NÖRLUND SUMMABILITY OF FOURIER SERIES

Masako Izumi and Shin-ichi Izumi
NÖRLUND SUMMABILITY OF FOURIER SERIES

MASAKO IZUMI AND SHIN-ICHI IZUMI

The Nörlund summability was first applied to the theory of Fourier series by E. Hille and J. D. Tamarkin. Many other mathematicians have since worked in this field. Recently T. Singh has proved a nice theorem concerning the Nörlund summability of Fourier series. In Part I, we shall give a generalization.

Absolute Nörlund summability was defined by L. McFadden and he proved a theorem concerning the absolute Nörlund summability of the Fourier series of functions of the Lipschitz class which was generalized by S. N. Lal. We shall give another generalization of McFadden's theorem in Part II.

PART I.

1. Let \(\sum_{n=0}^{\infty} a_n \) be a given series and \((s_n) \) be the sequence of its partial sums. Let \((p_n) \) be a sequence of real numbers and \(P_n = p_0 + p_1 + \cdots + p_n \). We suppose that \(P_n \neq 0 \) for all \(n \). The series \(\sum a_n \) is called to be summable \((N, p_n)\) to \(s \) when \(\lim_{n \to \infty} t_n \) exists and is equal to \(s \), where

\[
t_n = \frac{1}{P_n} \sum_{k=0}^{n} p_{n-k} s_k = \frac{1}{P_n} \sum_{k=0}^{n} p_k s_{n-k}.
\]

\(t_n \) is called the \(n \)th \((N, p_n)\) mean or \(n \)th Nörlund mean.

In the special case in which \(p_n = \binom{n + \alpha - 1}{n} = A_{n-1}^\alpha (\alpha > 0) \), the Nörlund mean reduces to the \((C, \alpha)\) mean. Another special case that \(p_n = 1/(n + 1) \), is called the Harmonic mean.

The condition for the regularity of summability \((N, p_n)\), is

\[
p_n/P_n \to 0 \quad \text{and} \quad \sum_{k=0}^{n} |p_k| = O(|P_n|) \quad \text{as} \quad n \to \infty.
\]

If \((p_n) \) is a positive sequence, then the second condition is satisfied. It is also easy to see that, if \((p_n) \) is an increasing sequence, then a \((C, 1)\) summable sequence is summable \((N, p_n)\).

We shall define \(p(t) \) on the interval \((0, \infty)\) such that \(p(n) = p_n \) for \(n = 0, 1, 2, \cdots \) and that \(p(t) \) is continuous on \((0, \infty)\) and is linear in each interval \((k, k + 1)(k = 0, 1, 2, \cdots)\). We put \(P(t) = \int_{0}^{t} p(u)du \), then, \(P(n) = (1/2)p_n + p_{n+1} + \cdots + p_{n-1} + (1/2)p_n \equiv P_n \) as \(n \to \infty \) when \(P_n \to \infty \) and \(p_n/P_n \to 0 \).

T. Singh [4] has proved the following theorems:
THEOREM S1. If \((p_n)\) is a positive sequence such that \(p_n \downarrow\) and \(P_n \to \infty\) and further if

\[
\Phi(t) = \int_0^t |\varphi_x(u)| \, du = o(p(1/t)/P(1/t)) \quad \text{as } t \to 0,
\]

then the Fourier series of \(f\) is summable \((N, p_n)\) to \(f(x)\) at the point \(x\), where \(\varphi_x(u) = f(x + u) + f(x - u) - 2f(x)\).

THEOREM S2. If \((p_n)\) satisfies the conditions of Theorem S1 and

\[
\Psi(t) = \int_0^t |\psi_x(u)| \, du = o(p(1/t)/P(1/t)) \quad \text{as } t \to 0,
\]

then the conjugate Fourier series of \(f\) is summable \((N, p_n)\) to

\[-\frac{1}{\pi} \int_0^\pi \frac{\psi_x(u)}{2 \tan u/2} \, du\]

at the point \(x\) when the last integral exists, where \(\psi_x(u) = f(x + u) - f(x - u)\).

We shall prove that we can replace the condition \(p_n \downarrow\) by the more general one

\[
\int_1^n u |p'(u)| \, du = O(P_n) \quad \text{as } n \to \infty.
\]

If \((p_n)\) is monotone, then the condition (3) is equivalent to

\[
np_n = O(P_n),
\]

since

\[
\int_1^n up'(u) \, du = [up(u)]_1^n - \int_1^n p(u) \, du = np(n) - P_n + O(1).
\]

If \((p_n)\) is decreasing, then (4) is satisfied automatically. In general, condition (3) implies (4).

If the condition (4) is satisfied, then (1) implies

\[
\Phi(t) = o(t) \quad \text{as } t \to 0.
\]

2. Our first theorem is as follows.

THEOREM 1. If \((p_n)\) is a positive sequence such that \(P_n \to \infty\), (3) holds, and condition (1) is satisfied, then the Fourier series of \(f\) is summable \((N, p_n)\) to \(f(x)\) at the point \(x\).
Proof. We write \(\varphi_x(u) = \varphi(u) \) and by \(t_n(x) \) we denote the \(n \)th Nörlund mean of the Fourier series of \(f \) at the point \(x \), then

\[
 t_n(x) - f(x) = \frac{1}{2\pi P_n} \int_{-\pi}^{\pi} \frac{\varphi(t)}{t} \left(\sum_{k=0}^{n} p_{n-k} \sin (k + 1/2)t \right) dt
\]

\[
 = \frac{1}{2\pi P_n} \int_{0}^{\pi} \frac{\varphi(t)}{2\sin t/2} L_n(t) dt
\]

\[
 = \frac{1}{2\pi P_n} \left(\int_{0}^{\pi} + \int_{\pi}^{2\pi} \right) = \frac{1}{2\pi} (I + J) .
\]

By (5),

\[
|I| \leq \frac{A}{P_n} \int_{0}^{\pi} \frac{\varphi(t)}{t} \left(\sum_{k=0}^{n} p_{n-k} \cdot k t \right) dt
\]

\[
\leq A \int_{0}^{\pi} |\varphi(t)| dt = o(1) .
\]

We write

\[
|L_n(t)| = \left| \sum_{k=0}^{n} p_k \sin (n - k + 1/2)t \right|
\]

\[
\leq \sum_{k=0}^{(n-1)/2} p_k + \left| \sum_{k=(n+1)/2}^{n} p_k \sin (n - k + 1/2)t \right|
\]

\[
= L'_n(t) + L''_n(t) ,
\]

then we have, by Abel's lemma,

\[
|L''_n(t)| \leq A \left\{ \frac{p([1/2])}{t} + \frac{p(n)}{t} + \frac{1}{t} \int_{1/2}^{n} |p'(u)| du \right\} .
\]

Therefore

\[
|J| = \left| \frac{1}{P_n} \int_{0}^{\pi} \frac{\varphi(t)}{2\sin t/2} L_n(t) dt \right|
\]

\[
\leq \frac{A}{P_n} \left\{ \int_{0}^{\pi} \frac{|\varphi(t)|}{t} L'_n(t) dt + \int_{0}^{\pi} \frac{|\varphi(t)|}{t} L''_n(t) dt \right\}
\]

\[
= \frac{A}{P_n} (J_1 + J_2) ,
\]

where

\[
|J_1| \leq \int_{0}^{\pi} \frac{|\varphi(t)|}{t} P(1/t) dt \leq \left[\frac{\varphi(t)}{t} P(1/t) \right]_{1/n}
\]

\[
+ \int_{1/n}^{\pi} \frac{\varphi(t)}{t^2} P(1/t) dt + \int_{1/n}^{\pi} \frac{\varphi(t)}{t} \frac{p(1/t)}{t^2} dt
\]

\[
= o(P_n) + o(1) \int_{1/n}^{\pi} \frac{p(1/t)}{t^2} dt + o(1) \int_{1/n}^{\pi} \frac{p(1/t)}{t^2} dt
\]

\[
= o(P_n)
\]
Thus we get \(J = o(1) \) and then we have proved the theorem.

3. **Theorem 2.** If \((p_n) \) is a positive sequence satisfying the conditions in Theorem 1 and

\[
\psi(t) = \int_{-\infty}^{\infty} \psi(u) \, du = o\left(\frac{p(1/t)}{P(1/t)}\right) \quad \text{as} \quad t \to 0 ,
\]

then the conjugate Fourier series of \(f \) is summable \((N, p_n) \) to

\[
-\frac{1}{\pi} \lim_{n \to \infty} \int_{\frac{1}{2}n}^{\frac{1}{2}(n+1)} \frac{\psi_s(t)}{2 \tan t/2} \, dt
\]

when the last limit exists.

Proof. Let \(\psi_s(t) = \psi(t) \) and \(\tilde{r}_n(x) \) be the \(n \)th \((N, p_n) \) mean of the conjugate Fourier series of \(f \), then

\[
\tilde{r}_n(x) = -\left(-\frac{1}{\pi} \int_{\frac{1}{2}n}^{\frac{1}{2}(n+1)} \frac{\psi_s(t)}{2 \tan t/2} \, dt \right)
\]

\[
= -\frac{1}{2\pi P_n} \int_{\frac{1}{2}n}^{\frac{1}{2}(n+1)} \frac{\psi_s(t)}{\sin t/2} \left(\sum_{k=0}^{n} \left(\cos \frac{1}{2} t - \cos \left(k + \frac{1}{2} \right) t \right) \right) dt
\]

\[
+ \frac{1}{2\pi P_n} \int_{\frac{1}{2}n}^{\frac{1}{2}(n+1)} \frac{\psi(t)}{\sin t/2} \left(\sum_{k=0}^{n} p_{n-k} \cos \left(k + \frac{1}{2} \right) t \right) dt.
\]

Applying the method of proof of Theorem 1 to above integrals, we obtain the theorem.
PART II.

4. Let \((t_n)\) be the sequence of Nörlund means of the series \(\sum a_n\). If \(\sum |t_n - t_{n-1}| < \infty\), then the series \(\sum a_n\) is called to be summable \(|N, p_n|\) or absolutely summable \((N, p_n)\).

L. McFadden [6] proved the following theorem.

THEOREM M. Let \((p_n)\) be a nonnegative, decreasing and convex sequence tending to zero such that \(\sum P_n^2 < \infty\). If \(f \in \text{Lip} \alpha(0 < \alpha < 1)\) and

\[
\sum_{n=1}^{\infty} \frac{1}{n^{\alpha+1/2}P_n} < \infty,
\]

then the Fourier series of \(f\) is \(|N, p_n|\) summable.

This was generalized in the following form by S. L. Lai [3]:

THEOREM L. Let \((p_n)\) be a nonnegative, decreasing and convex sequence tending to zero such that \(\sum P_n^2 < \infty\). If the continuity modulus \(\omega(t) = \omega(t; f)\) of \(f\) satisfies the conditions

\[
\sum_{n=1}^{\infty} \frac{\omega(1/n^\delta)}{n} < \infty \quad (0 < \delta < 1)
\]

and

\[
\sum_{n=1}^{\infty} \frac{\omega(1/n)}{n^{1/3}P_n} < \infty,
\]

then the Fourier series of \(f\) is \(|N, p_n|\) summable.

We shall prove the following theorem:

THEOREM 3. Let \(2 \geq p > 1, 1/p + 1/q = 1\) and let \((p_n)\) be a positive, decreasing and convex sequence tending to zero. If

\[
\sum_{n=1}^{\infty} \frac{p_n^2n^{p-2}}{m^2(\omega(1/m))^{p-1}} < A
\]

and

\[
\sum_{n=1}^{\infty} \frac{\omega(1/n)}{n^{1/3}P_n} < \infty
\]

where \(\omega(\delta)\) is the continuity modulus of \(f\), and further if

\[
\sum_{n=1}^{\infty} \frac{1}{m^2(\omega(1/m))^{p-1}} \leq \frac{A}{(n\omega(1/n))^{p-1}}
\]
(or more specially, if \(u^{-\omega(u)} \downarrow \) as \(u \uparrow \) for a positive \(\delta < 1 \), then the Fourier series of \(f \) is \(|N, p_n| \) summable.

If \((p_n)\) decreases monotonically then (9) is equivalent to

\[
\xi_1(x) = \sum_{n=1}^{\infty} p_n \cos nx \quad \text{and} \quad \xi_2(x) = \sum_{n=1}^{\infty} p_n \sin nx
\]

belong to \(L^p \).

From (9) we have

\[
P_n = \sum_{k=1}^{n} p_k = \sum_{k=1}^{n} p_k^{k^{1-2/p}} \cdot k^{3/p-1} \\
\leq \left(\sum_{k=1}^{n} p_k^{k^{2-2/p}} \right)^{1/p} \left(\sum_{k=1}^{n} k^{3/p-1} \right)^{1/q} \leq An^{1/p}
\]

and then

\[
\sum_{n=1}^{\infty} \frac{\omega(1/n)}{n} = \sum_{n=1}^{\infty} \frac{\omega(1/n)}{n^{1/q} \cdot n^{1/p}} \leq A \sum_{n=1}^{\infty} \frac{\omega(1/n)}{n^{1/q} \cdot p_n} < \infty .
\]

Therefore, under the condition (9), the condition (10) is stronger than (11). If \(p \) decreases from 2, then (9) becomes weaker but (10) becomes stronger.

In the case \(p = 1 \), we have the following.

Theorem 4. Let \((p_n)\) be a decreasing and convex sequence tending to zero, such that

\[
\sum_{n=1}^{\infty} \frac{p_n}{n} < \infty
\]

and

\[
\sum_{n=k}^{\infty} \frac{1}{nP_n} \leq \frac{A}{P_h} .
\]

If \(f \) has the continuity modulus \(\omega(\delta) \) such that

\[
\sum_{n=1}^{\infty} \frac{\omega(1/n)}{P_n} < \infty ,
\]

then the Fourier series of \(f \) is summable \(|N, p_n| \).

It is known ([7], Chap. V, § 1) that if \((p_n)\) is a decreasing and convex sequence tending to zero, then \(\xi_1(x) \) is integrable and that if \((p_n)\) is decreasing and satisfies the condition (12), then \(\xi_2(x) \) is integrable. We have also
\[P_n = \sum_{k=1}^{\infty} p_k = \sum_{k=1}^{\infty} \left(\frac{p_k}{k} \right) k \leq An , \]

and then we have \(\sum \omega(1/n)/n < \infty \), i.e., (11) holds also in this case.

5. For the proof of Theorem 3, we use the following lemmas.

Lemma 1. ([5]) If \((p_n) \) is a positive and decreasing sequence, then

\[\left| \sum_{k=a}^{b} p_k e^{(n-k)t} \right| \leq AP(1/t) \]

for any \(a \) and \(b > a \) and for any integer \(n \).

Lemma 2. ([6]) If \((p_n) \) is a positive and decreasing sequence and \(\xi(t) = \sum_{k=0}^{\infty} p_k e^{ikt} \), then

\[|\xi(x + 2t) - \xi(x)| \leq A \frac{t}{x} P\left(\frac{1}{t} \right) \]

for all \(x \in (t, \pi) \).

Lemma 3. ([2] and [1]) If \(\lambda(t) \) is a positive increasing function on \((1, \infty) \) and \(f \in L^p \) \((1 < p \leq 2) \), then

\[\frac{1}{\lambda(2n)} \left(\sum_{n=1}^{\infty} \rho_n \right)^{1/p} \]

\[\leq A \int_0^1 \frac{dt}{t^{\lambda(1/t)}} \left(\int_0^{2\pi} |f(x + t) - f(x - t)|^p dx \right)^{1/p} \]

where \(\rho_m = a_m^2 + b_m^2 \), \(a_m \) and \(b_m \) being the \(m \)th Fourier coefficients of \(f \) and \(1/p + 1/q = 1 \).

6. We shall now prove Theorem 3. By the definition, we have

\[t_n - t_{n-1} = \frac{1}{\pi} \int_0^{\pi} \varphi(t) \left\{ \sum_{k=1}^{n} \left(\frac{P_{n-k} - P_{n-k-1}}{P_n} \right) D_k(t) \right\} dt \]

\[= \frac{1}{\pi} \int_0^{\pi} \varphi(t) \left\{ \sum_{k=1}^{n} \left(\frac{P_{n-k}}{P_n} - \frac{P_{n-k-1}}{P_{n-1}} \right) \cos kt \right\} dt \]

\[= \frac{1}{\pi} \int_0^{\pi} \varphi(t) \left\{ \sum_{k=-1}^{n-1} \left(\frac{P_k}{P_n} - \frac{P_{k-1}}{P_{n-1}} \right) \cos (n - k)t \right\} dt \]

\[= \frac{1}{\pi} \frac{1}{P_n P_{n-1}} \int_0^{\pi} \varphi(t) \left\{ \sum_{k=-1}^{n-1} (p_k P_n - p_n P_k) \cos (n - k)t \right\} dt \]

where \(p_{-1} = P_{-1} = 0 \), and then
\[
\pi \left| t_n - t_{n-1} \right| \leq \frac{1}{P_{n-1}} \left| \int_0^\pi \varphi(t) \left(\sum_{k=0}^\infty p_k \cos(n-k)t \right) dt \right| \\
+ \frac{1}{P_{n-1}} \left| \int_0^{1/\alpha} \varphi(t) \left(\sum_{k=\alpha}^\infty p_k \cos(n-k)t \right) dt \right| \\
+ \frac{P_{n-1}}{P_n P_{n-1}} \left| \int_0^{1/\alpha} \varphi(t) \left(\sum_{k=0}^{n-1} P_k \cos(n-k)t \right) dt \right| \\
+ \frac{1}{P_{n-1}} \int_0^\pi \varphi(t) \left(\sum_{k=0}^\infty p_k \cos(n-k)t \right) dt \\
+ \frac{P_{n-1}}{P_n} \int_0^{1/\alpha} \varphi(t) \left(\sum_{k=0}^{n-1} P_k \cos(n-k)t \right) dt \\
= I_n + J_n + K_n + L_n ,
\]

following McFadden [6]. We shall begin to estimate \(I_n \).

\[
I_n \leq \frac{1}{P_{n-1}} \left\{ \left| \int_0^\pi \varphi(t) \left(\sum_{k=0}^\infty p_k \cos kt \right) \cos nt dt \right| \\
+ \left| \int_0^\pi \varphi(t) \left(\sum_{k=0}^\infty p_k \sin kt \right) \sin nt dt \right| \right\} \\
= \frac{1}{P_{n-1}} \left\{ \left| \int_0^\pi \varphi(t) \xi_1(t) \cos nt dt \right| \\
+ \left| \int_0^\pi \varphi(t) \xi_2(t) \sin nt dt \right| \right\} \\
= I_{n,1} + I_{n,2} .
\]

Let

\[
A_n = \int_0^\pi \varphi(t) \xi_1(t) \cos nt dt \quad \text{and} \quad E_n = \left(\sum_{m=n}^\infty |A_m|^q \right)^{1/q} ,
\]

then

\[
\mathcal{J} = \sum_{n=2}^\infty |I_{n,1}| = \sum_{n=2}^\infty \frac{|A_n|}{P_{n-1}} = \sum_{j=1}^{2j+1-1} \frac{2j+1-1}{P_{n-1}} \frac{|A_n|}{P_{n-1}} \\
\leq \sum_{j=1}^\infty \left(\sum_{n=2j}^{2j+1-1} |A_n|^q \right)^{1/q} \left(\sum_{n=2j}^{2j+1-1} \frac{1}{P_{n-1}} \right)^{1/p} \\
\leq \sum_{j=1}^\infty E_{2j} \left(\sum_{n=2j}^{2j+1-1} \frac{1}{P_{n-1}} \right)^{1/p} \\
\leq 4 \sum_{j=1}^\infty E_{2j} \left(\sum_{n=2j}^{2j+1-1} \frac{1}{P_{n-1}} \right)^{1/p} \\
\leq 4 \sum_{n=1}^\infty \frac{E_n}{n} \left(\sum_{m=2n}^{4n-1} \frac{1}{P_{m-1}} \right)^{1/p} \leq A \sum_{n=1}^\infty \frac{E_n}{n^{1/p}} .
\]

If we put \(\lambda(n) = n^{1/q} P_n \), then \(\lambda(n) \uparrow \infty \) as \(n \) increases. By Lemma 3, we get
\[\mathcal{S} \leq A \int_0^1 \frac{dt}{t^{1+1/p}} P(1/t) \left(\int_{-\pi}^\pi \Delta_1(p \cdot \xi) \, dx \right)^{1/p} \]
\[\leq A \int_0^1 \frac{dt}{t^{1+1/p}} P(1/t) \left(\int_{-\pi}^\pi \Delta_i(p \cdot \xi) \, dx \right)^{1/p} \]
where

\[\Delta_i(p \cdot \xi) = \varphi(x + t) \xi_i(x + t) - \varphi(x - t) \xi_i(x - t) \]
\[= \xi_i(x + t)[\varphi(x + t) - \varphi(x - t)] + \varphi(x - t)[\xi_i(x + t) - \xi_i(x - t)] \]
\[= \xi_i(x + t) \Delta_i \varphi + \varphi(x - t) \Delta_i \xi_i , \]

and then

\[\mathcal{S} \leq A \int_0^1 \frac{dt}{t^{1+1/p}} P(1/t) \left(\int_{-\pi}^\pi \xi_i(x + t) \Delta_i \varphi \, dx \right)^{1/p} \]
\[+ A \int_0^1 \frac{dt}{t^{1+1/p}} P(1/t) \left(\int_{-\pi}^\pi \varphi(x - t) \Delta_i \xi_i \, dx \right)^{1/p} \]
\[= \mathcal{S}' + \mathcal{S}'' . \]

By (9) and (10), we have

\[\mathcal{S}' \leq A \int_0^1 \frac{\omega(t) dt}{t^{1+1/p}} P(1/t) \leq A \int_1^\infty \frac{\omega(1/t)}{u^{1/q} P(u)} \, du \]
\[\leq A \sum_{n=1}^\infty \frac{\omega(1/n)}{n^{1/q} P_n} \leq A \]

and, by Lemma 2 and (11),

\[\mathcal{S}'' \leq A + \int_0^1 \frac{dt}{t^{1+1/p}} P(1/t) \left(\int_{x=t}^\pi \omega(x) \left(\xi_i(x + 2t) - \xi_i(x) \right) \, dx \right)^{1/p} \]
\[\leq A + \int_0^1 \frac{dt}{t^{1+1/p}} P(1/t) \left(\int_{x=t}^\pi \omega(x) \left(\frac{1}{x} P(\frac{1}{x}) \right) \, dx \right)^{1/p} \]
\[\leq A + \int_0^1 \frac{dt}{t^{1+1/p}} \left(\int_{x=t}^\pi \omega(x) \, dx \right)^{1/p} \]
\[\leq A + \int_1^\infty \frac{\omega(1/u)}{u^{1/q}} \frac{1}{u \omega(1/u)^{1/r}} \left(\int_{v=1/u}^\infty \omega(1/v)^p \, dv \right)^{1/p} \, du \]
\[\leq A + \left(\int_1^\infty \frac{\omega(1/u)}{u} \, du \right)^{1/q} \left(\int_1^\infty \frac{du}{u \omega(1/u)^{p/q}} \right)^{1/p} \]
\[\leq A + \left(\int_1^\infty \frac{\omega(1/u)^p}{v^{p-1}} \, dv \right)^{1/p} \]
\[\leq A + \left(\int_1^\infty \frac{\omega(1/v)}{v} \, dv \right)^{1/p} \leq A . \]

Thus we have proved that \(\mathcal{S} = \sum_{n=2}^\infty |I_{n,1}| < \infty \). Similarly we can
prove that \(\sum_{n=1}^{\infty} |I_{n,2}| < \infty \), and therefore \(\sum_{n=1}^{\infty} I_n < \infty \).

Secondly, we shall estimate the sum \(\sum_{n=1}^{\infty} J_n \). Since \(\sum_{k=1}^{n} p_k \cos(k-n)x \) is a nonnegative function, we have

\[
\sum_{n=1}^{\infty} J_n \leq \sum_{n=1}^{\infty} \frac{\omega(1/n)}{P_{n-1}} \left(\sum_{k=n}^{\infty} P_k \cos(k-n) \right) dt
\]

\[
\leq \sum_{n=1}^{\infty} \frac{\omega(1/n)}{P_{n-1}} \left(p_n \frac{n}{n} + \sum_{k=n+1}^{\infty} \frac{p_k}{k-n} \sin \frac{k-n}{n} \right)
\]

\[
\leq A + \sum_{n=1}^{\infty} \frac{\omega(1/n)}{P_{n-1}} p_n \leq \sum_{n=1}^{\infty} \frac{\omega(1/n)}{n} + A \leq A,
\]

since \(\sum_{n=1}^{\infty} (\sin kx/k) \) is uniformly bounded.

Thirdly,

\[
\sum_{n=1}^{\infty} K_n \leq \sum_{n=1}^{\infty} \frac{p_n}{P_n P_{n-1}} \frac{\omega(1/n)}{n} \sum_{k=0}^{n-1} P_k
\]

\[
\leq A \sum_{k=1}^{\infty} P_k \sum_{n=k+1}^{\infty} \frac{p_n}{P_n P_{n-1}} \frac{\omega(1/n)}{n}
\]

\[
\leq A \sum_{k=1}^{\infty} \frac{p_k \omega(1/k)}{k} \sum_{n=k+1}^{\infty} \left(\frac{1}{P_{n-1}} - \frac{1}{P_n} \right)
\]

\[
\leq A \sum_{k=1}^{\infty} \frac{\omega(1/k)}{k} \leq A.
\]

Finally,

\[
\sum_{k=n}^{\infty} p_k \cos(k-n)t + \frac{p_n}{P_n} \sum_{k=0}^{n-1} P_k \cos(n-k)t
\]

\[
\left\{ \frac{p_n}{2} + \sum_{k=n}^{\infty} (p_k - p_{k+1}) \frac{\sin(n-k+1/2)t}{2 \sin t/2} \right\}
\]

\[
+ \left\{ \sum_{k=0}^{n-1} p_k \frac{\sin(n-k+1/2)t}{2 \sin t/2} - \frac{1}{2} P_{n-1} \right\}
\]

and then

\[
L_n \leq \frac{1}{P_{n-1}} \left| \int_{\Omega/n}^{\infty} \frac{\phi(t)}{2 \sin t/2} \left(\sum_{k=n}^{\infty} (p_k - p_{k+1}) \sin(n-k+1/2)t \right) dt \right|
\]

\[
+ \frac{p_n}{P_n P_{n-1}} \left| \int_{\Omega/n}^{\infty} \frac{\phi(t)}{2 \sin t/2} \left(\sum_{k=0}^{n-1} p_k \sin(n-k+1/2)t \right) dt \right|
\]

\[
+ \frac{1}{2} \left(\frac{P_{n-1}}{P_n} - \frac{P_n}{P_{n-1}} \right) \int_{\Omega/n}^{\infty} \phi(t) dt
\]

\[
= L_n + L_n' + L_n'',
\]

as in McFadden [6]. Now
\[\sum_{n=1}^{\infty} L_n' \leq \sum_{n=1}^{\infty} \frac{p_n - p_{n+1}}{P_{n+1}} \int_{1/2}^{\pi} \frac{\omega(t)}{t^2} \, dt \]

\[\leq \sum_{n=1}^{\infty} \frac{p_n - p_{n+1}}{P_{n+1}} \sum_{k=1}^{n} \int_{1/(k+1)}^{1/k} \frac{\omega(t)}{t^2} \, dt + A \]

\[\leq \sum_{k=1}^{\infty} \int_{1/(k+1)}^{1/k} \frac{\omega(t)}{t^2} \, dt \sum_{n=k}^{\infty} \frac{p_n - p_{n+1}}{P_{n+1}} + A \]

\[\leq \sum_{k=1}^{\infty} \int_{1/(k+1)}^{1/k} \frac{\omega(t)}{t^2} \, dt \frac{p(1/t)}{P(1/t)} + A \leq A \sum_{k=1}^{\infty} \frac{\omega(1/n)p_n}{P_n} + A \]

\[\leq A \sum_{k=1}^{\infty} \frac{\omega(1/n)}{n} + A \leq A, \]

\[\sum_{n=1}^{\infty} L_n'' \leq \sum_{n=1}^{\infty} \frac{p_n}{P_n P_{n-1}} \sum_{k=1}^{n} \int_{1/(k+1)}^{1/k} \frac{\omega(t)}{t^2} \, dt \]

\[\leq \sum_{k=1}^{\infty} \int_{1/(k+1)}^{1/k} \frac{\omega(t)}{t^2} \, dt \sum_{n=k}^{\infty} \frac{p_n}{P_n P_{n-1}} + A \]

\[\leq \int_{0}^{1} \frac{\omega(t)}{t^2} \, dt + A \leq \sum_{n=1}^{\infty} \frac{\omega(1/n)}{n} + A \leq A \]

and

\[\sum_{n=1}^{\infty} L_n'' \leq A \sum_{n=1}^{\infty} \frac{p_n^2}{P_n P_{n-1}} \leq A \sum_{n=1}^{\infty} \frac{1}{n^2} \leq A. \]

Collecting above estimations, we get \(\sum_{n=1}^{\infty} | t_n - t_{n-1} | < \infty. \)

7. We shall now prove Theorem 4. We start from (15). First,

\[I_n = \frac{1}{P_{n-1}} \left| \int_{0}^{\pi} \varphi(t) \left(\sum_{k=0}^{\infty} p_k \cos (n - k)t \right) \, dt \right| \]

\[\leq \frac{1}{P_{n-1}} \left\{ \left| \int_{0}^{\pi} \varphi(t) \xi_1(t) \cos nt \, dt \right| + \left| \int_{0}^{\pi} \varphi(t) \xi_2(t) \cos nt \, dt \right| \right\} \]

\[= I_{n,1} + I_{n,2}. \]

Hence

\[\sum_{n=1}^{\infty} I_{n,1} \leq \sum_{n=1}^{\infty} \frac{1}{P_{n-1}} \int_{-\pi}^{\pi} | \varphi(t + \pi/2n) \xi_1(t + \pi/2n) - \varphi(t) \xi_1(t - \pi/2n) | \, dt \]

\[\leq \sum_{n=1}^{\infty} \frac{1}{P_{n-1}} \int_{-\pi}^{\pi} \xi_1(t + \pi/2n) | - \varphi(t + \pi/2n) - \varphi(t - \pi/2n) | \, dt \]

\[+ \sum_{n=1}^{\infty} \frac{1}{P_{n-1}} \int_{-\pi}^{\pi} | \varphi(t - \pi/2n) | \xi_1(t + \pi/2n) - \xi_1(t - \pi/2n) | \, dt \]

\[= \mathcal{S}_1 + \mathcal{S}_2, \]

where, since \(\xi_1 \) is integrable and \(| \varphi(t + \pi/2n) - \varphi(t - \pi/2n) | \leq A \omega(1/n), \)
\[\mathcal{I}_1 \leq A \sum_{n=1}^{\infty} \frac{\omega(1/n)}{P_{n-1}} < \infty \]

by the condition (14) and, since

\[\xi(x) = \sum_{\nu=0}^{\infty} (\nu + 1) \partial^p \nu \cdot K_{\nu}(x), \]

we get

\[\mathcal{I}_2 \leq \sum_{n=1}^{\infty} \frac{1}{P_{n-1}} \left(\int_{\pi/n}^{\pi} \omega(x) | \xi(x + \pi/n) - \xi(x) | dx + A \right) \]

\[\leq \sum_{n=1}^{\infty} \frac{1}{P_{n-1}} \left(\int_{\pi/n}^{\pi} \omega(x) | K_{\nu}(x + \pi/n) - K_{\nu}(x) | dx + A \right) \]

\[\leq \sum_{n=1}^{\infty} \frac{1}{P_{n-1}} \left(\sum_{\nu=0}^{n} (\nu + 1) \partial^p \nu \cdot K_{\nu} + \sum_{\nu=n+1}^{\infty} (\nu + 1) \partial^p \nu \right) \]

\[\times \left(\int_{\pi/n}^{\pi} \omega(x) | K_{\nu}(x + \pi/n) - K_{\nu}(x) | dx + A \right) \]

\[= \mathcal{I}_2' + \mathcal{I}_2'' + A. \]

It is well known that

\[|K_{\nu}(x)| \leq A \nu^2 \text{ and } |K_{\nu}(x)| \leq A/n^2 \]

and then

\[\int_{0}^{\pi/\nu} |K_{\nu}(x + \pi/n) - K_{\nu}(x)| dx \leq \frac{\pi}{n} A \nu^2 \cdot \frac{\pi}{\nu} \leq A \nu/n, \]

\[|K_{\nu}(x + \pi/n) - K_{\nu}(x)| \leq A/n^2 \text{ in } (\pi/\nu, \pi). \]

Therefore,

\[\mathcal{I}_2' \leq \sum_{n=1}^{\infty} \frac{1}{P_{n-1}} \left(\sum_{\nu=0}^{n} (\nu + 1) \partial^p \nu \left(\int_{\pi/n}^{\pi/\nu} + \int_{\pi/\nu}^{\pi} \right) \omega(x) | K_{\nu}(x + \pi/n) - K_{\nu}(x) | dx \right) \]

\[\leq A \sum_{n=1}^{\infty} \frac{1}{n P_{n-1}} \left(\sum_{\nu=0}^{n} (\nu + 1) \partial^p \nu \frac{1}{k^2} \omega \left(\frac{1}{k} \right) + \sum_{\nu=n+1}^{\infty} (\nu + 1) \partial^p \nu \frac{1}{k^2} \omega \left(\frac{1}{k} \right) \right) \]

\[\leq A \sum_{n=1}^{\infty} \frac{1}{n P_{n-1}} \left(\sum_{k=1}^{n} \frac{1}{k^2} \omega \left(\frac{1}{k} \right) \cdot k P_k + \sum_{k=n+1}^{\infty} \omega \left(\frac{1}{k} \right) (k(p_k - p_{k+1}) + p_{k+1}) \right) \]

\[\leq A \sum_{k=1}^{\infty} \frac{1}{k} \omega \left(\frac{1}{k} \right) P_k \sum_{n=k}^{\infty} \frac{1}{n P_{n-1}} \]

\[+ A \sum_{k=1}^{\infty} \omega \left(\frac{1}{k} \right) \left(k(p_k - p_{k+1}) + p_{k+1} \right) \sum_{n=k}^{\infty} \frac{1}{n P_{n-1}} \]

\[\leq A \sum_{k=1}^{\infty} \frac{1}{k} \omega \left(\frac{1}{k} \right) + A \sum_{k=1}^{\infty} \omega \left(\frac{1}{k} \right) \left(\frac{k(p_k - p_{k+1})}{p_k} + \frac{p_{k+1}}{P_k} \right) \]

\[\leq A \sum_{k=1}^{\infty} \frac{1}{k} \omega \left(\frac{1}{k} \right). \]

\(^1\) \(\partial^p \nu = p_{\nu - 2}p_{\nu + 1} + p_{\nu + 2} \) and \(K_{\nu} \) is the \(\nu \)th Fejér kernel.
by the condition (11) and the relation ([6], p. 183)
\[k(p_k - p_{k+1})/P_k \leq A/k. \]

Further,
\[
J''_s \leq A \sum_{n=1}^{\infty} \frac{1}{nP_{n-1}} \sum_{k=1}^{n} \omega(1/k) \sum_{k=n}^{\infty} (n + 2)(p_{n+1} - p_{n+2}) + p_{n+2}/nP_{n-1}.
\]
\[\leq A \sum_{k=1}^{\infty} \frac{1}{k} \omega(1/k) < \infty. \]

Thus we have proved that \(\sum I_{s,1} < \infty. \) The estimation of \(I_{s,2} \) is similar to that of \(I_{s,1} \) and thus \(\sum I_n < \infty. \)

Now, \(\sum_{k=n}^{\infty} p_k \cos (k - n)x \) is a positive function and then
\[
\sum_{s=1}^{\infty} J_s \leq \frac{\omega(1/n)}{P_{n-1}} \left[t \left(\sum_{k=n}^{\infty} p_k \cos (k - n)t \right) dt \right].
\]
\[\leq A \sum_{n=1}^{\infty} \frac{\omega(1/n)}{n} < \infty. \]

Convergence of \(\sum_{s=1}^{\infty} K_s \) and \(\sum_{n=1}^{\infty} L_n \) is proved as in the proof of Theorem 3. Thus we have established Theorem 4.

References

Received September 12, 1966.
Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California 90024.

Each author of each article receives 50 reprints free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners of publishers and have no responsibility for its content or policies.
Seymour Bachmuth and Horace Yomishi Mochizuki, *Kostrikin’s theorem on Engel groups of prime power exponent* .. 197
John H. E. Cohn, *Some quartic Diophantine equations* 233
H. P. Dikshit, *Absolute \((C, 1) \cdot (N, p_n)\) summability of a Fourier series and its conjugate series* .. 245
Raouf Doss, *On measures with small transforms* 257
Charles L. Fefferman, *\(L_p\) spaces over finitely additive measures* 265
Le Baron O. Ferguson, *Uniform approximation by polynomials with integral coefficients. II* .. 273
Takashi Ito and Thomas I. Seidman, *Bounded generators of linear spaces* ... 283
Masako Izumi and Shin-ichi Izumi, *Nörlund summability of Fourier series* .. 289
Donald Gordon James, *On Witt’s theorem for unimodular quadratic forms* ... 295
J. L. Kelley and Edwin Spanier, *Euler characteristics* 303
Carl W. Kohls and Lawrence James Lardy, *Some ring extensions with matrix representations* .. 317
Ray Mines, III, *A family of functors defined on generalized primary groups* .. 325
Louise Arakelian Raphael, *A characterization of integral operators on the space of Borel measurable functions bounded with respect to a weight function* ... 333
Charles Albert Ryavec, *The addition of residue classes modulo \(n\) 341
H. M. (Hari Mohan) Srivastava, *Fractional integration and inversion formulae associated with the generalized Whittaker transform* 349
Edgar Lee Stout, *The second Cousin problem with bounded data* 357
Donald Curtis Taylor, *A generalized Fatou theorem for Banach algebras* .. 361
Bui An Ton, *Boundary value problems for elliptic convolution equations of Wiener-Hopf type in a bounded region* 369
Philip C. Tonne, *Bounded series and Hausdorff matrices for absolutely convergent sequences* ... 373