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A bounded convex subset K of a Banach space B has
normal structure if for each convex subset H of K which
contains more than one point there is a point 2 in H which
is not a diametral point of Z, The concept of normal struc-
ture (introduced by Brodskii and Milman) and a strengthening
of this concept called complete normal structure have been of
fundamental importance in some recent investigations con-
cerned with determining conditions on weakly compact K
under which the members of any commutative family .7 of
nonexpansive mappings of K into itself have a common fixed-
point. A more thorough study of these concepts is initiated
in the present paper, The theorems obtained primarily con-
cern product spaces composed of spaces which possess normal
structure,

Let K be a nonempty, closed, convex, weakly compact subset of
the Banach space B. It was proved in [1] that if K has normal
structure and if .7~ is a finite family of commutative nonexpansive
mappings on K then there is a point x e K such that f(x) =« for
each fe. 7 . Although we do not know whether this theorem is true
in general for infinite families, it is easily seen, as was pointed out
in [2], that if the norm of B is strictly convex then the theorem is
true if 7 is infinite. In [2] the existence of a common fixed-point
was established for arbitrary families without the assumption of
strict convexity of the morm by the introduction of a strengthening
of normal structure called complete normal structure. It was shown
in [2] that if B is uniformly convex, or if K is compact, then K has
complete normal structure.

We are mainly interested here in providing examples of classes
of sets which satisfy the hypotheses of the fixed point theorems of
[1] (Theorem 3) and [2] (Theorem 2.1). Our purpose in §2 is to
exhibit such a class of sets K which are not compact and which do
not have strictly convex norm. Fixed-point theorems for families of
nonexpansive mappings established by De Marr [6] (for K compact) and
by F. Browder [4] (for B uniformly convex) do not apply in this class
of sets.

In [5], M. M. Day gave an example of a class of reflexive, strictly
convex Banach spaces, none of which is isomorphic to any uniformly
convex Banach space. We show in §3 that these spaces do possess
normal structure; thus they provide examples of spaces not isomorphic
to any uniformly convex space which satisfy the hypothesis of the
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fixed-point theorem of Kirk in [7].

2. Normal structure and complete normal structure. We say
that a Banach space has normal structure if each of its bounded
convex subsets has normal structure. In this section we first show
that the direct sum (with the supremum norm) of two Banach spaces,
each with normal structure, itself has normal structure.

THEOREM 2.1. Let B, and B, be Banach spaces with norms
=1, and || — ||;, respectively, Let B = B, B, with the norm of
B giwven by || — || =sup (| = |l, || = |l.). Lf both B, and B, have normal
structure, then B has normal structure.

Proof. Let K be a bounded convex subset of B which contains
more than one point and let p;, be the natural projection of B onto
B;,,t=1,2. Let K; = p(K),7=1,2. Then K; is a bounded, convex
subset of B; and thus possesses normal structure. For ¢ =1,2, let
x; be a nondiametral point of K,. (If K, consists of a single point
for some 4, then the conclusion of the theorem is immediate.)

Select u; e pi'i(x;) N K,©=1,2; then u, =2, Pv and u, = wPux,
where » = p,(u) e K,, w = p(u,) e K,. Set m = Hu, + u,) = m, P m,
where m, = i(x;, + w) and m, = 3(v + x,). Let ze K; thenz =z, Pz,
where 2z, €K, 2z,€ K,, Now |[m —z|| =sup (||m, — 2|, || m: — 2:]]2).
But||m, — 2|, = |[ §(@x, + w) — 3 + 2) | £ 3|2 — 2. ([ + || w — 2. [],).
Letting 6(—) denote the diameter of a set and using the fact that
2, is a nondiametral point of K, we see that ||m, — 2z, ||, < d(K) — &,
for some ¢, > 0 which does not depend on z,. Similarly we have that
lm, — 2,]], < 0(K,) — €, 6, >0 and independent of z,. Hence

H m—z || é sup (a(Kl) — &y B(Kz) - 52) H
letting ¢ = min (¢, &,) we see that
[|m — z|| < sup (3(K,) —¢e, 0K, —¢€)=0dK)—c¢.

Thus m is a nondiametral point for K and the theorem is proved.

Before giving the next definition, we introduce the following
notation. For subsets H and K of a Banach space B, H bounded, let

r(H) =sup{/|z —y|:ye H},
r(H, K) = inf {r (H): x€ K},
H,K)={xeK:.r(H)=rH, K)}.

In general, & (H, K) may be empty, but if it is not, then it
consists of precisely those points of K which serve as centers of balls
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of minimal radius, r(H, K), which contain H. We remark that if K
is weakly compact and convex, and if H is bounded, then & (H, K)
is a nomempty closed convex subset of K (see [2]).

DEFINITION 2.1. Let K be a bounded closed convex subset of a
Banach space B. We say that K has complete normal structure (c.n.s.)
if every closed convex subset W of K which contains more than one
point satisfies the following condition:

(*) for every descending net {W,: a« € A} of subsets of W which
have the property that »(W,, W) = »(W, W) for each ac A, it is the
case that the closure of ... € (W, W) is a nonempty proper subset
of W,

By taking W, = W in the above definition, one sees that if K
has complete normal structure then it has normal structure.

DErFINITION 2.2. Let K be a bounded closed convex subset of B,
We say that a closed convex subset W of K satisfies property (*),
with respect to K if:

(*), for every descending net {W,: & € A} of subsets of W which
have the property that »(W,, W)=r(W,W)and (W, KN W, =*= O,
for each ae A, then it is the case that the closure of U & (W,, W)
is a nonempty proper subset of W.

Our reason for being interested in property (*), is the following.

In property (*) of complete normal structure, it is not required
that (W,, K)N W, = @. However, the condition (*) is applied in
the proof of Theorem 2.1 of [2] as follows: Each set W, is a fixed-
point set of some nonexpansive mapping f of K into itself (the sets of
[2] are labelled differently). It follows that f(&(W,, K))c & (W,, K)
and, if K also has normal structure, by the theorem of [7], f has a
fixed-point in &(W,, K). Thus «(W,, K)NW,+ @. Thus if K
has normal structure, Theorem 2.1 of [2] remains wvalid (without
alteration of the proof) if complete normal structure is replaced by
the assumption that every closed convex subset W of K has property
(*), with respect to K.

We now investigate the preservation of property (*), with respect
to the taking of finite direct sums.

THEOREM 2.2. Let B be the direct sum, with supremum norm,
of the Banach spaces B;,t =1,2. For each i, let K; be a closed
convex weakly compact subset of B;. If every closed convex subset
of K, satisfies (*), with respect to K;, ¢ = 1, 2, then every closed convew
subset W of K = K, @ K, satisfies (*), with respect to K.

Proof. Let W be a closed convex subset of K which contains
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more than one point, and let %7~ = {W,: @ € A} be a descending net
of subsets of W for which »(W,, W) = »(W, W) and

W, YNW.+ @, acA.

Since & (W,, K) N W,= @ it follows that &(W,, W)=« (W,, K)N W.
Let » = »(W,, W) and let e A be fixed. Choose x ¢ & (W,, W); then
x=2a,Px, where z;€K;,2=1,2, For i =1,2 let p; denote the
natural projection of B onto B;. Since xec & (W,, W) it must be the
case that W,= 7 (»; r), 7 (%, r) the closure of the ball centered at x
with radius ». Since the norm in B is the supremum it follows that
P W) S 7 (@i, 1), =1,2. Therefore, r(p(W.), pi(K)) < 7.

We now show that for some 7, equality must hold. For assume
we have r(p;(W,), p{K)) < r for 1 =1,2. Let

7 = sup {r(p.(W.), p(K)), (0, W), pAK))} .

Select T; ¢ & (p(W,), p(K)) and set T = %, P %, € K. It follows that
W.S 77 (%, 7) since for w = w, P w,c W,,

1T — w || =sup {|Z, — w, |, |Z, — w [} = 7.

But this in turn implies »(W,, K) = 7 < r which is a contradiction.
Therefore for each we A there is an 4,1 < ¢ < 2 such that

’l"(p@( Wa)y pm(K)) =r= ’I"( szy W) .

Now let % = {W,e % | r(p(W,), p{(K)) = r},12 = 1,2, Suppose %7
is such that for some W,c %", W,e 977, there is no W,e %, with
W, SW,N W;. Since %7 is a net there is then a W, e %77 such that
W, W,N W, and, moreover, for each W,c ", if W, S W, we must
have W,e 9%, Let &, ={W,e %;| W, S W,}; then &,S %, &, is
a decreasing net and for all W,;e<7 there is a W,ec &, with
W,.=W,. Calling such an & a filtered subnet we see then that for
some ¢,1 < ¢ < 2, 977 contains a filtered subnet, &;. We may assume
42 =1, Also we have, & (p(W;), K\) N p(W;) # @ for each W;e &.
This is clear since for some point w = w, P w,ec W, we have

W, < 7 (w, r); hence p(W;) S 7 (w;, r) where
w, € p(Wi) N & (W), K)) .

Thus we may apply (*), to the net p(&) = {p(W.) | W.€ &} in B,
thereby concluding that the closure of H, = UWﬁegL%(pl( W), p(W))
is a proper subset of p(W). Select a point z, € p(W) but not in the
closure of H,. Then there is a number ¢ > 0 such that

Wiﬁ£1 {ll e, — 2| | 2.6 Z(D(W3), DA W))} > €.
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Choose x ¢ W so that p,(x) = x,; then the above implies
inf{|lx — z|||2e (W, W)} > ¢.

(Here we use the fact that &, is a filtered subnet of 97°.) From this
we conclude that « is not in the closure of J.., & (W,, W), completing
the proof.

Consequently we can now manufacture examples of convex sets
in spaces without strictly convex norm to which the fixed-point
theorems of [1], [2], [7] apply, but in which others do not. For
example, let M denote the two-dimensional Minkowski p-space for
p =1. Points of M are pairs (x,, #,) of real numbers with

| (@, @) || = @] + 2] .

This space is not strictly convex, but it is reflexive, Let K, denote
the unit ball in M," and K, the unit ball in the Hilbert space [,. It
has already been proved [2] that bounded closed convex subsets of
uniformly convex spaces and compact convex subsets of arbitrary
Banach spaces have complete normal structure. Since complete normal
structure implies normal structure, K, and K, also have normal
structure. Thus by Theorems 2.1 and 2.2, K = K, P K, is a closed
convex noncompact subset of B = M, & I, which has normal structure
and in which every closed convex subset satisfies (*),, but in which
the norm 1s mot strictly convex.

Finally, we remark that it follows immediately by induction that
Theorems 2.1 and 2.2 hold for finite direct sums.

3. Normal structure and uniform convexity. As we mentioned
in the preceding section, it follows from a result of [2] (Theorem 4.1)
that every uniformly convex Banach space has normal structure. In
this section we show that even if a Banach space is reflexive and
has strictly convex norm, it may possess normal structure but not be
isomorphic to any uniformly convex Banach space.

THEOREM 3.1. There exists a Banach space which is reflexive,
strictly convex, and which possesses normal structure, but which s

not isomorphic to any uniformly convex Bamnach space.

Proof. Let p > 1 and consider the space B of all sequences x =
(2, &®, ...) where each element 2/ is a Banach space B and

S a9 < oo
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Take

ol = (S 121)"

We also assume that each of the spaces B'” is finite dimensional, strictly
convex, and restricted in such a way that B is not isomorphic to any
uniformly convex Banach space. (This involves conditions on the
dimensions of B‘” and on their respective norm functions which have
no bearing on the following argument; see Day [5, Th. 2].)

Suppose K is a bounded convex subset of B which consists entirely
of diametral points. We show that this assumption leads to a contra-
diction if 6(K) > 0.

Let {x,} be a diametral sequence [3] in K (that is, d(x,.,, conv
{2, -+, 2,}) — 0(K) as n— o). Since K is bounded, {«x{"} is a bounded
sequence in the finite dimensional space B“ and thus it has a con-
vergent subsequence {x{Y} which has limit, say y*. By induction one
may select a subsequence {x,,} of {®,_,.} such that if ¢ <k,

lim () = ¢,
Using the way the sequence y = (¥, y®, ...) is defined, one may
obtain a subsequence {y,} of {x,} which has property:
(1) limy? =y», (=12-.-).
Furthermore, since B is reflexive this subsequence may be chosen so
that it converges weakly, say to z. Because of (1) it follows that
2 = ¢y and thus that z = y. Hence ¥ not only is in B, but it is
in the closed convex hull of {zx,}.

Since {y,} converges weakly to v, d(y, conv{y,, -+, ¥,}) —0 as
n— oo, But {y,} is a subsequence of the diametral sequence {x,} so
AYor1, OV {y,, +++,y,}) — 6(K) as n — oo, and therefore

Hyn"‘yH'—’a(K) as Mm-—oco,

Now let ¢ > 0, 3¢ < 6(K). Integers », N > r,s > N may be chosen
large enough that

Iy —yll > oK) — &y, — yll > dK) — ¢,
N

Dy —y?|P<er, and

1

Sy —y?r <er.

N+1

Letting
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ol = (S112117) ",
ol = (3 119 112)

it follows that

e — v 1P =119 — Yo llowl? + ¥ — ¥e llysa]?
= [”'I/r — Yy = 1l Ys — y”hN]p

+ My — Yy — ¥ — Yllyeid?
> [0(K) — 3¢]” + [0(K) — 3¢]7 .

Thus
sup Hys - yrH Z lepa(K) > 5(K)

and we have a contradiction.

Although reflexivity of B was useful in the above argument, normal
structure is not implied by reflexivity or even by isomorphism with
Hilbert space. For example, let H be Hilbert space and B the space
isomorphic to H with norm defined (for x e H) by

|| = sup{1/2 [[@||q 2. [} .
Let
K={x:||z]| =1 and 2; = 0 for all 7} .

If « and y are in K, then ||o — y|| < sup{l,1} = 1. Thus 6(K) < 1.
Given z in K and & > 0, choose y with a single nonzero component
9, = 1 with & chosen so that |x,| <e. Then

e —yll=z|z —y | >1—e.
Thus each point of K is a diametral point of K.

We wish to thank the referee for the above example of a reflexive
space which does not possess normal structure. (Another such example,
due to R. C. James, was sent to us by Stanley Weiss.) We are also
grateful to the referee for providing us with a much simpler proof
of Theorem 3.1.
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