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TueoreM Let p = 3 be a prime and ¢ = 1 any integer.
Then there exists a group & which has exponent p° and Engel
length e(p® — p*~*) + (p — 8)/2.

If ¢ =1, this reduces to a Theorem of Kostrikin [2], whose
proof employed other methods. Our method yields the addi-
tional information, that © is a solvable group of class at most
k + 1, where k is the least integer such that 2*! = p — 2,

In this paper we give an elementary proof of a theorem due to
Kostrikin [2] which states that for any prime p = 3, there exists a
group of exponent p which has Fngel length (8p — 5)/2. Our proof
is conceptually very simple and elementary at least in contrast with
Kostrikin’s proof, which uses some rather deep results from Lie ring
theory [3]. Furthermore, our method establishes that this group has
solubility class at most k£ + 1 where % is the least integer such that
2¥=t > p — 2. (By the solubility class of a group G we mean the least
integer k& for which G = 1, where G is the commutator subgroup
of G and G® = G. By the Engel length of G we mean the least
positive integer n such that [a,b;n] =1 for all a,b in G, where
[a, b; 1] = [a, b] = aba'b"" and inductively [a, b; ¢ + 1] = [[a, b; ], b].)

Our methods actually generalize to groups of prime power exponent.
That is, for a given prime » = 38 and an integer ¢ = 1, there exists a
group of exponent p° which has Engel length e(p® — p°') + (p — 3)/2.
(This contains Kostrikin’s Theorem by taking ¢ = 1.) Moreover, this
group has solubility class at most k& + 1, where k is the least integer
such that 2*' = p — 2, We will however limit our discussion to the
case ¢ = 1 in the main body of the paper and indicate in an appendix
how the same methods and proof yield the above theorem for arbitrary e.

We first give the setting and then an outline of the proof of
Kostrikin’s Theorem in §2. The remaining sections give the technical
details of the proof until the final section of concluding remarks. Here
we discuss possible alternate proofs. '

2. OQutline of proof.

KOSTRIKIN’S THEOREM. Let p = 3 be a prime. Then there exists
a group & of exponent p and Engel length (3p — 5)/2. Furthermore,
® s of solubility class at most (k + 1) where k is the least integer
Jor which 2 = (p — 2).
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198 S. BACHMUTH AND H. Y. MOCHIZUKI

We shall construct the group of Kostrikin’s Theorem. Let @ be
a primitive p™ root of unity, and let Z denote the ring of integers.
If (p) is the ideal of Z[w] generated by pc Z, then we denote the
ring Z[w]/(p) by Z,[w]. An alternative construction of Z,[w] is as
follows: Let Z, = Z/(p) and let (x> be a cyclic group of order p.
Form the group ring Z,z)> and factor by the ideal generated by
A+x+ - +207) =1 — x)>,

We shall call w, @?, ---, w** the primitive p™ roots of unity. X
will denote the augmentation ideal of Z,[w], i.e., the ideal generated
by 1 —-w),1<i1=<(p—1). It is well-known that ¥ is in fact a
principal ideal, generated by any one of the (1 — w?). From [1], we
know 27! = 0 but 3% = 0.

Let © be the group of upper triangular (p — 2) x (» — 2) matrices
of Z,[w] generated by

(o 1 )
w? O
0
w?

—

w 0

w 1 O

o 1

0o -,
i ]

We first prove that © is a group of exponent p. In fact, we show
that in the ring R of upper triangular (»p — 2) x (p — 2) matrices each
H in 9 satisfies the cyclotomic identity; i.e. if I = identity matrix,
I+ H+ H 4+ .-« + H'=(I—- H)>™=0.

We do not directly compute the Engel length of the group 9, but
we instead use a form of the Magnus representation in order to in-
crease the solubility class of our group by one. (cf. [4].) Let ¢, and
t, be indeterminates which commute with all elements of R. Let &
be the group of 2 x 2 matrices over R¢t, t,] generated by

At B
R:[o J’ S’[o 1]

We then show & satisfies the conditions for Kostrikin’s Theorem.
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To do this, we first note that ® is a group of exponent p by observ-
ing that if

[D Pt, + Qt,
0 1
is in ®&, then
D Pt + Qt, P B D (I+ D+ .-+ + D*)(Pt, + Qty) _ 1 0
0 1 ) 1 1o 1]

Using the notations B? = DBD" and C, = [A, B; n], we then note
that

(3p—7)/2 P(3p~7)/zt1 + Q(3p—7)l2t2}

C
[R, S; Bp — 7)/2] = [ 0 1

where
Py e = (I — B®=91%) <. (I — B%)(I — B)(I — B*)

and the form of Qg,_;,. is unimportant.
By establishing that Pg,_;;, # 0 in R, we show that

i.e., that @ has Engel length = (8p — 5)/2. Almost all the difficulties
of the proof is involved in showing P, ;. # O.

In Sections 4,5 and 6, which are devoted to establishing that
P, 1. is not the zero matrix, we analyze the structure of B°» and
C,. If McR, let M be the (p — 8) x (p — 38) matrix obtained from
M by deleting the first row and first column of M. Then M, M, = M,M,,
i.e., the first row and first column have no effect on the other rows
and colums during multiplication. In §4, we first study B% and C,,
the key conclusion here being that B% = B modulo 2"+, In §5 we
establish the necessary information concerning the first rows of B%»
and C,. Section 6 is devoted to using these results to analyze the
(p — 2)® column of P,, and in particular the (1,p — 2) entry of
Ps,_r. which proves to be non zero (i.e., not in X77%),

We point out that the proof as it stands is meant only for primes
p="17. For p=3,5, the proof can easily be modified and we omit
the details.

Throught the rest of the paper except the last section, we assume

p=T.

3. The groups © and &. We first note that any element of $
is of the following form:
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F"a)i 7
wzi *
H, = O
L a)(P—Z)‘l
where ¢ is relatively prime to », or
1 -
*
1
H, = O : =TI+ N
L 1

where N is upper triangular with diagonal entries zero and hence is
nilpotent, i.e., N*~* = 0.

ProrosiTiON 1. 9 has exponent p. In fact,
I+H+H+ -+ H*'=I—-H)"=0
for all He .
Proof. Since I — H? = (I — H)?, we need only show H e satis-

fies the cyclotomic identity. Suppose H is of type H,. Then, the
characteristic polynomial of H over Z [w] divides

—1
h(m—a}i):1+m+x2+..,+xp—l'
i=1

By the Cayley-Hamilton Theorem I + H + --- + H** =0,

If H=1+ N, N*%t =0, then we have that [T — (I + N)]>* =
N?~t = 0. This completes the proof.

Elements of & have the form

[D Pt1+Qt2"l
0 1]

where Dec® and P, Qe R.
We can easily show by induction that

(D Pt, + Qtz]" 3 [D" (L+ D+ -+ + DY) Pt, + Qtz):]
K 1 Lo 1

Putting ¢ = p and applying Proposition 1 we immediately have.
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PROPOSITION 2. & has exponent p.

The generators R and S of @ where described in §2. We now
examine the form of a commutor [R, S;n]. Recall that B> = DBD,
De®, and C, = [A4, B; n].

PROPOSITION 3.

[R, S] — [01 (I - Bd)t1 + (A - Cl)tz:l

0 1
and, in gemeral, for m = 2,

C,,Lwl Pntl + QntZ}

[R,S;n]=[ 0 1

where
P,=(I— B ... (I — B — BY).

Proof. By straightforward computation and an induction
argument.

REMARK. We will also use the notation P, = (I — B%).

PROPOSITION 4. Let k be the least integer for which 2¥ = (p — 2).
Then O 1s of solubility class at most k, and & is of solubility class
at most (k + 1).

Proof. If we can show that © has solubility class at %, then the
use of the Magnus representation increases the solubility class by 1,
so that ® has solubility class at most (¥ + 1). (cf. [4].)

To prove that © has solubility class at most %, we must show
o =1, If M= (x;;) € R, then for fixed j, we define the diagonal of
M consisting of the entries «;,.;,,1 <1 < (p — 2) — j, as the j* upper
diagonal. Let .o~ be the ideal in R of all matrices with main diagonal
consisting of zeros. Then it is well-known that .o~ " consists entirely
of matrices whose j* upper diagonal entries are all zero, 1 <7< (v — 1).

O consists of matrices of form I + M, Me.or. We assert that
D" consists entirely of matrices of form I + M, M e .o7*"'. Suppose
the assertion is true for k. If M is in .or* and B is any element
of H* then since .o is an ideal, B(I + M)B™ = I + BMB™', where
BMB-isin 7. Also if M,, M, are in .or* then (I + M) + M,) =
I+ M, where M,c.o7%*. Thus, since 9%+ is generated as a normal
subgroup of H by all commutators [z, y] for =,y in $*, to complete
our induction assertion, we need only show [I + M,, I + M,] = Imod .o *
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with I + M, and I + M, in ¥, ie., M, and M, in .7*~', But since
I+M)y*=I—-—M+M*— .-..) for M in o, we have (I + M) =
I — M;mod .or* for M; in .o7%**, Hence,

(I+M,I+M]=UI+M)I+M)(I—-M)UI—-M)=Imod.or*.

This proves our assertion.
Thus when 2! = (p — 2), 9 = 1, and the solubility class of &

is k. This completes the proof of Proposition 4.

4. The forms of C, and B%. We recall that

(w 1
o 0
(03
A= ,
w?? J
(w 0 h
s 0
w 1
B =
0 .
w??
Thus
[0 —or )
ot 0
w??
At = ,
a)2
" wr—! 0 . . . 0 ]
W?* T Ues WUpy —WUgs * v — Uz p2
B O — Uy U e
w?
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where the (¢,7) entry of B, i =14 = 2, is

(__1)'17%'1'1/,” — (__ﬁ1)”5+iw(ﬂ+i)+(l>—i~1)+"'+(Zl—~i} .

We also compute

(0 (1—w™) o

w* w?! O
ws wp——l

B =

™t

p—2
@

We next observe by a direct computation that
C,=B*B*=1+ N,
where N, = (¢{}) has (1,7) entry ¢ = 0(mod2), ¢ = 1 (mod Y) and
for 7 > 1= 2,
(4.1) el = (=1 (wu;; — 0P u,,;) = 0(mod 3) .

LEMMA 1. For 2 <1 <j < (p—2), we have ¢t ;,, = w~cf.

Proof.
C§l+>1,j+1 — (_1)(i+1>+(j+1>(wi+1w(p~i—1>+(p~i~z)+...+(p_j~_1)
— wp—lw(p—i-2)+(p—i—3)+---+(p—j—1))
— (_1)i+j(wi+1w(p—j—l)w~<p—i)w<p—i)+<p~i~1)+---~:-(p~j>
— wr~—1a)~(p~i—~1)w(p—j~1)w(p—i—1)+(p—i—2)-0—---+(p—j))
= (=)o@ — 0P U,5)

This completes the proof.

The next lemma gives the information about C, and B? that we
will need.

LemmaA 2. Let C, =1+ N, where N, = (¢{¥).

(@) Bi» = B (mod X" for all n.

(b)y C, = I(modZX") for all n.

() For 2=1<(p—2),c¢t;; = 0 ¢} (mod 2**).

Proof. For m =1, part (¢) is Lemma 1 and part (b) follows from
(4.1). We shall prove (b) and (c) by an induction argument. Assume
(b) and (c) hold for n. We first prove that (a) is true.
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Cit=I-N,+N: -~ N + --+)
= (I — N,) (mod 3"+
since N* = 0 (mod 3*"). (Here we are using the obvious fact that N,

has only nonzero entries above the main diagonal and hence is nil-
potent.) Thus,

Bt = (I + N,)B(I — N,) (mod 2*+?)
= BN,B — BN, (mod 3*+')
since N,BN, = (mod 3**). Hence to prove (a) we must show
N,B — BN, = 0 (mod 2"+ .

For j = (i + 1), the (3, 7) entry of N,B is (¢{%,; + @i*'¢, ,.,), and the
(¢, ) entry of BN, is (wi*'¢{™, ;.1 + €% ;41). Thus, for j =7 + 1, the
(%, 7) entry of N,B — BN, is

(et — e i41) + (@ — wi+1)c§1)1,j+1 .
But by our induction hypothesis for part (c), we have

(e — cithi) = (1 — @)l

and this is in X' since our induction hypothesis for part (b) is that
all entries of N, are in 3*. Similarly

(@ — 0ol ;€ 3
since by hypothesis all entries of N, are in 3*. Thus, the (¢, ) entry
of N,B — BN, is in 3"+, and hence B = B (mod 3**'). Thus for a
fixed %, (b) and (¢) implies (a).

We now show that (b) is true for » + 1. We first note that
6n+1 = EE""E_I
=1+ N, — BN,B-* (mod 3 .
Hence, to prove (b) holds for (» + 1) we must show that
N, — BN,B™ = 0 (mod 3**) .

For j = (¢ + 1) the (¢, j) entry of BN,B is

(3=1)

- .
kZ.'H (@ e e + ) (— D) %y 1y
=4

—i—1( ¢pitla(n) (n) — yP—i+ipin)
+ WP TITH@ e 4+ e n) = PTG
=2
k+3 i+1(n) kg1 (
+ kz-i-l [(=1)"* %y, ;0@ T + (1) T U5 511680 1]
=%

p—j—1,(n) i+1,{n)
+ (@77, i — Uy, @TTGT )
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By the induction hypothesis, all the summands after the first term
have the form

£ (UC;i 11, — VCisgar) = £(U — v Y
= 0 (mod X" ,

where % and v are powers of w. Thus, the (z,j) entry of BN,B™
is just w7+ ;,, (mod Z"*). Hence for j =< + 1, the (¢,7) entry
of (N, — BN,B™) is

e — OP et L, = 0 (mod ) |

The proof of (b) of Lemma 1 is now complete.
To prove (c), we first note that we actually have

Co.. =1+ N, — BN,B~* (mod 3*")

since the neglected terms all contain at least two factors of N,. Thus
if n = 2, we have

C..,=I+ N, — BN,B™ (mod 2% ,

Suppose, therefore, that n = 1.
Recomputing B?% modulo 3°, we have

Bt = (I + N)B(I — N, + N? (mod 3?)
= B + N,B — BN, — (N,B — BN)N, (mod 3?) .

Since in the proof of part (a) we showed (N,B — BN,) = 0 (mod 3?),
we_see that B% = (B + N,B — BN)) (mod 3*) and hence

C,=1+ N, — BN,B~ (mod 3*) .
Thus for all integers »n, we have
Co.. =1+ N, — BN,B~" (mod 3"?) ,
In the range (p —3) >J >4, N, — BN,B has (i, j) entry,
(€500 — O™ i
= S D s @0 s + (1l ]
— (@P ey i — Ui @TTER )

We want to show that multiplying this entry by '~/ gives us the
(t+1,7 +1) entry.

@i, (1 — @PI) = ety (1 — P

by our induction hypothesis. We next compute
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i—j i+1n(n) G5 () (P—k—1) 4+ (p=bk—2) + o4 (p—f—1pyi+10a(n)
@ uk+1,j+1a) Cilipr = @ w —w Citi,hb+1

— w%—aar-k—ia)(p—-k—ﬂ-# +(p-—a—~2)w1+2wt+lc(+1 f
P42, ik p(n)

= Upgs, 420 O T

— (n)

= Uptz,j42@ € kra o

Similarly, we find that

i—3 (n) — —~3 ¢gy(P—F—2)+{p—~k—3)+-+ ~j—1) aln
@ ]uk+2,j+1cii2,k+2 a)’b Jw 4 )+ (p st (pej el +2 P

— Wi —Fk— n)
=W uk+3 @I,

_ n)
= Ujora, j2@ 7 € s

= uk+3,i+2ci+3,k +3

Thus,

@™ Z;r [(=1)*F 9, @ ey + (= D)* "9 g i k]
—11

5_4; [( 1)k+3+1uk+1 j+20 +20£1)2,k+1 + (“1)k+j+2uk+z,a‘+2c£?{-):«z,k+z] .
-_'1

Finally, computing in a similar manner, we see that
O (WP, — U @TET ) = (WP IR o — — U, O L)

_Com?ixlin_g these results, we see that @'’ times the (¢,7) entry
of N, — BN,B~" is indeed the (¢ + 1,  + 1) entry. Thus, (c) of Lemma 2
is proved.

5. The first rows of C, and B¢, With the help of Lemma 2,
we will prove

LEvMMA 3. Let C, =1+ N,, N, = (). Then the first row of
N, has the following form:

¢® = 0 (mod 3™), ¢y = 0 (mod Z""), «-., ™
=0 (mOd Z"MJH)y trty c!,n+1 =0 (mOd 2) y

and
e, =1(modl),1<n=(m—-4).

As a corollary of Lemma 3 we have

LEMMA 4. For 1 <n < (p — 5), the first row of B°» has the
following form: The (i,7) entry is =0(mod3 ) for 1<j<(n+2)
and the (1,n + 3) entry is = 1 (mod 3).

Proof of Lemma 4. We are assuming the truth of Lemma 3. We
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first note that C;'= (I — N,)(mod 2") since N, = 0 (mod 3"*') for
k=2 by Lemma 2. Moreover, since our matrices are triangular,
the (1, 2) entry of C;' is —c¢i’. Therefore,

B°» = (I + N,)B(I — N,) (mod 2™)

and for the (1,2) entries we get equality rather than congruence.
(This congruence is not good enough for the (1, 2) entry since we must
show that the (1, 2) entry is = 0 (mod 2"+').) In fact, we can say

B = B + (N,B — BN,) (mod 3™)

where again the (1, 2) entries of both sides are equal. This is because
N,BN, = 0 (mod 2") and N,BN, has the (z, ¢ + 1) entries all zero.

For (p — 2) =j =2, N,B has (1, j) entry (c¢{"_, + wc{")) and BN,
has the (1, j) entry wec{*}. Therefore, N,B — BN, has (1,7) entry,
n+2)=j5=2,

¢ + (0w — w)ei™) = 0 (mod X"—7+8) |
and (1, n + 3) entry
ey + (@™ — w)e™ ., = 1 (mod 3)

by Lemma 3. Since for j = 2, the (1, j) entry of B is zero, we have
proved Lemma 4.

Proof of Lemma 3. C, (described in §4) satisfies Lemma 3. For
an induction argument we assume that the lemma holds for n.
From the proof of Lemma 4,

Cyi = BB~ = I + N, — BN,B" (mod 3")

where the (1, 2) entries of both sides are equal. An easy calculation
(since only 2 x 2 triangular matrices are involved) shows that the (1, 2)
entry is (1 — w*)¢{?’ and hence by induction is in I+, For
(n+2)=37>2, BN,B™" has (1,J) entry

(—DiwePu,; + (1) '0ciPu; + « -+ + (=Dwefl)_u;_y,; + 0P~ el
= w7 e} (mod I"—9+%) |

by our induction hypothesis. Thus, for (» + 2) = j =3, the (1,7)
entry of (N, — BN,B™) is

(1 — a)””f“)c{f‘} =0 (mod 2n~j+a) ,
the (1, » + 3) entry of BN,B™ is

= — WUy, ;6 + O (") (mod ) ,
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and hence the (1, n + 3) entry of (N, — BN,B™) is
= OU;_, 60 + (1 — @)l s = 1 (mod 3)
since ¢{"., = 1(mod X). Our proof is therefore complete.
6. Proof of Kostrikin’s theorem (P, . # 0). The results of
the two previous sections has afforded us with just enough informa-

tion about (I — B%) so that we can now determine the relevant in-
formation about

P, =TI (I - B%{I B .
The following lemma completes the proof of Kostrikin’s Theorem.
LeMMA 5. (a) For 1=nz=(p—4), the last column of P, = (d™)

has the following form:

Qpsnps = Tt (mod 2),d, 1, . = 0(mod %),
dﬂ—n,p—z =0 (mOd 22): Tty dp~3,11—2 =0 (mod Z’n—‘l) y
and
dp~2,p~2 =1 — w?" = 0 (mod 2" .

(b) For Bp—T)/2zn=(p—3)/2,d, . = 0’ (1 — w)? (mod I**)
where g =n— (p —3)/2. In particular, the (1,p —2) entry of Pu,_r).
is = +w* (1 — )" which is not in X7 and hence is not the zero
element of Z,[w].

Proof. We represent (I — B°s) by

(1 — o) by’ by . . . by
1—-v) (—1+ by b
1 — ¥ (=1 + by
(1 - o)
0 (-1,
L 1 — w?
where

b7} = 0(mod 277, 2 < j < m + 2, b1, = —1(mod 2),

and b/} = 0 (mod X**') if ¢+ > 1 by Lemmas 2 and 4.

P, = (I — B*) satisfies property (a) of the lemma (B“ is exhibited
in §4). As our induction hypothesis, for 2 < n < p — 4, suppose P,
satisfies (a) of the lemma. P,.,= (I — B°)P,. We may compute
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modulo X¥**!, and thus modulo 3"+!, we have P,., equal to the follow-
ing product.

(1 - o) by bl I b )
1 — w? -1

1-ow) —1 0
0 SR

(1 — w*?) |
dn_. )

il

P'n—H:

.| Irrelevant
4, p

1 - )" |

The (p —2 —n —1,p — 2) entry of P,,, is
1- wphz—n—l)dp—pn—i,p—z - dp—z—n,p—z = o' (mOd 2)

by the induction hypothesis. For 1<7<mn, the (p —3—n+1,p—2)
entryof P,.,is (k =9 — 8 —n + 1)1 — ©*d;,p— — Ai11,p—2 = 0 (mod 2¥)
by the induction hypothesis on P,. The (p — 2, p — 2) entry of the
right side is (1 — w?~*)"*!. Thus, by induction, we have prove (a) of
Lemma 5.

To prove (b) of Lemma 5, we first note that for m = (p — 5)/2,
m. .= —1(mod3) and d{™,,,= +@"*(modS). Then dr+ =
+w?! (mod ¥) since all entries in the first row of (I — B°:) to the
left of b, are in 3 and all entries in the last column of P, below
aim .. ,—, are also in 3. Thus, P,_;, satisfies part (b) of the lemma.
For n + 1> (p — 3)/2, we note that

(5 1) d{:’;}t&; = (1 - w)din—z + bg;”d;?p?-d + oo + bi:nz:-ulzd;ﬁr)l/z,p—z
' e b b — @)

If (n+1)=(p—1)/2, then bP,2<7=<(p—1)/2, arein X, b{", .1 0,p—2
and d(.,,. are each in ¥, and d{") ,,(p +3)2<7< (p — 3), and
1 — ™" are in 3%, Thus d{2}"» = +w* (1 — w) mod 3°.

For (n + 1) > (p — 1)/2, it is now clear that all other terms in
(5.1) will be in one higher power of X than the term (1 — w)d{"_,
since either the first factor of the second factor lies in a higher power
of 3 for each increase in n. By induction we may assume that
d™_, = +0 (1 — w)? (mod 2?**) where ¢ =n — (p — 3)/2. Thus, in
forming d{*;}";, all the terms after the first in (5.1) are = 0 modulo Y+,
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and hence d{"f% = w1 — w)*" (mod 2***). This completes the

1, p—2

proof of part (b) of Lemma 5.

6. Concluding remarks. The question naturally arises as to
how far the number =, = (83p — 5)/2 is from the largest possible.
That n, is probably not the Engel length of the restricted Burnside
group B(p) of exponent p has also been demonstrated by Kostrikin [2]
who showed that for p = 5, the Engel length of B(5) is 6 while n, is
5. Our proof has yielded the additional information that the group
G(p) whose Engel length is 7, has solubility class & + 1 where k is
the least integer satisfying 2* > p — 1. In [1] Theorem D, it has
been shown that the Engel length of groups of exponents p and
solubility class © + 1 is at most k(p — 1) +~ 1. The actual number for
these groups is therefore between (3p — 5)/2 and k(p — 1) + 1.

One possibility of enlarging the number (3p — 5)/2 which comes
immediately to mind is to replace the entries of the matrices by
elements of a “larger” ring. That is, instead of taking entries from
Z,|w], use entries from the group ring of an abelian group of ex-
ponent p; e.g., if C, is the cyclic group of order p, use entries from
Z,[C, x C,] modulo a suitable ideal. The suitable ideal would have to
be the cyclotomic ideal (see [1] for definitions) so that the propositions
in §3 remain valid. But the results in [1] (specifically Theorem B)
indicate that there would be no change in the first result. In fact,
for a prime p, the results in [1] indicate that going to any finite
number of variables would make no difference and one may as well use
one variable as we have done.

Finally, we conclude with the observation, based upon computer
calculations for small primes, that it should be possible to give an
even more elementary proof of Kostrikin’s Theorem. Namely, instead
of using (p — 2) X (p — 2) matrices, enlarge the matrices to p x p.
Specifically, let

. 1 1 1 1 O
w 1
@
w* O w1
A = . , B = . *
0 ' |
L a)?**l J wﬁ'—l

and let as before C, = [A4, B], C, = [4, B; n]. The group generated by
A, B is a group of exponent p, and the idea now is to show directly
that Cy,_5, # 1. Conceptually this is simpler than the proof given in
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this paper, since it avoids the trick of using the Magnus representa-
tion, and furthermore one now has a concrete matrix group which is
amenable to computer calculations (for small primes) to aid in discover-
ing other properties of these groups. Computer calculations for p =
5,7,11 have shown that indeed for these primes, the (1, p) entry of
Cisp_n> is not in 37~* and hence is nonzero. In fact, the pattern shown
makes it quite clear what happens for arbitrary p. Namely, the (1, p)
entry is a unit for each C,,n < p — 1, and finally the (1, ) entry of
C,_, falls into 5. But, unfortunately this entry, in fact, falls into 3*
and thereafter the (1, p) entry of C, falls into 2*, the (1, p) entry of
C,+, falls into 3° etc.; until finally the (1, p) entry of C,_,, lies in
273 and the (1, p) entry of C, ;). lies in 37; i.e. C,_,» # 1. Because
of the jumps in the highest power of X in which the (1, p) entry lies at
these later stages, one must have exact knowledge of the terms in the
matrices used to compute C, in order to demonstrate that the entries
do not fall into even higher powers of 3. The bookkeeping involved
here is rather horrendous, and because of the difficult technical pro-
blems involved we have abandoned such a direct proof of Kostrikin’s
Theorem. The method we used enabled us at each stage to calculate
modulo X* if the entries involved were in X!, Much more precise
information is required in a direct proof.

Appendix.

THEOREM. Let p = 3 be a prime and ¢ = 1 any integer. Then
there exists a group & which has exponent p* and Emngel length
e(p® — Y + (p — 3)/2. Furthermore, ® has solubility class at most
k + 1, where k is the least integer for which 2 = (p — 2).

Proof. Let
(w1 N B |
w? O i @* a:ts O
A= : = Lot
L O . wr? O . -1
J i v |

where w is a primitive p*® root of unity. We first observe that any
element H in the group $ generated by A and B satisfies the cyclo-
tomic identity 1 + H + H*+ --- + H** = 0. To see this, we note
that either H has the form
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p -

4
y

“I1o

DG
where 7 is a primitive p?** root of unity, 1 < j < ¢, or H has the form

1

*

1
H, = O . =I+ N

where N2 = 0,

We have 1 + H, + ... + H' = 0, since the characteristic poly-
nomial of H,, [I?22(Z — %), divides 1+ Z 4+ Z* 4+ --- + ZP', To
show that

1+H,+H2+ .. + HpF?
=I+{I+N)+T+ NP+ -+« + I+ N>
:O’

we shall show that the coefficient of N',1 < 7 < (p — 2), is congruent
to zero modulo p°. The coefficient of N’ is

pei—ii+j>_?l+pe—i_ pe)
= i )\ i+1 ) \i+1)°

e

Since (¢ + 1) < (p — 1), we have <i 1) = 0 (mod p°).
)

It thus follows that  is a group with exponent p° and as before
we let & be the group of 2 x 2 matrices over Z(9)[t,, t.] generated by

At B t,
R—|:0 J and S_[O 1].

The proof that & satisfies all the conditions of the theorem now
proceeds exactly as in the prime case by replacing p by p° where
appropriate. The only remark necessary to make is that the augmenta-
tion ideal X of Z,[w] now satisfies Y~ = 0, but IJew*—r*"h-1 =« 0,
(see [1]).

We would like to mention here the authors’ conviction that this
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work could not have been possible without the aid of a computer.
The computer calculations for small primes not only showed us that
the result is possible but also enabled us to discover the method of
proof. It is a pleasure for us to acknowledge the generous assistance
of Professor Glen Culler, who placed the computing facilities of the
University of California at Santa Barbara at our disposal, and to Miss
Helen Smith, who did outstanding programming work for us.
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