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In this paper we give an integral generalization of Witt’s
theorem for quadratic forms, If J and K are sublattices of
a unimodular lattice L, we investigate conditions under which
an isometry from J to K will extend to an isometry of L.

Let L be a free Z-module (that is a lattice) of finite rank and
@: L x L —-Z a unimodular symmetric bilinear form on L. We
denote @(c, 8) by a-8, so that a«-8 = B8-a. A bijective linear
mapping ¢:J-— K, where J and K are sublattices of L, is called an
tsometry if p(a)-p(B) = a- B for a, BeJ. Witt’s theorem concerns
the extension of such an isometry to an isometry of L (onto L).
The set of isometries of L form the orthogonal group O(L, Z) of L.

Vectors &« and B in L are called orthogonal if a-8 =0; o
denotes «-«, the morm of «. Any nonzero vector e L may be
written as « = dB with feL,deZ maximal. If d =1, a is called
primitive; d is the divisor of . It is clear that an isometry ¢ of
L must leave invariant the divisors of all vectors; that is, a and
@(@) have the same divisor.

A sublattice U of L is called primitive if all the vectors of U
which are “primitive in U” are also “primitive in L”. In particular
the basis vectors of U must be primitive (in L). In considering the
extension of an isometry ¢:J— K to an isometry of L, it clearly
suffices to consider the case where J and K are primitive sublattices.

A primitive vector ae L is called characteristic if a-8 =
(mod 2) for all Be L. Again it is clear that an isometry must map
a characteristic vector into a characteristic vector.

Let r(L) and s(L) denote the rank and signature of I.. Then we
shall prove the following.

THEOREM. Let ¢:J-— K be an isometry between the primitive
sublattices J and K of L, where

(1) (L) — [s(L)| z 2(r(J) + 1) .

Then ¢ extends to an isometry of L if and only if:

& a characteristic vector = @(a) a characteristic vector (for each
o n J).

This result is a generalization of Wall [1]; in fact we shall use
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similar arguments and many of the results contained in Wall’s paper.

1. Let {a, a,, ---,a,> denote the lattice spanned by the vectors
@, a, -+, &, If L is the orthogonal direct sum of the sublattices
Uand V we write L = U@ V. In this case we say U (or V) splits
L. U*‘ will denote the orthogonal complement of U.

We show first how to reduce the proof to the case where
s(L) = 0. Let s(L) =s. We consider the case s >0 (s <0 is similar).
Enlarge the lattice L to

LI

I

LPL>D -+ DL
, 8o that s(L/) = 0. Let

J =JDLLy>D - DLy

where (2= —1,1<i1<s

and

K =KQLULp>D - DL

J’ and K’ are primitive sublattices of L’. Furthermore if L satisfies

(1)
r(L) — s(I') = n(L) + s = 2(r(J") + 1) .

Also, extending ¢ to J' by () = {;, we see immediately that aeJ’
is characteristic if and only if ¢(a)e K’ is characteristic. (Notice
that if a e L’ is characteristic, all the coefficients of the {; in @ must
be odd.) If, therefore, we establish the theorem when the signature
is zero, we know ¢ extends to an isometry of L’. Restricting back
to L will establish the general result.

From now on we assume s(L) = 0. Let H denote a hyperbolic
plane of the form <\, y£> where M = ¢ =0 and \-p =1; and let 1
denote a sublattice of the form (&, o) = <& P& — p> where & =
£-p=1and 0*=0. Then it is well known that any unimodular
lattice of zero signature is either an orthogonal direct sum of H's
(if improper) or an orthogonal direct sum of I’'s (if proper); see
Wall {1, Th. 5]. We might also mention that if L is improper there
are no primitive characteristic vectors.

Before proving the theorem we give an example to show the
necessity of the restriction (1) we have placed on the ranks of L
and J.

ExAMPLE. Let

L :Hl@HzeB“‘@Hn
where H; = Oy, >, 1 <7 < n. Take
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J =y v Ny N+ UV
and
K = <}\'17 ty x'n-—ly %7\,” + ’I)‘U">

where « and v are integers (# =*1) such that (u,v) = 1. We shall
show that the isometry @:J— K defined by
P) =N, 1=sismn-1,

(2)
(N, + uvp,) = U\, + VYU, ,

does not extend to an isometry of L. For if it did, (2) and the
conditions \;-@(f,) = p(\) - p(,) = Nopt, = 0,1 <4< n — 1, would
force

q)(#n) = m17\’1 + m27\’2 + ce + xn—l)\’n—-l + x?\'n + y#n

and
P(My) = —UVEN, — UVZ N, — * o+ —UVLy_ Ny
+ u(l — v2)N, + v(1 — uY) L.
for some integers x,+--, 2, ,, %,y as yet undetermined. But o(x,)’ =

¢ = 0 implies that xy = 0; while p(\,) - p(#,) = 1 implies xv + yu = 1.
These two conditions are incompatible with our choice u, v = *+1.
Thus we need, at least, (L) > 2v(J).

We shall now proceed with the proof of the theorem. There
will be three stages in the proof.

(i) First we establish the result when L is improper. In this
case there are no characteristic vectors to consider.

(ii) Secondly, we consider L proper, but with J and K con-
taining no characteristic vectors.

(iii) Finally, we treat the general proper case.

NotATION. The following notation will be used for an isometry.
Let

L = <a1y a,, "'y_am>®U:<IBU B2y ey, Bm>@U

where a;-a; = B;-B;, 1 < 4,5 < m. Then

0: <C(1, Ay * 00y am>_”<Bly Bzy crcy Bm>

is the isometry of L defined by 6(a;) = B;, 1 <1 < m, with 6 restricted
to U being the identity map.

Many of the isometries will be used repeatedly. We will label
them 4,, 0,, - - - as they are defined so that we may refer back to them.
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2. Throughout this section we let L be of the form
L = <7\’1’ ﬂ1> @ s @<7\’m #%>

where each {\; ¢t;> is a hyperbolic plane. The following lemma
follows immediately from Wall [1, Th. 1].

LEMMA 1. Let (L) = 4. For each primitive vector & € L there
exists an isometry ¥ € o(L, Z) such that

P(@) =N + ‘;—azﬂl .
As a first step in the proof of the theorem we show there exists

an isometry 4 €o(L, Z) such that ¥(J) =<«,, -+, @, >, Where

a, = Ny + G4y
Qy = Ayt + A+ Cafly

(3)
Ay = Aty + Aoty + vo 0 + Qpym T My + Cuflm o

We use induction on m. The case m = 1 is Lemma 1. Assume
now a,, a,, -+, @, have been constructed using an isometry +r,; that
is ¥(J) =<ay, +++, @, B,7,+-->. Adding to B linear combinations of
a,, -+, a, (if necessary) we may assume S has the form

h
B = 21 bipt; + S (@ + bigty) .

n
i=h+1

By applying Lemma 1 on E =y, )@ - @\, t,) to the
component of 8 in E (r(E) = 4 by (1)), we may assume

R
(4) B = Z{ bitt; + aNjiy + Bfthyy .

If (a,b) =1 we may obtain «,,, by using Lemma 1 on the component
aNyey + bty in E.  Otherwise we proceed as follows. We may
assume S primitive, so that (b, :--,b,,a,b) = 1. Apply the isometry
(writing k for & + 2);

,: gy 1) B gy D D -+ - B iy 1) B D,y ) —
<)\'1 — Cully M+ 1> D g — apty, P> @ - D v — @i, Ur)
D v — M et + aptty + oo+ aptt, + Colliy i) «
Then, we see, 0,(a;) = «; for 1 <7 < h, and 6,(8B) = B + bp,. Applying

Lemma 1 to the component of 6,(8) in E, namely a\,., + btty., + by,
we can transform it back to the form of (4), but now with

(bz, bsy ey bh, a, b) =1,
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Repeating this process, this time in {\,, ¢ >*, we may obtain a new
B this time with (b, ---, b,, a,b) = 1. Ultimately, we obtain a 8 with
(a, b) = 1, so that we may finish by using lemma 1 as before.

It now suffices to prove the theorem with J =<a,, .-, @,>. We
shall prove the theorem by induction on 7(J). When »(J) = 1, the
result follows from Wall (our Lemma 1). For the general case we
may assume K has the form («,, :::, a,_,, @), with ¢:J— K being
the mapping defined by o(a,) = a; for 1 = ¢ <m — 1, and

(5) pla,) =a = 7,"2__‘; (@i + Yalts) + UNp + VL,

(It suffices to consider u, + vy, by Lemma 1). It remains to find
an isometry + €o(L, Z) such that (a;) = a; for 1 <71 <m — 1, and

¥la,) = a.

We show first that we may take w = 1. Using Lemma 1, we
may assume w divides »v. Now a — X ''x,«; is primitive (since K
is a primitive lattice), so that
(6) (uyzm-—l""yzmzl):]-
where

o1 = Ymer — Ty1Cm—1
Ty ] e
(7) RBe = Yy — X0y — Xgllpg — *** — Ly Qo
2 =Y — Xl — Xy — 0 — LBy

We apply the isometry 6, again, but with & replaced by m — 1
and k(=h + 2) by m + 1. As before f,(a;) =a; for 1 <1< m — 1,
but now

01(“) =0+ flnyy .

Using Lemma 1 on uX, + v, + 2,y ID Ny 0D B Donisy fmrry, WE
may replace @ by a new a in which » divides z,. By repeating this
argument, now in {\,, ¢ >*, we can get a new wu again, this time
also dividing z,. Eventually, from (6), we may reduce w to 1.

Finally, we reduce the «,,:--,%,_, in (5), in turn to zero. Apply
the isometry

ba: oy ) D gy 1) D -+ B sy i) B Loy o) —
N = Byl M+ Bl DNy — BiGsfl,y o)
@ st @ <7\'m—1 = L1 Cim—1ms [,tm_1>
& <7\'m — BN+ BC M B lls e By Py T+ TIC M, f‘m> .

Then we have f,(a;) = a; for 1 <7< m — 1, and
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‘92(“) = (y1 + .’17101)[11 + xzxz +oeee + xm—-l)\‘m—-l
+ Ynor + Bl Wy + Ny + W

so that the coefficient of A, is now zero. By repeating this process
all the coefficients of \,,---,\,_, may be reduced to zero. But then,
using the conditions «;-a = a; -, for 1l <1< m — 1, and a* = a2, we
find that we have succeeded in mapping « into «,, while leaving «;,
1<{<m — 1, invariant. This completes the proof of the theorem
when L is improper.

3. For the rest of this paper L will be considered to be a
proper lattice with zero signature. Thus we have

L = <51, 101>@ e @<E'm (Ow>

where & =£4,-0,=1 and pi=0 for 1<+ =<n. By (1) we must
have » = 2. A primitive vector o = 3 %, (a;&; + b;0;) is characteristic
if and only if a;, = 0 (mod 2) and b, = 1 (mod 2) for each i. (We see
this by applying the condition a-B8 = £ (mod 2) with A ranging
through the basis vectors &;, o;).

LEMMA 2. A primitive vector aec L may be embedded in «a
binary sublattice B which splits L. If a is characteristic then B
is proper and B* is improper. If a 1is mot characteristic, then B
is proper if a* is odd, and B is improper if a® is even.

Proof. From Wall {1, p. 333], if a®* = 2a + 1 (and hence « is not
characteristic), we can map « into &, + ap,. Thus an isometric image
of « is contained in <&, 0.>. Apply the inverse isometry to L. This
will embed a in the inverse image of <{¢, p>. If « is not charac-
teristic and a® = 2a, then. we may map « into

B:(a‘“l)p1+51+52-

Then B-0,=1. Put {=p8—ap, so that *=0 and {-p, = 1.
Then Be H = <, p,>, a binary sublattice splitting L. Thus a may
similarly be embedded in an improper binary sublattice which splits L.

Finally, we consider the case where a is characteristic with
norm 8b. Take a splitting of L of the form

L#<5>@<77>@H2@"'€BHn

where & = —7* = 1. The vector 8 = (2b + 1)¢é + (2b — 1)1 is charac-
teristic with norm 8b. Therefore & may be mapped by an isometry
into Be<&)>@ <7D, and the result follows as before. This completes
the proof of the lemma., :
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We will now consider the case where J and K do not contain
characteristic vectors. We obtain an embedding of an isometric image
of J as close as possible to that obtained in §2. Suppose we have
already obtained +(J) =<«ay, -+, «,, B, - -+, By Where «,, -+, «;, are
of the form given in (3) and thus embedded in a sublattice

Lh = <)"1’ ;ul>@ M @<>"hy )ah>

which splits L. Assuming that &k > 3, we now show how to obtain
a,., (and as a special case «a;, to start the construction).

At least one of the three vectors £, B;, B, + B, must have even
norm. We may therefore assume, changing the basis of (J) if
necessary, that B} and B are even. Write

B; =0; +dgz;, 1<:=5k,

where 7;€ Li is primitive and o¢,e¢ L,. It is possible that the z,,
while not characteristic vectors in L, may be characteristic vectors
in Li. However, replacing £, by a linear combination of B, and 5,
if necessary, we may assume 7, at least is not characteristic in L.
(We may achieve this by eliminating a suitable basis vector o between
7, and 7,). There are two cases to consider.

Case 1. 7} even. Then by Lemma 2, 7, may be embedded in an
improper binary sublattice H, of Li. Since k = 2, we have from (1)
that the rank of (L, H)* is at least 4. Therefore, there exists
another hyperbolic plane H, such that

L:Lh@H1®HZ@U'

But now {al, e, BOS L, H B H, and we may transform 5,
into the form «,,, using the results already established for improper
lattices in § 2.

Case 2. 72=2a + 1 odd. Then since 52 is even, dir? is also
even. As in the proof of Lemma 2, 7, may be embedded in a
sublattice I = <{§, o> with 7, = ¢ + ap. Again, from (1), we know the
rank of (L, I)* is at least 4, so that we may write L in the form

L=L®IGHDU

where H = {\, pt> is a hyperbolic plane. Adding a linear combination
of a, ---, a0, to B, we may assume B, has the form

B = 2: b:pt; + d.(¢ + ap)

where (b, -+, b,,d)) = 1. The next step is to apply -isometries to
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L,pI® H that leave «,, ---,®, invariant, but change B, into a
form as above with d, =1. As in §2, we may use 6, on L, H
and Lemma 2 to achieve this. Applying 6, on L, H, we transform
B, into B, + by, so that d,r, becomes d,z, + by = d't’ (say), where
d = (d,b). If now 7'* is even we use case 1. Otherwise, as in
Lemma 2, we transform 7’ into £ + a’p, and repeat the argument,
this time introducing b,# by working in {\,, ¢#,>*. Ultimately, since
we may reduce d, to 1, we must get a form with 7z even, so that
we can use Case 1.

In this manner we may apply a succession of isometries to J
until we obtain (J) =<«,, ---, @, 8,7> where a,, -, a,_, are
embedded in an improper sublattice L,_, of L. Furthermore, we may
assume [ is even. Write 8 = ¢ + dr where ze Lj_, is primitive,
and ce L,_,. By adding a linear combination of «,,---, a,_, to B, we
may assume

(8) B =3 b+ de
and since J is primitive, we have (b,,--+,b,_,,d) = 1. 7 may or may

not be a characteristic vector in L;_,. We show first how to reduce
d to unity. By Lemma 2 7 may be embedded in a binary lattice B.
Again by (1), the rank of (L,_. B)* is at least 4, so that we may
write

L=L,,PBLHPU

where H = {\, > is a hyperbolic plane. Using ¢, on L,_,@ H and
Lemma 2, we reduce d to 1 as before., Then 7? is even.

If ¢ is not characteristic in L. _, we may use the argument of
case 1 above to transform B into a,_,. Suppose therefore r is char-
acteristic in L} _,. But we know B is not characteristic in L. In (8),
with d =1, it therefore follows that at least one of the coefficients
b; must be odd. For if they were all even, 8 would be characteristic
in L. Say b, is odd. We apply an isometry of type 6, to

<>"sv #s> @ <7\'s+1y lus+1> @ e @ <)"m—-21 ﬂm—2> @ H .

Then O,(a;) =a; for 1<i<m—2, and 6,(8) =B + b,ir. Then ¢
becomes 7 + b, which is no longer characteristic in L. _,. Therefore
B may always be transformed into the form «,_, as before.

It therefore suffices to consider the case J =<ay, ---, @,_, V).
We treat K = ¢(J) in a similar manner. Since the norms of the
vectors ¢(a)), + -+, p(a,_,) are even, and they are not characteristic

vectors, they may be embedded in an improper sublattice L!,_, which
splits L. Adding hyperbolic planes to L,_, and L,_, (they exist
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since the rank of L) , is at least 4) and applying our theorem,
already established for the improper case, we may assume o(«;) = a;
for 1<7<m—1. Thus it suffices to consider K of the form
{a,, +++,a,_,,0>. There are now two cases depending on whether
v? = 6% is odd or even.

Case 1. +* = 0? odd. Using Lemma 2 and «,, ---, «,,_, to elimi-

nate the coefficients of \,, ---, \,._;, ¥ may be written as
m—1

(9) v = ;ui#i+d(5'+a!)’)

where (u,, *++, U,_,,d) = 1. L may be split thus

L = Lm—l @ <E’7 p’>@<§y (0>® U .
We show first how to reduce d to unity. Apply the isometry

0y <>“1y #1> @ <)"2’ #2> @ o @ <)"1n—1r #m—l> EB <Er lo> -
<7\:1 — C0, ¢ + 10> &) <>V2 — a0, )uz> H--- &) <>\’m—-1 — Qyp_10, P‘m—1>
®<§ — Nt el Aty + T Qe My T G0, io> .
We may easily check that 4,(«;)) = a; for 1 <7 <m — 1. Furthermore
6:(v) = v + w,0. Mapping d(&’ + ap’) + w,0 back into <{¢, 0’> we may
restore v to the form (9), but now with d dividing #,. Now repeating
this process in {\,, #t,>*, we may obtain a new v with d also dividing
U,. Since (U, -+, %,_,, d) =1 we ultimately reach a form with d = 1.
Using again Lemma 2, we may arrange for 6 to have the form

(10) 0= :S; (@ + yitls) + F(E + e0') .

We may assume ¢ — >,7' @,«; is primitive (since K is primitive) and
therefore, using the notation of (7)

(f)zh Rgy =%y zm—l) =1 .

Applying 6,, we find 6,(6) = 6 + z,0. By the usual chain of arguments
we may assume f = 1 in (10).

Finally we apply isometries that reduce «,, ---,%,_, in turn to
zero. Define

64<7\'u ﬂ1> EB <)"2, ;12> &D--- EB <)"m—u ﬂm~1>
D<E, 0 =< — e, p + 2,07
D e — 2,00, o) D -+ Dot — BOims0) M)
DE — N + ey + Tl + v+ Ty, + TR0, 0

Then 6,(a;) = a; for 1 <1< m — 1, and
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04(5) = (yl + xﬁl)ﬂl + XAy + o0 F XNy
+ (Ymes + COp )ty + &+ €0

We have thus reduced the coefficient of X\, to zero. Proceeding in
this manner we may reduce all the coefficients of A, ---,\,_, to zero.
Using the conditions ;-7 = «; -6 and v* = 6%, we find we have mapped
0 into v, and hence K into J, by an isometry of L. This completes
the proof in this case.

Case 2. v* = 4? even. Write v = ¢ + dr where e Lj_, is primi-
tive and oe L,_,. We first show that we may take d = 1. We use
a combination of the previous methods. We may assume v has the
form (compare (8))

m—1
v = Z U s + dt
=1

where (u,, «++, u,_,,d) = 1. If ¢ is characteristic in L._,, we may
embed 7 in a proper binary lattice B such that

L$—1=B@H1®"°®Ht-

Applying the isometry 6, on L,_, € H,, as before, we may assume d
divides %,. If 7 is not characteristic in L,,_,, we embed = in a binary
lattice B so that L splits thus

L=L,.®B®0oDU.

Applying 6, on L,_, <&, p>, as before, we may assume d divides u,.
Proceeding in this manner we reduce d to unity. Then 7* is even
and may be embedded in a hyperbolic plane H(after another isometry
if 7 is characteristic in L}_,), so that, in fact, v takes the form «,
given in (3).

By similar reasoning ¢ may be written

0= "‘2—“1 (wNs + yips) + dz

d reduced to unity, and z embedded in H. Finally we reduce the

coefficients x,, ---, x,._, to zero by applying 6,, exactly as at the end
of §2.

This completes the proof of the theorem when J and K contain
no characteristic vectors.

4. It remains for us to consider the case where J and K contain
characteristic vectors. As in §3, L has the form

L=<8,000 - @< 0w
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where & =¢&,-p,=1and p}=0,1<1% < m.

We may choose a basis for J that contains only one characteristic
vector; for example, eliminate the coefficients of o, in all but one of
the basis vectors. Applying the results of the previous section, it
therefore suffices to consider the special case where

J = <a11 LN/ S By 7> and K= <a1) ey Ky, B) 6>

with the «; as in (3), d = ¢(v) is characteristic, and with 8 either
a,_, (if B is even) or of the form given in (9) with d = 1. There
are therefore two cases to consider depending on whether the norm
of B is even or odd.

Case 1. (5 even; so that 8 =a,_, and J=<a,, «+-, Ay, V. ¥
may be assumed to have the form

v = ’i wipt; + 25 + (2¢ — 1)0)

(after using the a; to eliminate the coefficients of the A\;, and Lemma
2 to simplify the component of v in L. ). L may now be written

L=L,.®& 0000

where U is an orthogonal sum of hyperbolic planes. By the usual argu-
ment we may reduce d to unity. Similarly, we can transform ¢ into

0 ="S, (o + yipn) + 26 + @F — Do .

It therefore remains to transform & into a form where the
coefficients of \; are zero. Since 0 is characteristic

¥, =0-p,=pi=0 (mod2), 1<ism-—1.
Now apply the isometry
05: <k'1) #1> @ <)"2) ;,82> @ e ®<)“m-1’ /‘em—1>
&% <E, (0> - <k1 - _;"xlcl{oy u+ %x1‘0>
1 ‘ ‘ 1

EB <7\42 Exlalz(oy /12> @ ce @ <7\"m-—1 — —2‘9’71“1m—1py ["m—1>
@ <E - —;'xlxl + _;-xlclﬂl + %wlamﬂz + e

+ % L10imy My + 7} zie,0, 0> .

Then 64(a;) = a; for 1 <7 <m — 1, and
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05(5) = (¥, + xlcl)#l F Lhy + v BNy
+ (ym-—l + xlalm-—l)#m—-l + 25 + (2f’ - 1)10 L4
We have thus reduced the coefficient of A\, to zero. Proceeding in
this manner, we may reduce all the coeflicients of the \; in turn to
zero. Finally, since «a;-v = a;-0 and ~* = 6%, the coefficients of &
now match those in v, so that we have mapped ¢ into-vy, and so K
into J. This completes the proof in this case.

Case 2. (5 odd. Then B may be chosen as

m—2

Using «,, ---, &,,_, and B to eliminate the coefficients of N\, -, N,
and &, we may write v as

m—2

v = 2 witti + uP + d(28 + (2e — 1)p)) .

L is now split into the form
L=0L,,B& 000 0>OHSU
where H = (\, ¢£> and U is an improper lattice (see Lemma 2). We

now reduce the coefficient d to unity. Isometries on L, .P<&, 0>0B H
of the type

b2 gy 120 D sy ) D 2+ D ey Uz D LG, 09
D 1> = — ety + DD — appt, D -
@ <)"m—2 - Qim—af, #m—2>@ <E - bl#r IO>
BN = M F ey F Oty + o Qo + D0+ e, 1

leave «,, --+,@,_, and B invariant. 7 is transformed into v + wu,u,
so that with the usual argument we may assume d divides u,. We
may transform v in this manner into a form where (u, d) = 1.

Since v is characteristic we know v-.-& =1 (mod2), and hence
that d is odd. Now apply the isometry

07:&, 00 D 1) — <8 — 2bp, 0 + 218y
P —25 4+ 2(1 +b)p + 22b + L)y, 1.

This leaves «,, ---, @, _, and B invariant and transforms < into
v + 2up. Since (2u,d) = 1, we may reduce d to 1 in 7.
As above we may also put § = ¢(v) into the form

5 = g(wm Yoyt £ 08+ wp + 258 + @f — o'
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Sinece o6 is characteristic, we have x; = ¥, = 0 (mod 2) for each <,
v =0 (mod2) and w = 1 (mod 2).

It now remains to reduce the coefficients «,, ---, ©,,, v to zero.
First apply the isometry

O gy 1110 B Qo 12> B o+ D Dvmsy ) D LE, 0O DLE, 0D —
1 , 1, 1 '
<)\'1 - 5%01(0 y M+ E%P > ) <>\*z - —2—901@12,0 ’ ,Uz> D -

S <7\‘m-2 - %xlam—zp'r #m~2> 8% <$ - —é—mlblp', |0>

@ <§' - %ml)"l + "%x1c1ﬂ1 + —;‘wﬂzizﬁz T e

+ ‘;—xla1m—2#m~2 + é—xlblp + —1—93?01.0', 10’> .

Then Gy(a;) = a; for 1 <1 < m — 2, 0,(8) = B, and in 6,0) the coef-
ficient of A, is zero. Working now in {n, #,>* we reduce the coef-
cient of A, to zero. We may therefore assume

By =Ly = o0 = X,_,=0.

The final step, the reduction of v to zero appears to be more
difficult. If » = 0 (mod 4) we may apply the isometry

: r o> {e— Lope Lo
05: <&, 0) D<E, 07 <§ 2vbp,p+2vp>
YR S | o

€B<E zvg+2v(1+b)p+t,0,p>

where 2t = (1/4)v*(1 + 2b). (If v =2 (mod 4) then t¢ Z). Then 6,
leaves «,, ---,«,_, and £ invariant, while the coefficient of & in
04,6) is reduced to zero. From the various products é-a; = 7v-«a;,
1<ism—2,6-8=7v-8 and ¢* = v* we see that all the coefficients
of & (actually an isometric image of our original §) now match those
of v. Thus we have mapped é into v and so K into J.

If, however, v = 2 (mod 4) we must modify the above argument.
We first change the basis of L so that G = {&, o> @ )\, 1> becomes
G =<¢&, 0,)P<E, 0, where &1 =&,.0,=1 and =0 for 7+ =1,2,
Since the characteristic vector 2’ + (2f — 1)0’ in G can be mapped
into any other characteristic vector of G by an isometry, we may
assume ¢ has the form

m—2
0= Z Yt + 03 + wo + 25, + (2¢, — D)o, + 2§, + (2¢, — 1)p,

where ¢, is chosen such that
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2¢, + w —1=0 (mod4),

(recall that w = 1 (mod 2) since ¢ is characteristic).
We now apply the isometry

010: <&, 00 D <6y, 0 —
{1 — b)é + b1 + b)p + b&, + b(db — 1)p,,

§—bo—&+ (1 —Db)oy
D <—bs + b1 + b)p + (1 + b)&, + b(d — 1)p,,
-+ @A+ D)o+ &+ boy.

Again «,, ---, a,._, and B are left invariant by g,,. But the coefficient
of ¢ is changed from v tov' = v — vb + w — 2b — (2¢, — 1). But now
vV =2—-2b+w—2b—2¢ +1
=2¢ —1+ w=0 (mod4).

After restoring G to the form <&, 0> <\, > we are in a position
to finish the proof by means of the isometry 6, as above.
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