DUAL GROUPS OF VECTOR SPACES

WILLIAM CHARLES WATERHOUSE
DUAL GROUPS OF VECTOR SPACES

WILLIAM C. WATERHOUSE

Let E be a topological vector space over a field K having a nontrivial absolute value. Let E' be the dual space of continuous linear maps $E \rightarrow K$, and \hat{E} the dual group of continuous characters $E \rightarrow R/Z$. \hat{E} is a vector space over K by $(a \varphi)(x) = \varphi(ax)$, and composition with a nonzero character of K is a linear map of E' into \hat{E}. This map is always an isomorphism if K is locally compact, while if K is not locally compact it is never an isomorphism unless $\hat{E} = 0$. When K is locally compact, E' is in addition topologically isomorphic to \hat{E} if each is given its topology of uniform convergence on compact sets. This leads to conditions on E which imply that E is topologically isomorphic to $\langle \hat{E} \rangle^\sim$.

Theorem 1. Let K be a field with absolute value. Then K is one-dimensional over K if and only if K is locally compact.

Proof. The sufficiency of local compactness is fairly well known (cf. [4, p. 92-3] for the characteristic zero case). To prove it, one takes a nonzero character π of K and considers the subspace $K\pi$ of \hat{K}. It is easy to check that $a \mapsto a\pi$ is a bicontinuous linear map, so $K\pi$ is complete and hence closed in \hat{K}. On the other hand, $K\pi$ separates the points of K, so by Pontrjagin duality it is dense in \hat{K}. Thus $\hat{K} = K\pi$.

Suppose conversely that \hat{K} is one-dimensional, and choose a nonzero π in \hat{K}. The completion of K will again be a field, say L, and π extends to a character of L. Then every $a \in L$ gives a character $a\pi$ of L. If $a \neq b$, then $a - b$ is invertible, and so $\pi((a - b)c)$ cannot be zero for all c. Thus no two of the characters $a\pi$ are equal, and hence no two can agree on the dense set K. This contradicts one-dimensionality of \hat{K} unless $K = L$, and we conclude that K must be complete. Hence if K is archimedean, it is locally compact.

We now assume that K is nonarchimedean. Let $A = \{x: |x| \leq 1\}$, $M = \{x: |x| < 1\}$. Let π be a character of the discrete group A/M with $\pi(1) \neq 0$; we extend π to a character of the discrete group K/M and interpret it as an element of \hat{K}. Let $c > 1$ be an element of the value group, and consider the group G_c/M, where $G_c = \{x: |x| \leq c\}$. All characters of this discrete group extend to characters of K vanishing on M, and by one-dimensionality they all come from multiples of π.

Now if $a \in A$, then $aM \subset M$, so $a\pi$ vanishes on M; conversely, if $a\pi$ vanishes on M, then $1/a \notin M$ and $a \in A$. Similarly, $a\pi$ vanishes
on G, if and only if $|a| < 1/c$. Thus the dual group of the discrete abelian group G/M is (algebraically) isomorphic to $A/\{a: |a| < 1/c\}$, which is isomorphic to G_c/M itself under multiplication by an element of absolute value c. A theorem of Kakutani [3, p. 396-7] shows that an infinite discrete abelian group has a dual group of strictly larger cardinality; hence G_c/M must be finite. This implies both that A/M is finite and that the value group is discrete; since K has these two properties and is complete, it is locally compact [1, p. 119].

COROLLARY. Suppose K is not locally compact. Let E be a topological vector space over K with $E \neq 0$. For any $\pi \epsilon K$, the map $E' \rightarrow \hat{E}$ given by composition with π fails to be surjective.

Proof. If $E' = 0$ or $\pi = 0$, the statement is obvious. Suppose then there is a $0 \neq f \epsilon E'$, and choose an $x \epsilon E$ with $f(x) \neq 0$. The subspace Kx is topologically isomorphic to K, so its dual space is one-dimensional and is generated by the restriction of f. Hence all elements in \hat{E} coming from E' restrict to multiples of $\pi \circ f$ on Kx. If τ is a character of K not a multiple of π, then $\tau \circ f \epsilon \hat{E}$ is not in the image of E'.

REMARK. A topological field K is called **locally retrobounded** if for every pair of neighborhoods U, V of zero there is an $a \neq 0$ in K such that $a\{x^{-1}: x \epsilon V\} \subset U$; for example, an ordered field is locally retrobounded in its order topology. Every such field admits either an absolute value or a valuation which defines its topology [1, §5, Exerc. 2]. The proof of Theorem 1 works equally well for a valuation into any ordered abelian group, and hence Theorem 1 and its corollary hold for all locally retrobounded fields.

THEOREM 2. Suppose K is locally compact, $0 \neq \pi \epsilon \hat{K}$. Let E be a topological vector space over K. Then the map $E' \rightarrow \hat{E}$ given by $f \mapsto \pi \circ f$ is a vector space isomorphism. It is a homeomorphism if E' and \hat{E} have their topologies of uniform convergence on compact sets.

Proof. If $0 \neq f$, then $f(E) = K$, so $\pi \circ f \neq 0$; thus the map is injective. Now let $\varphi \epsilon \hat{E}$. For each $x \epsilon E$ there is a unique linear functional on Kx inducing $\varphi | Kx$, since $Kx \cong K$ and \hat{K} is one-dimensional. We define $f(x)$ to be this functional evaluated at x; this gives us a homogeneous function $f: E \rightarrow K$. For any $x, y \epsilon E$ and $a \epsilon K$, we have

$$0 = \varphi(ax) + \varphi(ay) - \varphi(ax + ay) = \pi f(ax) + \pi f(ay) - \pi f(ax + ay) = \pi [f(ax) + f(ay) - f(ax + ay)] = \pi (a[f(x) + f(y) - f(x + y)]).$$
hence $f(x) + f(y) - f(x + y) = 0$, and f is linear. If finally f were not continuous, then $f^{-1}(a)$ would be dense in E for every $a \in K$. Hence $f(U) = K$ for any neighborhood U of zero, so $\varphi(U) = \pi \circ f(U) = \pi(K)$ for all such U and φ would not be continuous.

Now the map $E' \to \hat{E}$ is an isomorphism, and it is obviously continuous; we need only prove it is open. The map $K' \to \hat{K}$ is a homeomorphism, since (as we noted in the proof of Theorem 1) $\hat{K} \cong K$. Hence, given any neighborhood U of zero in K, we can find an open V and a compact set B such that, for g in K', $\pi \circ g(B) \subset V$ implies $g(a) \in U$ for $|a| \leq 1$. But if C is any compact set in E, BC will again be compact. It is easy to see then that if $f \in E'$ and $\pi \circ f(BC) \subset V$, then $f(C) \subset U$; this means that $E' \to \hat{E}$ is open.

Let K again be locally compact, and let E be a locally convex topological vector space over K. (In the archimedean case, the requisite theory is standard, cf. [2]; van Tiel has shown that exactly the same theory holds in the nonarchimedean case [6].) In view of Theorem 2, we identify E' and \hat{E} furnished with the topology of uniform convergence on compact sets.

Theorem 3. If E is quasi-complete and barrelled, then E is topologically isomorphic to $(\hat{E})^\circ$.

Proof. Since E is locally convex, the map $E \to (\hat{E})^\circ$ is injective. Since E is quasi-complete, the closed convex hull of a compact set is compact; thus the topology on \hat{E} is that of uniform convergence on convex compact sets. This is weaker than the Mackey topology, and hence the map $E \to (\hat{E})^\circ$ is bijective.

If S is a compact balanced set in \hat{E}, then its polar S° is a barrel in E, and hence is a neighborhood of 0 in E. These polars are a neighborhood basis at 0 in $(\hat{E})^\circ$, so the map $E \to (\hat{E})^\circ$ is continuous.

Finally, if U is a neighborhood of 0 in E, U° is equicontinuous and therefore compact in \hat{E}; hence $U^{\circ \circ}$ is a neighborhood of 0 in $(\hat{E})^\circ$. But E has a neighborhood basis at 0 consisting of closed absolutely convex sets U, and for them $U = U^{\circ \circ}$. Thus the map is open.

As particular cases of Theorem 3, we get

Corollary. If E is either complete and metrizable or reflexive, E is topologically isomorphic to $(\hat{E})^\circ$.

For the real and complex fields, Theorem 2 and these two cases of Theorem 3 were proved by M. F. Smith [5].
REFERENCES

Received December 20, 1966. During work on this paper, the author held a National Science Foundation Graduate Fellowship.
Efraim Pacillas Armendariz, *Closure properties in radical theory* 1
Friedrich-Wilhelm Bauer, *Postnikov-decompositions of functors* 9
Thomas Ru-Wen Chow, *The equivalence of group invariant positive definite functions* .. 25
Thomas Allan Cootz, *A maximum principle and geometric properties of level sets* .. 39
Rodolfo DeSapio, *Almost diffeomorphisms of manifolds* 47
R. L. Duncan, *Some continuity properties of the Schnirelmann density* 57
Ralph Jasper Faudree, Jr., *Automorphism groups of finite subgroups of division rings* ... 59
George Isaac Glauberman and John Griggs Thompson, *Weakly closed direct factors of Sylow subgroups* 73
Hiroshi Haruki, *On inequalities generalizing a Pythagorean functional equation and Jensen’s functional equation* 85
David Wilson Henderson, *D-dimension. II. Separable spaces and compactifications* .. 109
Julien O. Hennefeld, *A note on the Arens products* 115
Richard Vincent Kadison, *Strong continuity of operator functions* 121
J. G. Kalbfleisch and Ralph Gordon Stanton, *Maximal and minimal coverings of (k − 1)-tuples by k-tuples* 131
Franklin Lowenthal, *On generating subgroups of the Moebius group by pairs of infinitesimal transformations* 141
Michael Barry Marcus, *Gaussian processes with stationary increments possessing discontinuous sample paths* 149
Zalman Rubinstein, *On a problem of Ilyeff* 159
Bernard Russo, *Unimodular contractions in Hilbert space* 163
David Lee Skoug, *Generalized Ilstow and Feynman integrals* 171
William Charles Waterhouse, *Dual groups of vector spaces* 193