s, u, \) exp <—7;(T€,‘,E_Z))_2>ds

(5.9)

with boundary condition

(5.10) lim G(¢, &, \) = 0(8)
holding for all (5, \)e(—co, )R {ReX > 0}.

Proof. The existence of G(¢, &, \) for all points of H follows from
Theorem 8.2 of [2]. Moreover by (0.11) of [2] and the continuity of
the functions involved we have

G.11) Gt &N :SCW exp [S:g[t — s, M Pas) + 5]ds]a[x—%x(t) + &lde
for x> 0 and (¢, &) e H, = (0, ) Q (— oo, o).

Next we note that by use of Theorem 7 on page 66 of [3]
(which can be proved for » = 1 under weakened conditions on ¢* and
6%) we have that if o% &%) and 6%(¢, &%) are bounded and continuous for
(t, & e H, = [0, t] Q (— o=, ) then

(5.12) G(t, &) = Sm . eXp[S:m[t — s, %(s) + &7 ds] o{a(t) + &da

exists on H, and on H, satisfies
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Hf 24y — YT R _ (& —w)y

519 GH(t, &%) (27::t) S_wo (u)wexp( e )du | |

+ (2n)~1/2§0(t _ s)~1/2dsg_wa*(s, w)G¥(s, 1) €xp <—%:_%>du

with boundary condition

(5.14) lim GA(t, &) = o*(&) .

Thus, if for M > 0 we define 6%t, u) = 6, \2u), ot(u) = o*(\2u),
and & = A-%¢ then ¢* and o* are bounded and continuous and so
Gi(t, &%) as defined by (5.12) exists on H, and on H, satisfies (5.13)
and (5.14). But for x>0, 04t — s, a(s) + & = Ot — s, N 2a(s) + £],
ofla(s) + & = o[n3a(t) + £], and G(t, &, \) = G¥(t, M2 &). Hence substi-
tuting into (5.13) we see that for N >0 and (¢ &) e H, G, &N
satisfies (5.9). Then by use of Corollary to Theorem 8.2 of [2] G(¢, &, \)
is bounded in any closed bounded subset of Rex = 0 for all (¢,&) e H,
and so by use of (5.6) and (5.7) we see that both sides of (5.9) are
analytic functions of A for ReX > 0, continuous for ReXx = 0 and as
(5.9) holds for all » > 0 it must hold throughout H,

Boundary condition (5.10) is verified by noting that

lim <—)“—>1/2§:(t _ s)tds

t—ot \ 27T

(5.15)

X S:ﬂ(s, w)G(s, U, \) exXp (—%)du =0

and

S

= r<%>u2§:[0(u + &) — a(§)]exp (—%f)dul

—0as t— 0+,

THEOREM 5.3. Assume 6(t, &) satisfies the hypotheses of Theorem
5.1 where [a,b] =[0,t,]. Assume o(f) satisfies the hypotheses of

Theorem 5.2. Then for M =1,2,-.-, the limiting M Feynman
integral
. 4
(5.16) Gt &, 0) = | ! Fit, 5, m)de
clo,t]

where F(t, &, x) is defined by (5.5), exists for
(t, ¢ 9eH=(0,1)QR QR —{0)
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and satisfies in H the integral equation (1.2). Furthermore if we
assume Var .. 0(&) < B then

(5.17) lim G(t, &, q) = o(&) .

f—-uO

Proof. The existence of (5.16) for M =1,2,---, and all (¢,£,q) e H
follows from Theorem 5.1.. But by use of Theorem 2.2 we see that
@(t, &, q) = G(t, &, —qi) where G is defined by (5.8). Then substituting
into (5.9) establishes (1.2).

To establish (5.17) first note that

}1?:( ;:rq )Uzg:(t - s)*”zdsglﬁ(s, w)G(s, u, q) exp <—‘%§?§;—2)du =0

for all &, ge R, g+ 0. Also by contour integration and integration
by parts one obtains

( —iq UZS o(u) exp <________qi($2;— u’)2>du

2rt
( ) 1/2 (oo ((—ig/t)1/200 22 azla (
—Z)dz |do
<27r> Se [s—wq/t)l/?(u—e) exD( 2 ) ] “)

Uéc) as t — 0* by dominated convergence.

Similarly

() Voo (S0 )u— o s im0

REMARK. In view of the remark at the end of §4 we see that
the conclusions of Theorem 5.1 will hold for M = 0 under the ad-
ditional assumption that ¢’ is of bounded variation on every bounded
interval and satisfies

14
[, ldg)| < BLL+ V.
Also the conclusion of Theorem 5.3 will hold for M = 0 under the

additional assumption that ¢’ is of bounded variation on every bounded
interval and satisfies

| 1do'w)| < BIL+ (V19

The author wishes to express his gratitude to Professor Robert
Cameron for his encouragement and valuable advise .
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