
Pacific Journal of
Mathematics

EXTENSIONS OF OPIAL’S INEQUALITY

PAUL RICHARD BEESACK AND KRISHNA M. DAS

Vol. 26, No. 2 December 1968



PACIFIC JOURNAL OF MATHEMATICS
Vol. 26, No. 2, 1968

EXTENSIONS OF OPIAL'S INEQUALITY
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In this paper certain inequalities involving integrals of
powers of a function and of its derivative are proved. The
prototype of such inequalities is OpiaΓs Inequality which states

S x ex

I yyr I dx ^ X I y'zdx whenever y is absolutely continu-

ous on [0, X] with y(0) = 0. The extensions dealt with here

are all integral inequalities of the form
Γ s I y \P I y11« d x ^ K ( p , q ) \ r \ y f | * + « d x ,

(or with ^ replaced by ^), where r, s are nonnegative,
measurable functions on I~[at 6], and # is absolutely con-
tinuous on / with either y(a) = 0, or y(b) = 0, or both. In some
cases y may be complex-valued, while in other cases yf must
not change sign on I. The inequality (as stated) is obtained
in case pq > 0 and either p + q ^ 1 or p + q < 0, while the
opposite inequality is obtained in case p < 0,q^l,p + q < 0,
or p > 0, p 4- <Z < 0. In all cases, necessary and sufficient
conditions are obtained for equality to hold.

1. In a recent paper [11], G. S. Yang proved the following
generalization of an inequality of Z. Opial [7]:

If y is absolutely continuous on [a, X] with y(a) = 0, and if
p, q Ξ> 1, then

( 1) Π y \p I V' \q dx ̂  —Z—(X - ay [X\ y' r * dx .
Ja p + q Ja

Yang's proof is actually valid for p ^ 0, q ;> 1. For p = q = 1, a = 0,
(1) is OpiaΓs result. (See also Olech [6], Beesack [1], Levinson [4],
Mallows [5], and Pederson [8] for successively simpler proofs of OpiaΓs
inequality; as well as Redheffer [9] for other generalizations of this
inequality.) The case q = 1, p a positive integer, was proved by Hua
[3], and the result for q = 1, p ^ 0 is included in a generalization of
Calvert [2]; a short, direct proof of the latter case was also given by
Wong [10]. If q = 1 the inequality (1) is sharp, but it is not sharp
for q > 1.

2. The purpose of this paper is to obtain sharp generalizations of
<1), and to consider other values of the parameters p, q; the method
of proof is a modification of that of Yang [11], To this end, we sup-
pose first that y is absolutely continuous on [α, X], where — oo <g
a < X ^ oo, and that y' does not change sign on (a, X), so that
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216 P. R. BEESACK AND K. M. DAS

( 2 ) I y(x) I = ("| y'(t) \dt , a^x^X.

// r is nonnegatίve on (a, X) and the integrals exist, then it follows
from Holder's inequality that

S x /Cx \ (p+q—l)/(p+g) / Cx \

I y'\ dt S\\ r- ι ι / ( » + -1)»dί I r | y ' \p+t> dt)
a \Ja / \ja J

if p Λ- q > 1, while

S x /Cx \(p+q~i)J(p+q) /Γx \

\y\aτ^.\\r aτ \ \\ r y \ aτ j
a \Ja / \Ja Jif e i ther p + q<0or0<p + q<l. Taking the case p + q > 1, we

suppose first t h a t p > 0, q > 0, Then,

G ί

a^x £ X.

Now, set 2(a?) = ί V 11/' | p + ? d ί . So «f = r | y' \P+Q, and
Jα

I yf \q — r~^l(p+9)

Thus, if s is nonnegative on (α, X),

s \y p \yf \q < s7

If we assume the existence of the following integrals, then applying
Holder's inequality again, with indices (p + q)/p and (p + q)/q, we
obtain

/ \Ql(P+g)

, p , )l ̂ r d )

x

since z(a) = 0 and (2? + q)/q > 0. Here,

KA.X, P, Q)
( 7 \ ί a \QHP+Q) (ΐx /Cx \P+Q-I ~\pl(P+q)

W ; = ί Q \ Jl s(P+Q)iPT~ίQiP)ί\ r-wp+Q-wdt) dxY

Similarly, if p < 0 and q < 0, then (5) again follows from (2) and
(4). As above, since (2) + q)/p > 1 and (p + #)/# > 1 again, we obtain
inequality (6). This proves the main part of

THEOREM 1. Let p, q be real numbers such that pq > 0, and
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either p + q > 1, or p + q < 0, and let r, s be nonnegative, measurable
r~ίlip+q~i)dx < oo, and the constant

a

Kγ{X, p, q) defined by (7) is finite, where -— oo <ς α < X ĝ oo. If y
is absolutely continuous on [α, X], y(a) — 0, and yf does not change
sign on (a, X), then

( 8 ) (% I y Π / I* dx ^ K,(X9 p, q)\Xr \ y' \*+< dx .

Equality holds in (8) if and only if either q > 0 and y = 0, or

r

/or some constants fc^^O), A:2 rβαϊ.
It only remains to prove the assertion concerning (9). Now, equality

holds in (8) only if it holds in (3)—or (4)— and in Holder's inequality
leading to (6); that is, only if both

r I y' \p+q = Ar~{llip+q-1)] or y' = k2r~{ίl{p+q-l)] ,

a n d

G*

The first of these conditions is equivalent to the second of equations
(9) since y(a) = 0. Using this condition and the definition of z, the
second reduces to

\ J α

which is equivalent to the first of equations (9). Finally, if s is given
by (9), it is easy to verify that the corresponding value of Kx in (7)
is

p +

and hence is finite. Similarly, choosing y as in (9),

Γ r 12/' 1^* dx = \k2 \
p~{q \Xr-{llip+q-1)]dx < oo ,

completing the proof of the theorem.
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COROLLARY 1. // pq > 0, p + q > 1, (8) holds even if y is complex-
valued. Equality holds if and only if s and y are given by (9) with
kλ ^ 0, k2 complex.

Proof. The inequality (8) follows as above but in place of (2)
we have

\y(x)\ ^ \ X \ y \ t ) \ d t , a ^ x ^ X .
Ja

Equality holds in (8) only if, in addition to

we also have

I y(x) I - [\ y'(t) I dt
Ja

thus only if

y(x) -

which, in view of the condition on \y'\, leads to θ'(x) = 0 and, there-
fore, only if

y = Aeia ί V ί l / ( p-H r- 1 ) }dί = k2
J a

The rest follows as before.

REMARK 1. If pq > 0 and p + q — 1, then in place of (5) we have

where M(x) = ess. supίe[α>a.] r~ι(t) and r is a positive, measurable func-
tion on (α, X). Therefore, if

K^X, p, q) = q« ί\MsllPr-{"p)dxY < oo ,

then

(10) \Xs \y\p\v'\gdx^ R,(X9 p , q)\\\y'\dx .
Ja Ja

As in the corollary above, equality holds in (10) if and only if y = 0,
or
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r = const. > 0 and y = k(\ sllPdt) ,

k complex.
We only state the next theorem, since its proof is the same as

that of Theorem 1, with [a, x] replaced by [x, b] throughout.

THEOREM 2. Let p,q be real numbers satisfying the same condi-
tions as in Theorem 1, and let r, s be nonnegative measurable functions

S b

r~ll{p+q~1]dx < oo,
X

and
K2(X, p, q)

/I "Π i n \<il(p+q) (fδ /(*& \p+ff—i ΛPUP+Q)

\p -j- q J \jχ \jχ ) )

is finite. If y is absolutely continuous on [Xf 6], y(b) — 0, (and yf

does not change sign on (X, b) in case q < 0), then

(12) [s I y\p I yΊ'dx ^ K2(X, p, q)\*r\ y' \p+q dx .

JX JX

Equality holds in (12) if and only if either q > 0 and y = 0, or

G b \p(l-q)lq

r-{lUp + q-l)}^\

and

y = k, ί V ( 1 / ( 3 ) + 9 - 1 ) } eta ,
Jx

for some constants kB(7>0),k4 real.

REMARK 2. As above, if pq > 0 and p + q > 1, then (12) holds
even if y is complex-valued. Also, if p + q = l,r is a positive,
measurable function on (X, 6), M(x) — ess. sup ίe[a.,δ] r~ι(t) and

K2(X, p, q) - qql\b Msιlpr-{qlP)dxY < oo ,

then

(13) Γ s I y \p I y ' \q d x ^ K 2 ( X , p , q ) Ϋ r \ y ' \ d x ,
JX JX

where y is again complex-valued. Equality holds if and only if r —

const. > 0 and y = ίcί\ sllPdtj .
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COROLLARY 2. Let pq > 0 with p + q > 1, o,nd let r, s δe non-
negative, measurable functions on (a, b), where — oo <^α<&<^oo, such

that \br-{inp+g-1)]dx < oo, and

, g ) = ) KX(XU p, q) = K2(X, p,(14)

where Ku K2 are defined by (7), (11) respectively, and X(a < X <b)
is the {unique) solution of equation (14). // y is complex-valued,
absolutely continuous on [α, 6], with y(a) = y(b) = 0, then

(15) Γs \y\*\yΊ*dx^ K(p, q) (V | y' \p+q dx .
Ja Ja

Moreover, equality holds if and only if either y = 0, or

s =

α2r'.(ί-l)/(p+ff

G X

r_ιi/<ι.+«-i

r_(i/(,+ f-i )id t\

α ^ a; < X ,

X < a; ̂  6 ,

|1/(»+ -1)l
dί ,

X ^ a; ̂  6 ,

where ax, a2 are nonnegative constants, and βl9 β2 are complex
constants such that

Proof. The conclusion follows from Corollary 1 and Theorem 2
since, on choosing X to be the unique solution of equation (14), we
have

\ h 8 \ y \ * \ y Ί q d x = \ X s \ y \ p \ y ' \ q d x + [ s \ y \ p \ y ' \ q dx
Ja Ja JX

5S K^X, p , q) j' r I y' |̂ +? dx + K2(X, p , q) j * r | ?/' |

Moreover, equality holds in (15) if and only if it holds in both (8)
and (12).

REMARK 3. As before, if pq > 0 and p + q = 1, then for r a
positive, measurable function on (a, b),
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(16) [ s I y Y I y ' \ " dx ^ K ( p , q ) \ " r \ y ' \ d x ,
Ja Ja

where

(K(p, q) s ) K^X, p, q) = K2{X, p, q) .

Equality holds in (16) if and only if either y = 0, or

, a ^ x < X , 7 l ( L s l / ! > d ί ) ' α = x = X '
r(x) = -j and y =

U(>0), X < a; ^ b,

where

EXAMPLES

1. Setting r — s = 1 in (8) or (10), we obtain as an improvement

of (1),

\y\p\y'\qdx^ Si (X - a)Λ I y' r « dx
* p + q Ja

if pq > 0, p + q ^ 1. It may be remarked that (17) is also true if
p = 0. Equality holds in (17) in case p + q > 1 if and only if either
p = 0, or else y = 0, or else g = 1 and i/ = A(x — a); if p + q = 1,
equality holds if and only if y = A(α? — α). In case g = 1, (17) reduces
to the results of Hua, Yang, Calvert and Wong, while OpiaFs original
inequality is obtained for p = q = 1. (Note that if p < 0 and g < 0,
Kι(X,p,q) = oo.)

2. Taking g = 1, s = 1 in (15), we obtain

(18) Γ| VV I ίto ^ —-—(Vr~ { l l p } dxY (V I a/' |̂ +1 dx ,

if p :> 0, and 2/ is complex-valued, absolutely continuous on [α, b] with
= ^(6) = 0. Here, X is the unique solution of

\*r-lllP)dx = [\~[lίP)dx, \br-{llP)dx < oo .
Ja JX Ja

Equality holds in (18) if and only if y = A Vτ~[Uv)dt for a ^ x ^ X

and y = J5 Γr~(1/?))ίίί for X ^ a; ^ 6. In case ^ - 1, (18) reduces to a

result of Beesack [2].

3. Taking r = 1, s = (x - a)pil~q)iq in Theorem 1,
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(19) \ ( x - a ) p i l - q ) l q \y\p\y'\qdx^ — ί — ( X - a)*1* Γ | y r \p+q dx .
ja P + q J *

Equality holds if and only if either q > 0 and y == 0, or y = A(x — a).
As a special case of (19), let y = u112, p = q = — 1, α = 0. Then

^-da? < X [Z-iϋLcfo unless tt - Aα2 .

|'| J I ! |2

(20)

4. Taking r = (x - a)
p(p+q-1)lip+q), s = 1 in Theorem 1,

\x\y\p\y'\qdx

(X - α ) p / ( 2 ) + 9 ) 1 (x - a)«p+q-l)n*+q) \ y' \p+q dx .
p

Equality holds if and only if either q > 0 and y = 0, or y = A(a? - α) 9 / p + g .
As a special case of (20), let y = ^1/2, p = q = —l,a = Q. Then

\tf]< Ί Jo"^7Γ" ~ "

3 . T o o b t a i n l o w e r b o u n d s f o r I s \ y \p \ y ' \q d x (or \ s\y\p\ y ' \q d x )

consider first the case when p + q > 1. If, in addition, p < 0, (3) yields

G
x \p(p + q—l)l(p + q) /Γx \

r-MM-wdt) Π r\y'\p+qdt)
If s is non-negative on (a, X), then

G X

PI(P+Q)

where z(x) = \ r \ y' \p+q dt.
Ja

Thus, Holder's inequality with indices (p + q)/p and (p + q)/q—note
that the latter lies between 0 and 1—gives

(22) \Xs \y\p\y'\qdx^ Kt(X9 p, q) Vr \ y' \p+qdx ,
Ja Ja

where K^X, p, q) is defined by (7).
Similarly, if p > 0 and p + q < 0, then (4) yields (21). Again, if

s is non-negative on (α, X), Holder's inequality with indices (p + q)/p
and (p + q)/q—note that 0 < (p + g)/<? < 1 still holds—leads to (22)
Equality holds in (22) if and only if it holds in (3)—or (4)—and in
Holder's inequality leading to (22); that is, if and only if s, y are
given by (9). This proves

THEOREM 3. Let p, q be real numbers such that either p < 0 and
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2? + g > 1, or p>0 and p + q < 0. Let r, s be nonnegative measurable

S x
r~"inp+q"1)dx < co, and the constant

a

i£i(X, p, q) defined by (7) is finite, where — oo <ς α < X <: oo. If y
is absolutely continuous on [α, X], y(a) = 0, and y' does not change
sign on (a, X), then (22) holds. There is equality in (22) if and only
s and y are as defined in (9).

COROLLARY 3. If p < 0 and p + q > 1, (22) holds even if y is
complex-valued. Equality holds if and only if s and y are given by
(9) with ki ^ 0, k2 complex.

The proof of this is essentially the same as that of Corollary 1.

REMARK 4. If p < 0 and p + q = 1, then in place of (21) we have

where M(x) — ess supίerα,x-, r - 1(ί) and r is a positive, measurable func-
tion on (α, X).

Thus, if

, p, q) = WΓikf^^r-^/^^Γ < oo ,

then

(23) \ X s \ y \ » \ y ' \ « d x ^ KX(X, p , g) Γ r \ y ' \ d x .

As in the corollary above, equality holds in (23) if and only if

r = const. > 0 and y = k(\ sllPdtj ,

k complex.

Replacing [α, x] by [x, b] throughout Theorem 3, we obtain

THEOREM 4. Let py q be real numbers satisfying the same condi-
tions as in Theorem 3, and let r, s be non-negative measurable func-

r~inp+q~ί]dx < oo,

X

and K2(X, p, q) defined by (11) is finite. If y is absolutely continuous
on [X, £>], y(b) — 0, (and yf does not change sign on (X, b) in case
p > 0), then

(24) Γ s I y \p I y'\« dx ^ K2(X, p, q) [ r \ y' \^ dx .

Equality holds in (24) if and only if
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G b \P(i-q)lq

r-u/(p+*-i»dt) ^ a n ( ι
y = kλ r~

{ll{ϊ>+q-1)]dt ,

for some constants &3(^>0),fc4 real.

REMARK 5. If p < 0 and p + q > 1, then (24) holds even if y is
complex-valued. Also, if p < 0, p + q = l and r is a positive, measurable
function on (X, b), and

M(x) = ess sup r~\t), K2(X, p, q) = qλ* Msllpr~iqlP)dx\ < oo ,
ίe[s,6] JX J

then

(26) [s 12/1* I y' \qdx ̂  1?2(X, p, g) Γ r | y' \ dx ,

where y is again complex-valued. Equality holds if and only if

r = const. > 0 and y = kl \ sllPdt) .

COROLLARY 4. Let p<0 and p + q> 1. Let r, s be nonnegative,

S b

r~{inp+q~1)]dx
a

is finite. Let y be complex-valued, absolutely continuous on [α, b]
with y(a) = y(b) = 0. Then,

(27) \b8 \y\p\y'\q^ K(p, q) ( V | y' \p+q dx ,
J a J a

where K(p, q) is defined by (14). Moreover, equality holds if and
only if s and y are defined as in theorem 2.

The proof is immediate in view of Theorems 3 and 4, Corollary 3
and Remark 5.

REMARK 6. Again if p < 0 and p + q = 1, then for r(x) positive,
measurable on (a, b),

(28) j ' s I y \p I y ' \ q dx ̂  K(p, q) j \ \ y r \ d x ,

where K(p, q) is defined as in Remark 3. Further, equality holds in
(28) if and only if r and y are defined as in Remark 3.

Our next result is an extension of Theorem 3 to the case when
0 < p + q < 1 and q > 1. (Note that in Theorem 3 the restriction
q > 1 is implicit since p + q > 1 and p < 0 imply q > 1.)
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THEOREM 5. Let p < 0, q > 1 and 0 < p + q < 1. Let r, s fee non-

ί x
r~{llip+Q~ί)}dx

S a
s~{1!iq~1)]dx are finite. If y is complex-valued, absolutely con-

a

tinuous on [α, X], y(a) = 0, then

(29)

where

\Xs \y\*\y'\«dx^ £X(X, p, q) Vr \ y' \^ dx ,
Ja Ja

(30) έ,(X9 p, q) =

Equality holds in (29) if and only if s and y are as defined by (9)
with k2 complex.

Proof. Since p/q < 0,

\y'\dή , a £ x g X .

Therefore,

(31) Γ | 1/ "«\y'\dx^ — 2 _ ( Γ |
Jα P + q \Jα

iP+Q)lQ

From Holder's inequality with indices # and its conjugate, it follows
that

S x /ex \(ff-i)/ff/r2r \i/β

11/ |p/9 \ y ' \ d x ^ l Λ s ~ { l l { q - 1 ) } d x ) (Λ s\y\*>\y'\9 dx)
and also with indices p + q and its conjugate, that

(
In view of the above inequalities, (29) follows from (31).

Again, equality holds in (29) if and only if

and

y I - ( | y'\ dt , Λs-11'1'-1" - s | y \> | y'\" ,
J

— γ

that is, if and only if

\y\=a2
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and

s = k3r
{q~1)lip+q"ι)f[Xr^{ll{p+q-ι))dt)

p(l-q)lq

thus, as in Corollary 1, if and only if s and y are as defined by (9)
with kA complex.

REMARK 7. If p < 0, 0 < p + g < 1 and q = 1, s(cc) positive and

measurable on (α, X), then in place of (29) the following holds:

s\y\p\y'\dx> — ( r~{llP)dx) \ r\y' \p+1 dx ,

where M* = M*(X) = ess supxe[α,jπ s" 1 ^). Equality holds in (32) if

S x
r~{ιlP)dt, &* complex.

α

Replacing [α, ̂ ] by [x, b] throughout Theorem 5, we obtain

THEOREM 6. Let p, q be real numbers satisfying the same con-
ditions as in Theorem 5. Let r, s nonnegative, measurable functions

on (X,b) such that Ϋ r-{ll{p+q~ί)}dx and Γ s~{ll{q~1)]dx are finite. If y
}x t jx

is complex-valued, absolutely continuous on [X, 6], y(b) = 0, then

(33) |% I y N y'\q dx ̂  K2(X, p , q) j V | y' \p+q dx ,

where
K2(X, p, q) - ( — ^ — ) ( l s-{ll{q~1)]dx) (\

Equality holds in (33) if and only if s and y are defined by (25)
with k4 complex.

As a direct consequence of Theorem 5 and 6 we have

COROLLARY 5. Let p, q be real numbers satisfying the same
conditions as in Theorem 5. Let r, s be nonnegative measurable

S b Cb

r-wp+Q-vdx and \ 8-i/(«-i) a r e finite. If
a ^ Ja

y is complex-valued, absolutely continuous on [a,b] with y(a) = y(b) = 0,
then,
(34) \h8 \y\p\y'\gdx^ K(p, q) [r \ y' \p+q dx ,

Ja Ja

where K(p, q) = KX(X, p, q) — K2(X, p, q), with X the unique solution
(a < X < 6) of the latter equation. Moreover equality holds in (34)
if and only if s and y are defined as in corollary 1.
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REMARK 8. Let p <Q, 0 < p + q < 1 and q — 1; s(x) positive and
measurable on (X, 6) Then, for complex-valued, absolutely continuous
y on [X, 6] such that y(b) — 0,

(35) β I y \p I yr\ dx ^ — ( r^dx) τ\yr |*+1 <ta ,
Jx p -f 1 \Jχ / Jx

where M* = M*(X) = ess supxe[x,δ] s~\x).
Finally, if y is complex-valued, absolutely continuous on [α, 6] such

that y(a) — yφ) = 0, and if s is positive and continuous on (α, 6), then
(32) and (35) yield

S b ]hf-l /far \pΓb

where M = M*(X) and X is the unique solution (a < X < b) of the

equation M*(X)AXr~(1/ί))ώY - M*(X)(ίV- ( W ώ;Y. Equality holds in

(36) if and only if s = const. > 0 and

y =

according as a ^ x g X(X <^ x <>b).
Examples can be constructed for special cases of r and s as

before. However, we content ourselves with noting that if s(x) = 1,
(32) reduces to the following inequality of Calvert's paper [2, p. 75],

\p-lfX 1 1
ι-Λ \ r I u'\p , 0 < p < 1 and — + — = 1 .

/ Jα q P

4. Let u be a given function and let

y = ui/(p+<r> (p + ^ ^ 0) .

If p and g are such that q/(p + q) > 0, then it is obvious that # is
absolutely continuous on an interval if and only if u is, and that y
vanishes at a point if and only if u does, A simple computation gives

\V\P\VΊ9 = (——Y I w' \q and | y' \p+g - ( — 2 — Y + ? \v,\~p\ uf γ+« ,
\p + q j \p + ql

that is,

(37)

I u' \P+Q and 11

where p = —P, p + g = Q.
In view of (37) and Theorem 1 we have
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THEOREM 7. Let P, Q be real numbers such that either P < 0,
Q > 1 and P + Q>0orP>0 and P + Q < 0. Let r,s be nonnegative,

s~ιnQ~ι)dx < oo. Let the
a

constant

(38)
(

6e finite. If u is absolutely continuous on [a, X], u(ά) = 0, and u'
does not change sign on (a, X), then

(39) \Σs \u\p\u'\Qdx^ K?(X, P, Q) V r | u' |p+« dx .
Ja Ja

Equality holds in (38) if and only if

8-MQ-i))dt) , and

s~{lliQ-1)}dt)

for some constants kΐ(^O),k* real.
Theorems 3 and 7 lead to

COROLLARY 6. Let p, q be real numbers as in Theorem 3. Let
r, s be nonnegative measurable functions on (α, X) such that K^X, p, q),
K?(X, p, q) defined by (7), (38) respectively are finite. If y is abso-
lutely continuous on [a, X], y(a) = 0, and yf does not change sign on
(a, X), then

\Xs I y \p I y'\q dx ̂  max (Ku Z"*) Γ r | y' \p+q dx .
Ja Ja

Moreover, equality holds if and only if s and y are defined by (9) or

G x \P-{pl(P+q)}

β-u/(.-i)i(it) t andQI(P+Q)

for some constants kf(^>O),ki real.

Proof. The inequality is immediate in view of (22) and (39) and
the fact that q > 1 is implicit if p < 0. Again, a straight-forward
computation shows that (9) holds if and only if (40) holds. Thus,
equality holds in (22) if and only if it holds in (39). Also, then K, =
Kf. This completes the proof.
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REMARK 9. If r = s = 1, K? are meaningful constants when
p + q > 0 and # > 0 respectively. Therefore, in Corollary 6 if r = s = 1
and p < 0, p + g > 1,

It is easy to verify that In xj{l — ar1) is an increasing function of x
for x > 1. Thus,

1 In q > !_—\n(p + g) ,

1 - 1 1 -
v + q

whence

Consequently, in this case iζ* > Kιm

Another example where K?^ Kx is when r = (# — α ) p ( p + 9 " 1 ) / ( p + ? ) ,

s = (a - α) p ( 1 - 9 ) / g , p < 0 and p + g > 1. Then,

P + qJ

and

If g ^ 2, ̂  + (^ + q)(l — q) > 0 and therefore, in view of

0 < -p/(p + ? ) ( 9 - 1)< 1

and — ln# convex if a? > 0, we have

(g + (p + g)( l _ 9))-{p/(P+ί)(ff-l)ί.?l+ίp/(P + «)(ff-l)» ^ ^ _j_ g ^

whence

p + g Y+q < / g

+ ίP + g X l - ? ) / ~Vp + g

that is,

p + g V/g > / g Vnp+q)

- g) / ^ V p + g/ V g + (p + g)(l - g)

i f 2 ^ g > p

proving that K? ^ i ^ in this case.
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As above, in view of (37) and Theorem 3 we have

THEOREM 8. Let P, Q be real numbers such that PQ > 0, and
either Q > 1 or Q < 0. Let r, s be nonnegative, measurable functions

g-wQ-udx < oo, and the constant K* defined by

(38) is finite. If y is absolutely continuous on [α, X], y(a) — 0, and
yf does not change sign on (α, X), then

(40) \Xs I u | p | tf \Q dx ^ K* Γ r | u' \P+Q dx .
J a Jα

Equality holds in (40) if and only if r and u are as defined in
Theorem 7.

REMARK 10. If P and Q above satisfy

P > 0 , P + Q > 1 and 0 < Q < 1 ,

then (37) and Theorem 5 yield

(41) Γβ I u Γ I u' \Q dx ^ K,(X, P, Q) Γ r | w' Γ+ρ do? ,
Jα Jα

where Kt is defined by (30). Here u can be taken as complex-valued.
Equality holds if and only if it holds in (29), that is if and only if
s and u( = y) are as defined by (9) with k2 complex.

If P > 0 and Q = 1, then (37) and (23) yield

(42) Γ s I u \p I u'\ dx ^ K Vr \ uf | p + 1 dx
Jα Jα

where s is a positive, measurable function on (a, X) and

(43) K(P) = —-—([XM*s{P+ι)lPr-( ί lP)dxY, M*(x) = ess sup s~ι(t) .
P + 1 \}a I te[a,x]

Equality holds in (42) if and only if s = const. > 0 and u = k(\ r~{llP)dt\

k complex.
Combining Theorems 1 and 8 and Remark 10 we have

COROLLARY 7. Let p, q be real numbers such that pq > 0. Let
r, s be nonnegative, measurable functions on (α, X) such that

Jα

(or M*(x) if p > 0, q — 1) exist, and the constants Ku K*, Kγ and
K(p) are finite. If y is absolutely continuous on [α, X], y(a) = 0,
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and yf does not change sign on (α, X), then

^s \y\p\y'\qdxSK Γ r | y' |*+< dx ,

where K = min (K19 K?) if a) q > 1 or q < 0, = min (Kl9 K,) if β)
0 < q < 1 α^d p + g > 1, = min (ί^, # ) if Ί) q — 1. Moreover, equality
holds if and only if it holhs in both (8) and (40), (8) and (41), (8)
•ami (42) according as a),β),Ύ) is the case.

REMARK 11. If r = s = 1 and g > 1 (so p > 0) in Corollary 7, the
fact that In x/(l — x-1) is an increasing function of x for x > 1 leads
to ifi* > J?! and thus K = JKΊ. Again, if r = s Ξ 1 and g = 1 above,
K = Kt = ί£. Also, if r = s = 1 and 0 < g < l < p + g then

K Ϊ X Y t = ( — 2 — ) (X - a)' .
^p + g/ί? + q ^p +

T h a t I ξ > iΓi follows from the fact t h a t f o r O < g < l < p

—2__ln q < 1 < — P + q In (p + 9 ) ,
9 — 1 ί> + 9 — 1

whence

) ( p ) (
q) \ p +

Similar results could be stated on [X, b] and [α, 6].
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