A REMARK ON INTEGRAL FUNCTIONS OF SEVERAL COMPLEX VARIABLES

KYONG TAIK HAHN
A REMARK ON INTEGRAL FUNCTIONS OF SEVERAL COMPLEX VARIABLES

KYONG T. HAHN

Let R_ν, $\nu = I, II, III, IV$, be the 4 types of the classical Cartan domains and let $\mathcal{C}(R_\nu)$ denote the class of solutions u of the Laplace's equation $\Delta u = 0$ corresponding to the Bergman metric of R_ν which satisfy certain regularity conditions specified below.

In this note we give a distortion theorem for functions which are holomorphic in R_ν and omit the value 0 there, and an application which leads to an interesting property of integral functions omitting the value 0. The tools used here are the generalized Harnack inequality for functions in the class $\mathcal{C}(R_\nu)$ and the classical theorem of Liouville for integral functions.

Let D be a bounded domain in the space C^p of p complex variables $z = (z', \cdots, z^p)$. The Laplace-Beltrami operator corresponding to the Bergman metric of D is

$$\Delta_D = T^{a\overline{\beta}} \partial a \partial \overline{b} \partial \overline{c} \partial \overline{d};$$

here $T^{a\overline{b}}$ are the contravariant components of the metric tensor $T_{a\overline{b}} = \partial a \log K_D/\partial z^a \partial \overline{z}^b$ and $K_D = K_D(z, \overline{z})$ is the Bergman kernel function of $D[1]$. Let $\mathcal{E}(D)$ be the class of real functions u satisfying:

(a) u is continuous in D. (b) In $\overline{D} - b(D)$, u is of C^2 and satisfies $\Delta_D u = 0$, where $b(D)$ is the Bergman-Šilov boundary of D. It is well-known that the class $\mathcal{E}(D)$ solves the Dirichlet problems for certain types of bounded symmetric domains D ([3], [4]). These are the classical Cartan domains. Let z be a matrix of complex entries, z' its transpose, z^* its conjugate transpose and I the identity matrix. By $H > 0$ we mean that a hermitian matrix H is positive definite.

The first 3 types are defined by $R_\nu = [z : I - zz^* > 0], \nu = I, II, III,$ where z is an $m \times n$ matrix ($m \leq n$) for R_I, an $n \times n$ symmetric matrix for R_{II} and an $n \times n$ skew symmetric matrix for R_{III}. The fourth type R_{IV} is the set of all $1 \times n$ matrices satisfying the conditions:

$$1 + |zz'|^2 - 2zz^* > 0, |zz'| < 1,$$

or

$$1 > \overline{zz'} + |(\overline{zz'})^2 - |zz'|^2|^{1/2}. $$

By $\|z\|_e$ we denote the norm of the matrix $z \in R_\nu$, i.e., $\|z\|_e = \sup_{|x| = 1} |xz|$, where x is an n-dimensional vector and $|x|$ the length.
of x. It can be shown that $\|z\|_v$ is the largest among the positive square roots of the characteristic roots of the hermitian matrix zz^*, and $R_v = [z: \|z\|_v < 1]$ ([2]). For any $r > 0$ we write

$$R_v(r) = [z: r^2 I - zz^* > 0] = [z: \|z\|_v < r].$$

2. Distortion theorems. A generalization of Harnack’s inequality to functions of the class \mathcal{E} for the classical Cartan domains has been obtained in [6] and it is contained in the following lemma.

Lemma 1. If $u \in \mathcal{E}(R_v(r))$ is nonnegative on $b(R_v(r))$ then on $R_v(r)$

$$u(0)Q_v(r, z) \leq u(z) \leq u(0)Q_v(r, z)^{-1}, Q_v(r, z) = \prod_{k=1}^{n_v} \left(\frac{r - \lambda_k}{r + \lambda_k} \right)^{N_v},$$

where

$$n_1 = m, \quad n_{II} = n, \quad n_{III} = [n/2], \quad n_{IV} = 2;$$

$$N_1 = n, \quad N_{II} = (n + 1)/2, \quad N_{III} = n - 1$$

if n is even and $= n$ if n is odd, $N_{IV} = n/2$; $\lambda_1, \lambda_2, \ldots, \lambda_{n_v}$ are the nonnegative square roots of the characteristic roots of the hermitian matrix zz^* for $z \in R_v(r)$, and $r > \lambda_1 \geq \cdots \geq \lambda_{n_v} \geq 0$.

We remark that n_v is the rank of the domain R_v, and $p_v = n_vN_v$ gives the (complex) dimension of R_v.

A simple application of the above lemma leads to the following distortion theorem for holomorphic functions.

Theorem 1. Let $f(z)$ be a holomorphic function in $\overline{R_v(r)}$ which omits there the value 0. Then on $R_v(r)$

$$|f(0)||Q_v(r, z)m_v(r, f)^{-1-Q_v(r, z)} \leq |f(z)| \leq |f(0)||Q_v(r, z)M_v(r, f)^{-1-Q_v(r, z)}$$

where $m_v(r, f) = \min_{|z|=r} |f(z)|$, $M_v(r, f) = \max_{|z|=r} |f(z)|$ and $Q_v(r, z)$ is given in Lemma 1.

Proof. Since $f(z)$ is holomorphic and omits the value 0 in $\overline{R_v(r)}$ the maximum principle of a holomorphic function yields:

$$m_v(r, f) \leq |f(z)| \leq M_v(r, f), \quad z \in \overline{R_v(r)}.$$

Let $g_1(z) = f(z)/m_v(r, f)$ and $g_2(z) = M_v(r, f)/f(z)$. Since $m_v(r, f) \neq 0$ $g_1(z)$ is holomorphic in $\overline{R_v(r)}$ and $|g_2(z)| \equiv 1$ in $\overline{R_v(r)}$. Therefore, $u_1(z) = \log |g_1(z)|$ belongs to $\mathcal{E}(R_v(r))$ and satisfies all the hypotheses of Lemma 1. Applying the first inequality of (2) to $u_1(z)$ and the second inequality to $u_2(z)$ we have inequalities (3).
Specializing Theorem 1 to the hypersphere $H(r) = \{ z : |z| < r \}$, $|z|^2 = |z_1|^2 + \cdots + |z_n|^2$, which can be obtained from $R_1(r)$ by taking $m = 1$, we obtain

COROLLARY 1. Let $f(z)$ be a function which is holomorphic in $H(r)$ and continuous in $\overline{H(r)}$. If $f(z)$ omits the value 0 on $H(r)$ then on $H(r)$.

\[(4) \quad |f(0)|^{Q(r,z)} m(r,f)^{1-Q(r,z)} \leq |f(z)| \leq |f(0)|^{Q(r,z)} M(r,f)^{1-Q(r,z)}, \]

where $m(r,f) = \min_{|z|=r} |f(z)|$, $M(r,f) = \max_{|z|=r} |f(z)|$ and $Q(r,z) = (r - |z|)^n/(r + |z|)^n$.

A slight modification of the above theorem is the following.

THEOREM 2. Let $f(z)$ be a holomorphic function in $R_1(r)$ which omits there the value 0. Then for any $\delta > 0$

\[(5) \quad \|[f(0) | m_r(r,f)^q]^{1/(1+\delta)} \leq |f(z)| \leq \|[f(0) | M_r(r,f)^q]^{1/(1+\delta)} \]

holds for all $z \in R_1(r_\delta)$, where

\[r_\delta = \frac{t_\delta - 1}{t_\delta + 1} r, \quad t_\delta = (1 + \delta)^{\nu^{-1}}. \]

Proof. For any $\delta > 0$ $f(z)$ is holomorphic in $\overline{R_1(r_\delta)}$ and omits the value 0. By Theorem 1,

\[(6) \quad |f(0) | m_r(r,f)^q M_r(r,f)^{1-q} \leq |f(z)| \leq |f(0) | m_r(r,f)^q M_r(r,f)^{1-q} \]

for $z \in R_1(r_\delta)$. Let $\delta_0 > 0$ be fixed arbitrarily. Since $r_\delta(\delta) \to r$ as $\delta \to \infty$, we have

\[(7) \quad |f(0) | m_r(r,f)^q M_r(r,f)^{1-q} \leq |f(z)| \leq |f(0) | m_r(r,f)^q M_r(r,f)^{1-q} \]

for $z \in R_1(r_\delta)$, $r_\delta = (t_\delta - 1)r/(t_\delta + 1), t_\delta = (1 + \delta_0)^{\nu^{-1}}$. On the other hand, if $z \in R_1(r_\delta)$ then $||z||_\nu < r_\delta$ or $\{ (r - ||z||_\nu)/(r + ||z||_\nu) \}^{\nu} > 1/(1 + \delta_0)$. Since $||z||_\nu \geq c_k, k = 1, \ldots, n, Q_z(r,z) > 1/(1 + \delta_0)$. Combining this with (7) and the inequalities: $m_r(r,f) \leq |f(z)| \leq M_r(r,f)$, we obtain the theorem.

3. Main theorem. The following lemma is a simple application of Theorem 2.

LEMA 2. Let $\{ f_k \}$ be a sequence of holomorphic functions in $R_1(r)$ such that f_k omits the value 0 there. Suppose that for some $\delta > 0$ there exists a $A > 0$ such that
Then for \(z \) \(\nu^2 (t_\nu - 1)r/(t_\nu + 1), \) \(t_\nu = (1 + \delta)^{\nu^{-1}}, \)

\[|f_k(z)| \leq A^{(1+\delta)^{-1}}, \quad k = 1, 2, \ldots. \]

We observe that the hypothesis that each \(f_k \) omits the value 0 is essential for the validity of Lemma 2, as is shown by the following example in \(C^2. \) Let

\[f_k(z^1, z^2) = k(z^1 + z^2 + 1/k^2), \quad k = 1, 2, \ldots \]

be a sequence of holomorphic functions in the unit hypersphere \(H. \) A formal computation shows that

\[M(1, f_k) = ((3k + 1/k)(k + 1/k))^{1/2}, \quad f_k(0) = 1/k. \]

For \(\delta = 1 \) we find \(A = 8^{1/2}. \) But no \((z^1, z^2)\) with \(|z^1|^2 + |z^2|^2 < 1\) satisfies (9).

Using Lemma 2 and the classical theorem of Liouville on integral functions we prove:

Theorem 3. Let \(f \) be an integral function in the space \(C^\nu \) omitting the value 0, where \(\nu = mn, n(n+1)/2, n(n-1)/2, n \) if \(\nu = I, II, III, IV, \) respectively. If there exists a \(\delta > 0 \) and a monotonically increasing \(\{s_k\} \) of positive numbers without bound such that for

\[\tau > 2(1 + \delta)^{\nu^{-1}}/((1 + \delta)^{\nu^{-1}} - 1) \]

\[\lim_{s_k \to \infty} m(s_k, f)M(s_k, f)^\delta < \infty, \]

then \(f \) is constant.

Proof. Let \(z_k \) be a point on \(||z||_\nu = s_k \) such that

\[\zeta = \zeta_k(z) = (z - z_k)/(\tau - 1)s_k, \quad k = 1, 2, \ldots \]

Then (12) defines a biholomorphic mapping of \(C^\nu \) for each \(\delta > 0. \) Hence, \(g_k(\zeta) = f(\zeta_e^{-1}(\zeta)) \) is again an integral function in \(C^\nu \) which omits the value 0. Further, the set \([z: ||z - z_k||_\nu < s_k(\tau - 1)]\) is contained in \(R(\tau s_k), \) and hence,

\[M(1, g_k) \leq M(s_k, f), \quad k = 1, 2, \ldots, \]

Since \(|g_k(0)| = |f(z_k)| = m(s_k, f), \) from (11) we have

\[\lim_{k \to \infty} |g_k(0)| M(1, g_k)^\delta < \infty. \]

Hence there exists a number \(A > 0 \) such that
By Lemma 2,

\[|g_k(\zeta)| \leq A^{(1+\delta)^{-1}}, \quad k = 1, 2, \ldots \]

for all

\[\zeta \in R_{\nu}\left(\frac{t_{\nu} - 1}{t_{\nu} + 1}\right), \quad t_{\nu} = (1 + \delta)^{\nu^{-1}}. \]

This together with (12) implies that \(f(z) \) is bounded by \(A^{(1+\delta)^{-1}} \) in \(R_{\nu}(s_{\nu}\sigma_{\nu}) \) for each \(k \), where \(\sigma_{\nu}(\delta) = (t_{\nu} - 1)\left(\tau - 1\right)/(t_{\nu} + 1) - 1 \). Since \(\sigma_{\nu}(\delta) > 0 \) for \(\tau > 2t_{\nu}/(t_{\nu} - 1) \), \(\{R_{\nu}(s_{\nu}\sigma_{\nu})\} \) covers the entire space \(C^{p_{\nu}} \).

The theorem now follows from the theorem of Liouville.

REFERENCES

Received July 24, 1967. This research was supported partially by NSF Grant GP-8392.

The Pennsylvania State University
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. ROYDEN
Stanford University
Stanford, California

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. R. PHELPS
University of Washington
Seattle, Washington 98105

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY
CHEVRON RESEARCH CORPORATION
TRW SYSTEMS
NAVAL WEAPONS CENTER

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California 90024.

Each author of each article receives 50 reprints free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners of publishers and have no responsibility for its content or policies.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leonard Asimow, Universally well-capped cones</td>
<td>421</td>
</tr>
<tr>
<td>Lawrence Peter Belluce, William A. Kirk and Eugene Francis Steiner,</td>
<td></td>
</tr>
<tr>
<td>Normal structure in Banach spaces</td>
<td>433</td>
</tr>
<tr>
<td>William Jay Davis, Bases in Hilbert space</td>
<td>441</td>
</tr>
<tr>
<td>Larry Lee Dornhoff, p-automorphic p-groups and homogeneous algebras</td>
<td>447</td>
</tr>
<tr>
<td>William Grady Dotson, Jr. and W. R. Mann, A generalized corollary of the Browder-Kirk fixed point theorem</td>
<td>455</td>
</tr>
<tr>
<td>John Brady Garnett, On a theorem of Mergelyan</td>
<td>461</td>
</tr>
<tr>
<td>Matthew Gould, Multiplicity type and subalgebra structure in universal algebras</td>
<td>469</td>
</tr>
<tr>
<td>Marvin D. Green, A locally convex topology on a preordered space</td>
<td>487</td>
</tr>
<tr>
<td>Pierre A. Grillet and Mario Petrich, Ideal extensions of semigroups</td>
<td>493</td>
</tr>
<tr>
<td>Kyong Taik Hahn, A remark on integral functions of several complex variables</td>
<td>509</td>
</tr>
<tr>
<td>Choo Whan Kim, Uniform approximation of doubly stochastic operators</td>
<td>515</td>
</tr>
<tr>
<td>Charles Alan McCarthy and L. Tzafriri, Projections in L_1 and L_∞-spaces</td>
<td>529</td>
</tr>
<tr>
<td>Alfred Berry Manaster, Full co-ordinates of RETs</td>
<td>547</td>
</tr>
<tr>
<td>Donald Steven Passman, p-solvable doubly transitive permutation groups</td>
<td>555</td>
</tr>
<tr>
<td>Neal Jules Rothman, An L^1 algebra for linearly quasi-ordered compact semigroups</td>
<td>579</td>
</tr>
<tr>
<td>James DeWitt Stein, Homomorphisms of semi-simple algebras</td>
<td>589</td>
</tr>
<tr>
<td>Jacques Tits and Lucien Waelbroeck, The integration of a Lie algebra representation</td>
<td>595</td>
</tr>
<tr>
<td>David Vere-Jones, Ergodic properties of nonnegative matrices. II</td>
<td>601</td>
</tr>
<tr>
<td>Donald Rayl Wilken, The support of representing measures for $R(X)$</td>
<td>621</td>
</tr>
<tr>
<td>Abraham Zaks, Simple modules and hereditary rings</td>
<td>627</td>
</tr>
</tbody>
</table>