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By a universal algebra, or briefly, an algebra we shall
here mean a pair (4; F) consisting of a nonvoid set A and a
nonvoid set F' of finitary operations on A. The multiplicity
type of {A; F')> is the sequence x = {uo, tt1, ***, ttn, * - > Where
y i8 the cardinality of {fc F'| f is n-ary}. The class of all alge-
bras of multiplicity type . is denoted K(u).

We shall study the relationship between the multiplicity
type of an algebra and its family of subalgebras. To this
end, we set S(A; F)={B|¢+B< A and (B;F) is a sub-
algebra of {A; F')} and, for every multiplicity type x, T(») =
{S(A; F)|<(A; F)c K(n)}. We define a quasi-ordering < and an
equivalence = on the class of multiplicity types as follows.
If x and ./ are multiplicity types, define » < o/ if T(w) = T(x)
and = if T(x) = T(#'). We shall give necessary and
sufficient conditions for ¢ < 4/, in terms of properties of car-
dinal numbers, and we shall also find a ‘“‘normal form” for
multiplicity types, whereby every multiplicity type will have
a unique representation in normal form and the ordering of
multiplicity types in normal form will be characterized by
relatively simple criteria.

Our major results, those which characterize the ordering and
establish normal form, are Theorems 2.1, 2.2, 2.3, and 2.4.

A family % of subsets of a set A is called a restricted closure
system if whenever B S A and N (X|XeWB) is nonvoid, then
N(X|XeB)e. If BS A then the closure of B, denoted [B], is
defined to be N (X|XeA, X 2 B), provided this intersection is not
void. For any algebra {A; F) it is easily seen that S(4; F') is a re-
stricted closure system. Birkhoff and Frink [1] proved that for any
family 20 of subsets of a nonvoid set A, there is an algebra <{4; F)
such that 2 = S(A; F'), if and only if [ is an algebraic closure system,
that is, a restricted closure system which is closed under directed
union. We shall give a similar result (Theorem 1.1) with a restriction
on the multiplicity type.

One minor result of particular interest is the fact that the sub-
algebra family of any algebra whose operations are finite in number
can be realized as the subalgebra family of an algebra having precisely
one operation. This is a consequence of Lemma 2.1.

A word on notation: g and p/ will always denote multiplicity
types, and the cardinality of a set A will be denoted | A

.
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1. Preliminary results. In this section we shall establish several
results which will be helpful in proving the later characterization
theorems for the ordering < among multiplicity types. For the most
part, these are simply technical lemmas of no interest for their own
sake. The main result is Theorem 1.2, which gives necessary condi-
tions for ¢ < ¢/. In §2, these conditions will be shown to be sufficient
when all entries of ¢ are countable.

A. Definitions and simple lemmas. The following definitions
are largely for the purpose of establishing convenient notation.

DerFiNITION. If £ and g are multiplicity types we say that g
accepts p provided p, = 0 implies ¢f = 0. If g accepts ¢ and /1 ac-
cepts o/, then ¢ and g are termed compatible.

DEFINITION. Let # be a natural number and m a nonzero cardinal.
We shall denote by e¢,(m) the multiplicity type having m as its »'*
entry and zeroes everywhere else. The multiplicity type é,(m) is de-
fined as follows. If n =0, then ¢,(m)=c¢,(m). If n >0, then
(E.(m)), = 1, (¢, (m)), = m, and (£,(m)), = 0 for k # 0, n. For simplicity,
¢,(1) and ¢,(1) will be denoted simply by ¢, and &,, respectively.

DerFINITION. If g and g are multiplicity types, we define g +
to be their pointwise sum; that is, (¢ + ), = p. + ¢ for every k.
Similarly, we define the sum of any set of multiplicity types.

DErFINITION. The length of 1, denoted I(y), is the greatest integer
n such that g, = 0. If no such integer exists, we set I(¢) = . We
denote by s(y) the sum of the entries of y; that is, s(y) = > (¢ | k£ = 0).

The following lemma establishes simple properties of the ordering.

LEmMMA 1.1, (i) If p < t, then p accepts .

(ii) If p accepts p and p, < pi for all k, then p < .

(iii) Let l(p) =n < co. Then p < e, (s(p), and p <&, (s(p) +of
o #= 0.

(iv) k < n implies e, (m) < ¢,(m) for all m,

(v) If pspf and v <V, then p+ v < (1 + V.

Proof. (i) and (ii) follow from the fact that it is always possible
to define operations which will not change any pre-existing subalgebra
structure. Specifically, if an n-ary operation is required, then we do
not alter subalgebra structure by taking as an operation the function
f defined by f(x,, ---,2,_,) = ®. (iii) and (iv) follow from the fact
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that any operation can be replaced by one of higher rank in such a
way that subalgebra structure is not affected. E.g., if f is a binary
operation, we can replace it by the ternary operation g defined by
(&, ., %) = f(%o, ). To prove (v), let AeT(x+ v). Then A=
S(4; F), where {A; FF>e K(¢t + v), and we may write F' = F, U F,,
where {A; F>e K(y) and <{A; F,ye K(v). Since g <y and v </,
we have S(4; F))=S(4;G,) and S(4; F,)=S(4;G,), where {A4;G,> e K(1')
and {4; G,y e K(V'). Now,

A = S(A4; F) = S(A; F) N S(A; Fy) = S(4; G,) N S(4; Gy)
= 8(4;G,UG) e K(p + V),

whence ¢t + vy < ¢/ + V. We note that the analogous statement and
proof hold for arbitrary sums.

The following lemma provides a construction that we shall use
frequently.

LEMMA 1.2. Suppose p is a multiplicity type and n an integer
with 0 <nm < p,. Let A be a set with |A| = p,, let CS A with
|C|=mn, and let pec AAC. Let A ={AlU{B|CZLBE< A}, and let
A, ={BU{p}|Be}. If p,=0 then AecT(y), and if p,+ 0 then
A, e T().

Proof. Suppose p, = 0. For each aec A define the n-ary opera-
tion f, by:
a if {xy, ---,2,.}=0C

fa(xm tt xn—l) = .
x, otherwise

for all ;¢ A,i <n. Let F={f,]acA}. Clearly
A = S(4; F)e Te.(p) & T(p) -

If p, # 0, define for each a € A the n-ary operation f, by:

fu(x():"'yxn—-l) if pixi,i<n

—axy...’x"— — . it
1o ! p if p=uw, for some i< m,

and let p* be a nullary operation with value p. If F = {f,|ac 4} U{p*},
we have U, = S(4; F') € TE. () S T(1).

B. Characterization of e T(y) for some p of fived length.
For a restricted closure system U and natural number »n we shall
characterize what it means to have % e T(y) for some y of length =.
Since this is quite clear for n = 0, we consider only positive .
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DEFINITION. A family B of sets has the mn-ary containment
property if whenever we have a,, ---,a,_,€ U (X|XeB), then there
is some YeB with ;¢ Y for all 0 <1 < n.

Clearly a directed family has the wm-ary containment property for
all nonzero n. Also, we note that if 7 > 7, then the 7-ary containment
property implies the j-ary containment property.

DEFINITION. A family U is closed under n-ary union if whenever
B < A and B has the n-ary containment property, then

UX|XeB)el.

DEFINITION. Let 20 be a restricted closure system over the non-
void set 4. A is an m-ary closure system if whenever ¢ - BS A
and B=J (C]ICES B,0<|C|<mn), then Be .

THEOREM 1.1. Let A be a restricted closure system over the
nonvoid set A, and let n be a positive integer. The following are
equivalent.

(1) e T(s,(m)) for some cardinal ut,

(ii) A e T(y) for some u of length n.

(iii) e T(y) for some p with l(y) < n.

(iv) U s closed under n-ary union.

(v) A is an n-ary closure system.

Proof. Clearly (i), (ii), and (iii} are equivalent by Lemma 1.1,
Assuming (i), we have 2 = S(4; F') where {A4; F')> < K(¢,(m)) for some
m. Let BS A where B has the n-ary containment property. If
feF and a,e J(X|Xe®B),0<14<n, then a, ---,a,,€Y for some
Y €8, whence f(a,, -+, a,_)eY S J(X|Xe®B), and so

UX|XeB)ed.

Thus (i) implies (iv).
Assuming (iv), let @ = B & A and suppose B2 [C] for all CS B
with 0 < |C| £ n. Let

B={Cl]ICSB,0<|C|=n}.

Then Y (X|Xe®B) = B, and B has the n-ary containment property,
whence (iv) implies Be ¥, and so (v) holds. Thus (iv) implies (v).

Assuming (v), we define a set F' of operations as follows. For
each sequence <a,, - -+, a,_,» € A" and each a¢[{a,, ---, @,_,}], define an
n-ary operation f by f(a, +++, @) =a and f(x, ---, ®,_y) = &, if
<xa’ “ee, xn_l> =+ <CL0, cen, a%_1>.
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Let F be the set of all operations defined in this manner. It is
clear that A < S(4; F'). To verify the reverse inclusion, let B¢ S(A4; F)
and let CSB with 0<|C|<n. Enumerate C as a sequence
{&yy +++, a,_» (possibly with repeated terms) and let ae[C]. Then,
for the operation f defined in terms of <{a,, ---,a,_.> and a, we have
a= f(ay, + +,0,,)cB, and so [C]|SB. Applying (v) we have Be ¥,
whence U = S(4; F)e T(s,(| F|)). Thus (v) implies (i) and the theorem
is proved.

COROLLARY. Let n > 0 and let p be a multiplicity type with
Wp) <n, Then e, £ ¢t and &, £ p.

Proof. The case n = 1 is trivial, so assume n > 1. Let A be a

set of cardinality » +1, A = {a,, --+,a,}, and let A* = {a,, -+, a,_}.
Define an n-ary operation f by f(a,, ---, a,_,) = a, and f(2, -+, Z,,) =
Lo lf <x07 Tty xn——1> * <a01 ct Ty a’n—1>-

Now, A*=J ([C]|CES A*, 0<|C| = (), but A* ¢ S(4; f), whence
S(4; f) is not an l(p)-ary closure system, and so S(4;f)¢ T(y) by
Theorem 1.1. Thus, ¢, £ . To see that ¢, £ ¢, adjoin an element
p to A, define f as above, and define also a nullary operation with
the value p; then apply a similar argument.

C. Necessary conditions for ¢ < (/. Before establishing necessary
conditions for g < p' we shall prove two lemmas which simplify special
cases. In proving these lemmas, and elsewhere in the sequel, we shall
make use of the following well-known inequality (see, e.g., [2], Chap-
ter 1). If 2 is a restricted closure system over the nonvoid set A,
and e T(y), then, for each nonvoid BZ A, we have |[B]| =
| B 'S(/’!)'So-

LEmMMA 1.3, (i) Suppose l(p) >0 and 0 < tto = W, If 1 1is
defined by py =1 and pi = p; for © >0, then p = .

(i1) If p < ¢ and s(pf) = W, then s(p) = s(p).

(i) If 2= 7 and s(if) = Wo, then s() = W

Proof. To prove (i) it suffices by Lemma 1.1 to show that p < .
First suppose s(g) > W,. Then there is some n > 0 such that p, is
infinite. For such an n we have

p=celtte—1) +pse, (o —1)+p =p.

Now suppose s(y) = W, and let A e T(p); A = S(A4; F) where {A4; F>e
K(py., Let f be an m-ary operation for some # > 0 (such an f must
exist because I(y¢) > 0), let B be the set of values of the nullary
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operations in F, and let C = [B]. Since 0 <|B| < W, we have
0<|C| <£¥,, so we enumerate C as C = {¢, ¢', ---,¢", ---} in such a
way that if C is infinite then all elements in the enumeration are
distinct, while if C is finite, of power N, then ¢! = ¢~ whenever
2 = N.

Let F' = (F\(F,U{fH) U{d, f'}, where F, is the set of nullary
operations in F, d’ is a nullary operation with value ¢°, and f’ is an
n-ary operation defined by:

cttif g, =0, =+ =2,,=c'eC

f’(x B _) — ;
oo f(@, +++, 2,_) otherwise .

It is straightforward to verify that U = S(4; F')e T(y'), whence
pt=

To prove (ii) let A be a set of cardinality s(z#) and define opera-
tions f,, a € 4, such that S(A4;{f.|ac A} e T(y) and f, is a constant
function assuming the value a. Then S(A4;{f.|acd}) = {4}, so
[[{a}]| = () for all ac A, Assuming p¢ < ¢/, we then have:

[Halll = [H{a}[-s(e)- 3o = (),

whence s(y) < s(t).

To prove (iii) let #* be any multiplicity type such that g < p*
and s(/*) = W, (e.g., ¢£* = ¢ + (W) Then p < p*, whence s(y) <
s(1*) = R

LEMMA 1.4, (i) em)=Ze if 0 < m < W,

(ii) em) =& if 0 <m = W,

(iiD)  &(Mo) £ ..

(Iv)  &(n) + &e(m) L e(m), of 0 <n =W and 0 <m < W,
(v) &) = a(N).

Proof. (1) Lete T(e(m)); A=S(A4; F') wherelA4; F) e K(e,(m)).
Let n be the number of distinct elements of A which are values of
nullary operations. If » =1 we are through; if n > 1, let these
elements be ¢, ---, ¢,_; and define the unary operation f by f(c;) =
¢y for i < m — 1, and f(x) = ¢, for all other € A. Then S(4; f) = ¥,
whence 2 e T(e,), and so &(m) < ¢,.

(ii) &(m) < e(m) + €, = &, by Lemma 1.3.

(iii) Let N be a set of cardinality W, and let each element of N
be the value of a nullary operation. Then N is the only subalgebra.
Thus, if it were true that &(¥W, =< ¢, there would exist a unary
operation f such that S(NV; f) = {N}. Under this assumption, [{x}] =
{, f(®), f¥(x), ++-, f"(x), ---} for each xe N, and we cannot have a =
S¥x) for any k, since this would imply that [{z}] is finite. Now,
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HA@} = {f®), ---, /@), ---}. Butwz¢ [{f(2)}], since x e [{ f(x)}] implies
x = f¥x) for some k. Thus [{f(x)}] # N, a contradiction.

(iv) In view of Lemma 1.3, it suffices to show that é,(m) £ ¢,(m).
By (ii), &(¥R0) < &, whence it follows from (iii) that ¢, £ ¢, and so (iv)
holds for m = 1. The following proof shows that (iv) holds for m = 2,
but it will be evident that an analogous proof can be given for any
finite m = 0.

Let N be a set of cardinality o, let x, pe N, and let the unary
operations f, and f, be defined such that {x} generates N, fi(x) = « =
fi(x), and such that for 7,7 e {1, 2} and y, 2 € N\{p}, fi(y) = f;(?) implies
1 =7 and y = z. Also, we require that fi(p) = p = fi(p) and that p
be the value of a nullary operation p*. Letting % = S(N; fi, fe ¥),
it is clear that e T(£,(2)). Assuming £(2) < &(2), we have unary
operations g, g, with 2 = S(N; g, g.). Since pe N = [{x}], we must
have p = h(x) where h is a function made up a finite number of com-
positions of g, and g,. Choosing % so that the number of compositions
is as small as possible, we must have p = h(z) = g,(a) for some a = p
and te{l,2}. Without loss of generality, suppose % = 1. Since
{p} e A we must have g,(p) = p, and so g¥(a) = p forall n = 1. There-
fore

Ha}\{p} = {a, 9:a), 9i(a), - - -, g3(a), -} and a # gi(a)

for all n because [{a}] is infinite.

Now [{a}]\{a, p} = A, U 4, where 4; = [{fi(a)}]\{p}, + =1, 2. Suppose,
without loss of generality, that g,(a)e A,. Then A, U {p}e? implies
g:(a) € A, for all n, but this contradicts the fact that A4, is nonvoid.

(v) Using Lemma 1.1, we have

51(}{0) =& + ei(xo) =& + s1(}%) = 51(“0) .

For convenience in referring to (iii) and (iv) above, let us set
E, = {ef(n) + &(m), 6,(m)> [0 <1 = R, 0 <m < R},
and let £ = E, U K%(Ro), 51>}-

THEOREM 1.2. If p < t, then the following hold:
(1) # accepts ;

(i) U < Upw);

(iii) Up) = U) =n < o implies p, < ptr;

(iv) g, ¢>¢ E.

Proof. (i) and (iv) were proved in Lemmas 1.1 and 1.4. To prove
(ii), note that by the corollary to Theorem 1.1, ¢, < ¢/ implies n <
() for all m. If p, =0, then ¢, < p < ¢/ for each » such that



476 MATTHEW GOULD

s, # 0, so it follows that » < I(#') for such =, and therefore I(y) <
W), If p,# 0, simply replace ¢, by é,.

Since (iii) is trivial for n# = 0, we consider » %= 0. First let us
suppose f, = 0 and construct a set A of cardinality =! p, + » such
that a,, --+, a,_, are distinct elements of A, and A\{a,, -+, a,_} =
U B:| TeS,), where S, is the set of permutations of {0, ---, n — 1},
and | B;| =y, for each Te8S,.

Fix some UeS,, and let T*: B, — B, be a bijection, for each
TeS,. For each x ¢ B,, define an n-ary operation f, by:

fx(aoﬁ crey a(n_l)T) = xT* fOI' all TG Sn y
and
fa:(wa tt 0y mn—«L) = % if {wo, ttty mn——l} #* {CI/O, Tty an-—l} .

Let A = S(A4;{f.|xeBy}). Clearly Ae T(e, (1)) S T(1), and we
note that A = {A}U{B|{ay, +++,a,_ ) LEB= A}, Now, px =/ implies
that % = S(4; F') for some {A; F>ec K(¢). For each TeS,, let

ET = {513 | r = f(aoTy ety a’(n—l)T)y fe F, f iS n-ary} ,
and let
A* = {am Tty a’n—l} U U(ET| Te Sn) .

We show that A*c 9. Let z, ---,%,_,€A* and fe F. Then f
is k-ary for some k and since g accepts p¢ we have &k > 0. Since
W(¢)=mn, we have k <n. If k=mn and {x,, -+, 2,_.} = {0, ++ -, €.},
then f(x, ++-, %,_,) € A* by construction. In all other cases, we have
{%g, +++, 2} € U, whence

f(xm "'ymk—l)e{xm "'yxk—l}gA* .

Thus A* ¢, and since A*2{a,, ---, a,_;}, we have A = A* whence
nlp, +n=14]=|4*| < nl ), + n, and so pg, < .

If p, # 0, we modify the construction as in the proof of Lemma
1.2 and the argument is similar to the above.

2. Characterization of ¢ < ¢/, In this section we will show
that the conditions of Theorem 1.2 are necessary and sufficient if the
entries of x are all countable, and that these conditions along with a
fifth condition characterize g < p/ whenever ¢ has finite length.
Moreover, we will develop “normal forms” for multiplicity types,
whereby every multiplicity type will have a unique representation in
normal form, and a multiplicity type of finite length in normal form
will be minimal in the pointwise ordering of all multiplicity types
equivalent to it.
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A, Countable multiplicity types. A multiplicity type is said to
be countable if all its entries are countable. First we shall character-
ize p < 1/ where p and g are countable and differ in length.

LEmmaA 2.1. If p is a countable multiplicity type of finite length
n >0, then (¢t < €, Also, of pty# 0, then p < é,...

Proof. Let e T(p); A = S(A; F') where <{A4; F)ec K(¢). Define
an (n + 1)-ary operation f on A as follows.

For each z = {w,, -+, 2,_ € A", [{%,, +-+,®,_,}] is countable, so
we write [{x,, +++, ®,_,}] = {«°, &', -+, &%, -- -} in such a way that &’ = x,
and if the set is infinite all elements in the listing are distinct, while
if the set is finite, of power N, we require that «* = 2"~ for all + = N.

For each z‘el[{x, ---,x,_}], we define f(x, +--, %,_1, 2°) = 2+,
Finally we define f(xo, «««, @y, ®,) = &, if @, €[{&o, «+-, x,}]. It is
routine to verify that U = S(4; f)e T(s,;,), whence p =e¢,,,. The
last statement now follows from Lemma 1.3.

COROLLARY. If p is a multiplicity type such that l(¢) > 0 and
M+ &, then & = .

Proof. We consider two cases.

Case 1. Suppose l(¢) = 1. If p, = 0, then & £ ¢ by Lemma 1.1.
If 1, = 0, then p =+ ¢, implies p¢, > 1, whence &, < ¢,(2) < /.

Case 2. Suppose l(¢) > 1, and choose m > 1 such that g, = 0.
If p, # 0, we have ¢, <¢, < pn. If ¢, =0, we have, by Lemma 2.1,
& =€, S M

COROLLARY. Let pt and (' be countable multiplicity types with
Wy = Uy, Then p <t af and only of the following hold:

(i) 1 accepts p;

(i) () < Ue');

(i) < o, > = <e(Ro), & >

Proof. In view of Theorem 1.2, we need show only that (i)-(iii)
imply ¢ < ¢/. Since (ii) implies that I(z) is finite, we let n = I(y),
and consider two cases.

Case 1. Suppose n = 0. By Lemma 2.1, ¢ <e¢,.,, so if m is any
integer such that m > n and ), = 0, we have p=<e¢,,, <6, <t if
m=0,and p e, <6, = if g+~ 0.

Case 2. Suppose n = 0. There are two possibilities.

(a) ¢ =¢e(W). By (iii), ¢ # ¢, so by the preceding corollary,
& = . Now (W) <& by Lemma 1.4, so u¢ < /.

(b) p = ¢&(k) where 0 < k < Y. Choosing m as in Case 1 above,
we have, using Lemma 1.4,
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ey se e, = it =0,

and
ek s s¢c. = i p#0.

We now give necessary and sufficient conditions for ¢ < ¢/ where
¢ and ¢ are both countable and have the same finite length.

LEMMA 2.2, Let pt be a countable multiplicity type of finite
length n.

(1) If n#1, then p < &, (1)

(ii) If p, = 0, then p = e, (1t,).

(iil) If p, # 0, then p = &,(1,).

Proof. All three statements are obvious for n = 0, so assume
n # 0. To prove (i), let Ae T(p); A = S(4; F') where {A4; F)e K(p).
Let F, be the set of n-ary operations in F and let fe F,. Define a
new n-ary operation f’ as follows.

For each © = {&,, +++, %,y A, [{#,, -+, x,._o}] is countable, so
we write [{®,, -+ -, ©,_,}] = {&°, &, -+, 2%, ---} in such a way that 2° = =,
and if the set is infinite then all elements in the listing are distinect,
while if the set is finite, of power N, then we require that x° = z"¥
for all £ = N. For each xic[{x,, +--,%,_.}] we define

f,(xm vy Bysy wl) = gttt
Finally we define
f’(xOy cery Lygy xn—l) = f(x()y ety Tyegy xn—l)

if Ly & [{xm Y xn—z}]'

Letting F' = (F,\{f}) U{f'}, it is routine to verify that A =
S(4; F') e T(e.(t,)), whence p < e,(1,).

If n # 1, then (ii) follows at once from (i), while (ii) is trivial if
n =1, (iii) is a ready consequence of (ii) and Lemma 1.3.

COROLLARY. Let ¢t and [ be countable multiplicity types with
W) =Uy)=m<oco. Then p =< if and only if the following
hold:

(1) t accepts u;

(i) g = o

(iii) <y, > E, .

Proof. By Theorem 1.2, it suffices to show that (i)-(iii) imply

p <. If pand g are compatible, the corollary is immediate from
the lemma, If g and p are not compatible, then by (i) we must
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have p, = 0, whence by the lemma, p=¢,(y,) and ¢ =¢, (). If
n # 1, then the corollary follows directly from (i) of the lemma, so
let us assume n =1. If g, < pf we have &(p) < (¢, + 1) < e,(p)),
so p=<p. If po=p =%, then <y by Lemma 1.4, By (iii)
there are no further possibilities, so the corollary is proved.

To simplify the consideration of multiplicity types having infinite
length, we make the following definition.

DEFINITION. For % an integer and m an infinite cardinal, the
multiplicity type {,(m) is defined as follows. ({,(m)); =0 for 7 < m,
and ({.(m)); = m for 7 > n. The multiplicity type Z,(m) is defined to
be the sum of ¢, and £, (m). &(m) and Z(m) will be denoted simply
by ¢(m) and Z(m) respectively.

LEmMMA 2.3. Let p be a countable multiplicity type of infinite
length. If p, =0, then p = {(W); of to # 0, then p1 = Z(N).

Proof. Suppose z, = 0. Clearly ¢ < {(W,). Let I be the set of
integers at which g has nonzero entries, and write

I= {noy%u sy Ny "'}
such that n, < n,,,. By Lemma 2.1,

€1, (Ro) = €441, a0d 80 L(Wo) = X (6(Wo) [ £ > 0)
= 21 (&, (R [ £ > 0)
= 2 Gy [ B> 0)
=l k>0 = 1.

If p¢, + 0, we may assume by Lemma 1.3 that g, =1, whence the
statement follows readily from the above.

COROLLARY. Let p and ' be countable multiplicity types of
nfinite length. Then p < ¢ of and only +f (' accepts p.

Proof. The corollary is a trivial consequence of the lemma.

Combining the previous three corollaries, we now completely de-
scribe the relations < and = among countable multiplicity types,
thereby obtaining, for these multiplicity types, the converse of
Theorem 1.2,

THEOREM 2.1. Let 1 and ' be multiplicity types with p coun-
table. Then p <t if and only if the following hold:
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(i) 2 accepts

(1) W) = Up);

(iii) Up) = W) = n < < implies p, < p;
(iv) <y, p>eE.

Proof. In view of Theorem 1.2 and the three corollaries above,
it suffices to show that (i)-(iv) imply g < ¢/ when ¢ is not countable.
If we define p* by pf = g if p; < W, and pf = W, if ¢ > W,, then
p* is countable and (i)-(iv) hold with p¢* in place of ¢/. Thus g < p*,
whence p¢ < ' by transitivity.

COROLLARY. If ¢ and p are countable multiplicity types, then
pr = of and only if the following hold:

(i) p and ' are compatible;

(i) L) = Ue);

(iil) Up) = n < o tvmplies p, = .

Thus we actually have a set of “normal forms” for countable
multiplicity types. That is, every countable multiplicity type is
equivalent to precisely one multiplicity type of the form ¢,(m), &,(m),
(W), or Z(3,), and the ordering among these forms is easily observed.
We shall exhibit two classes, .4, and _7"*, of multiplicity types,
each of which will serve as a class of normal forms for all
multiplicity types. Further, the class _#; will be seen to contain
the countable normal forms listed above.

B. Multiplicity types of finite length and minimal normal form.
We now show that the conditions of Theorem 1.2, along with a fifth
condition, characterize ¢ < y/ when ¢ has finite length.

THEOREM 2.2. Let p and (' be multiplicity types and suppose
Y has finite length. Then p < ' if and only if the following hold:

(i) ¢ accepts v;

(i) U = Uw);

(i) Up) = U) = n implies pr, <

(iv) <y, pekE;

(v) For every k such that p, > Y, there is a kK =k with
M = Mo

Proof. By Theorem 2.1, we may assume g is not countable. To
see that (i)-(v) imply g < ¢, simply decompose each of p and g into
the sum of a countable multiplicity type and an uncountable multi-
plicity, then apply Theorem 2.1 to the countable parts and (v) to the
uncountable parts.
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Conversely, suppose ¢ < #/. In view of Theorem 1.2, we need
verify only (v). If p, > W, then g, < s(p) < s(¢/') by Lemma 1.3, so
there must be some integer 0’ such that p, < p¢f.

Let & > 0 such that p, > W,. Let A be a set of cardinality g,
and let CZ A,|C| =k. By Lemma 1.2, we have e T(p) if g, = 0,
where % = {A}U{B|C £ B < A}. We shall assume g, = 0; if p, = 0,
simply choose p € A\C and use in place of 2 the family 2, of Lemma
1.2,

Now, p < ¢ implies % = S(A4; F') for some {A; F)e K(¢'). Let
F*={f|fePF,f is m-ary for some m = k}. (Note that F'* is non-
void by (ii).) Let A* denote the subalgebra generated by C in the
algebra {A; F*>. We show that A* e ; clearly it suffices to show
that A* is closed under F\F'*, Let fe F\F*; then f is m-ary for
some m < k, and so, for x, +--,z,_,€ A*, we have {z, ---, 2, }e¥,
whence f(%y, +++, ) € A*. Thus A* ¢ ¥, and it follows that A* = A.
Therefore YW, < ¢, = |A*| S [ C|-| F*|- Yo = (¢ |m = k), and so
Mt =< i for some k' = k.

We shall now begin to define normal forms which generalize those
for countable multiplicity types. We shall ultimately give a complete
definition of a special class .7, of multiplicity types, but for now
we define only what we mean by pe_+; if p is of finite length.

DerFINITION. If £ is of finite length, we say that pge._#s7 if and
only if I(¢) = 0 or the following hold:

(i) Either g, = s(¢t) > g, for all ¢> 0, or ¢, <1; if p, < W,
then g, < 1.

(ii) If 0 < pr; = Wy, then 7 =0 or 7 = I(p).

(ili) If 0 <4< j then g, =0 or p; > p;.

Note that the normal forms obtained for countable multiplicity
types of finite length are members of _77.

THEOREM 2.3. FEwery multiplicity type of finite length is equiv-
alent to a unique member of V.. Furthermore, if pe 4, and p
has finite length, then [t is minimal im the pointwise ordering of
all multiplicity types equivalent to it.

Proof. TFirst we show the existence of the representation, and
then the uniqueness. Let g have finite length n». Clearly we may
assume n = 0. If pis countable, then by Lemma 2.2 we are done. So
suppose p is not countable, and let m, be the largest integer such that
tny = max {g;[1 = 0, ; > M}, Let m, be the largest integer such
that p,, = max {¢; |7 > m,, ¢; > W}, Continue this process until it
terminates, say with m,, and let M = {m,, ---, m,}. Define p, as
follows. F¥or ¢ >0, let (¢,);=p; if ieM or ¢ =mn, and (x,); =0
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otherwise. Finally, let

0if g6, =20
(ty)o = {1 if ¢, 0 and m, = 0
o if m=0.

It is evident that p = p,e._#,. Now decompose each of g and
into the sum of a countable multiplicity type and an uncountable
multiplicity type. Clearly the countable part will be the same in each
case, so it remains to show that ap < > (e,(¢t,)|me M), where apu
is defined by (ap);, = p; if p; > W, and (ay); = 0 otherwise.

For each k < ¢q, we define a multiplicity type p* as follows.
=, if © < m, and p! =0 otherwise. For 0 < k =< g, define p*
by: pf = p; if m,_, <1 £ m,, and pf = 0 otherwise. Thus, for m,e M
it is clear that s(¢*) = p,,, whence p* <e¢, (¢,) by Lemma 1.1.
Therefore

ap =3 (et | t: > o)
< S (0= k=g
< S (En(tn)|meM) and so p=p,.

To show uniqueness, suppose ¢ and ¢ are members of .4} having
finite length, and px = z/. We show that p# = g/, Let n = l(#). By
Theorem 1.2, g and g are compatible, I(¢') = n, and g, = ¢,. By
prior results we may assume that » == 0 and that g is not countable.
Suppose ¢ = ¢ and let k& be the largest integer such p, # p;. With-
out loss of generality, we suppose p, > ft, and consider two cases.

Case 1. Suppose k=0 and py, <1, Clearly g, +0, so p, =1,
whence ;) = 0. But this contradicts the fact that p accepts .

Case 2. Suppose either k¥ = 0 and g, > 1, or k0. In either
event, p, > p; for all j > k. Noting that g, = g, implies k -« n, we
have p, > W, so Theorem 2.2 asserts the existence of an integer
k' =k such that g, < g, If k =k this is a clear contradiction,
while if &’ > k then, by the maximality of k, ¢, = pth, < tth, a con-
tradiction, whence p = g/, It is evident from the construction of .,
that the minimality statement holds, and so the theorem is proved.

C. Multiplicity types of infinite length. We now complete the
definition of the class 7.

DEFINITION. If g has infinite length, we say that pge_s7 if and
only if the following hold:

(i) Either g, = s(¢) > p,; for each 7 >0, or p, < 1.

(ii) If 0 < p; < W, then ¢ =0,
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(iii) There is an integer r = r(x) > 0 such that:

(ilia) For ¢+ < r,0 < ¢ < j implies g; = 0 or p; > p;.

(iiib) For all ¢ = r, 1, = p..

(ifie) g,y > p, if > 1,

We shall show that every multiplicity type of infinite length has
a unique representation in _#7.

LEMMA 2.4, Let pn and p be multiplicity types and suppose
that for each © > 0 either p; =0 or p} is infintte. Then p <y if
and only if (' accepts p and p, < >, (¢i|1 = k) for all k.

Proof. Suppose p' accepts g and g, < > (¢i|¢ = k) for all £,
and define p* as follows. pf = >, (¢il4 = k) for &k + 0, and

0 if p,=0

o = s(¢’) otherwise .

Clearly it suffices to show that u* < ¢/. To this end, let A e T(x*);
A = S(A; F') where {4; F)>e K(#*). For each k, let

Fo={f1feF, [ is k-ary}.

For each k such that pf =0, we may write F, = U (F,:|t = k),
where | F, ;| = p¢j. For each k>0, for each ¢ =k, and for each
f eF,, define an i-ary operation f* by

fi(xO’ ) xi—l) - f(xt): °t Yy xk-—-l)

for all «,, ---,2;_, € A. If pf = 0, then for each ¢ = 0 and for each
ce A which is the value of a nullary operation in F,,, define an -
ary operation having the constant value ¢. Letting F’ denote the
set of operations defined in this way, it is routine to check that
A = S(A4; F')e T(y'), whence p* < /. The proof of the converse
statement is omitted because it is very similar to the proof that
¢ <t implies (v) in Theorem 2.2.

COROLLARY. Let p and (' be multtplicity types and suppose ('
has infinite length and is @ member of 4. Then p =t if and
only if p accepts p and for each k there is a k' = k with p, < .

Proof. Since p’ satisfies the hypothesis of the lemma, one need
only verify that for ¢’ e _+7, the second condition of the lemma is
equivalent to the second condition of the corollary.

THEOREM 2.4. Ewvery multiplicity type of infinite length s
equivalent to a unique member of 5.
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Proof. First we show the existence of the representation and
then the uniqueness. Since Lemma 2.3 gives the representation for
countable multiplicity types of infinite length, let # be an uncountable
multiplicity type of infinite length.

If {¢]p; = s(p)} is either void or infinite, let g, = {(s(p)) if g, = 0,
and p, = C(s(p)) if g, 0. Clearly ¢, € #; and p = p, by Lemma 2.4,

If, however, 0< | {i| /= s(2)} | < R, let m, = max (i | ft; = s()},
and let s,(g¢) = 3 (|t > my). If {i|p; = s(¢)} is either void or in-
finite, define 'y and z' as follows.

1/]@:”@.if’iémoandlﬂi:()ifi>mo;
pi=01f i <m and g = if 0> m, .

Let 'z, be the unique member of _77, equivalent to 'x. Noting that
¢ = Lu(s(p)) by Lemma 2.4, we define p, = ‘g, + (. (si(2)), whence
p="pn+ ¢ =p, and it is clear that p, e #;.

IE 0 < [{i|ft: = s.()} [ < W, let m, = max {i] g = s,(10)} and let
S(pe) = > (ps] T > my). If {i|p; = sy(p)} is void or infinite, define *u
and /¢ analogously to ‘¢ and ¢* above, and define 1, = 2t + {0 (so(22)).

Proceed in this manner, defining m, and s,,,(¢) if s,(#) has been
defined and 0 < |[{¢|p; = su()}]| < Wo. Since a strictly decreasing
sequence of cardinals must be finite, this process terminates with
some n such that g, = "g, + £, _(s.()).

To show uniqueness, we suppose x# and g’ are members of _77
having infinite length, such that g = z/. In three steps, we show
that g = g,

(A) p; = pi for all 4 = max {r(y), »(¢")}. For, suppose p; + y;
for such an 7. Without loss of generality, we may assume p; > pl.
By the corollary to Lemma 2.4, there is an ¢’ = ¢ such that g, < 4.
Now ' = 7 = r(¢) implies g}, = pj, whence p; > ¢}, a contradiction.

(B) r(¢) = r(¢'). For, supposing r(y) + r(¢') we may assume,
without loss of generality, that »(x) > »(¢'). Then »(x) > 1, so by
(iiie) in the definition of .47, we have p, > p,.,, where k = r(p) — 1.
By (A), we have p,., = pt,,,. But, since k= r(¢'), we must have
Mha1 = M. Thus p, > pp, = po; for all 7 = k, and this contradicts the
corollary to Lemma 2.4.

(C) p; = for all © < r(¢) = r(¢'). This can be proved by an
argument almost identical to the uniqueness proof in Theorem 2.3.
Combining (A), (B), and (C), we have ¢ = ¢’ and the theorem is proved.

3. Maximal normal form and infinitary algebras. We now
define a class .7 * of multiplicity types with the property that every
multiplicity type has a unique representation in _#~* and every member
of _#7* is maximal in the sense in which every member of .7, hav-
ing finite length is minimal.
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DErFINITION. Given a multiplicity type g, define the multiplicity
type p#* by: (#*), = 0 if g, =0, and (p*); = p; + Wo- 22 (1515 > 1) if
©t>0o0rif i =0 and g, # 0. We let 4+ * be the class of all multi-
plicity types having the form pg* for some .

THEOREM 3.1. Ewvery multiplicity type is equivalent to a unique
member of _4"%*; specifically, for every p, u* is greatest in the point-
wise ordering of all multiplicity types equivalent to fe.

Proof. Consider first a multiplicity type of the form ¢;(m). If
m< W, then ¢;(m)= (¢;(m))* by Theorem 2.1. If m > W, then
g;(m) = (g;(m))* by Lemma 1.1.

For any g, let g =3 ((e;(;)*|¢; = 0). Then p = p* and a
straightforward computation shows that pf = p*,

To prove maximality, it suffices to show that for compatible
multiplicity types ¢ and g/, if g’ <y, then p < pf for all k. If
() = l(¢) = n < , then by Theorem 1.2 p, < p, = pk. Thus, by
Theorem 1.2, it suffices to prove that g < pi for all & < l(x).

Suppose 0 < I(z) and g+ 0. Then g, = 0 because ' accepts
u, and so s(¢#*) = puy = W, whence by Lemma 1.3, ¢/ < ¢ = p* im-
plies 1 = s(p) = s(¢*) = p.

Now suppose p; = 0, where 0 < & < I(¢#). Then pf = W, so we
may assume ft;, > W,. Thus &k < p and following the proof of (v) in
Theorem 2.2, we may apply Lemma 1.2 to reach the desired conclusion.

The uniqueness statement is a direct consequence of the maxim-
ality statement and the easily observed fact that g = p* for all
pre 4%, Thus the theorem is proved.

Finally we mention that many of our preliminary results can
easily be extended to the case of multiplicity types of algebras having
infinitary operations. Using methods similar to those presented here,
the author has found maximal normal forms for a wide class of in-
finitary multiplicity types. However, the problem of characterizing
the ordering and finding normal forms for all infinitary multiplicity
types remains open.
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