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Let L. = L. [0, 1] be the real Banach space of essentially
bounded Lebesgue measurable functions on the unit interval
I=10,1] with the essential sup-norm. A positive linear op-
erator T: L..— L.. is called doubly stochastic if (1) T'1 =1,

(2) S Tfds= S fds where ~ denotes Lebesgue measure on the
I I

unit interval, We denote the set of doubly stochastic opera-
tors by <&, It follows that || T'||. = 1 for each Te &7, Let
® be the subset of <7 induced by measure preserving maps
on the unit interval and @, the subset of @ induced by in-
vertible measure preserving maps. For each T,c® we have
T, f(x) = fle)x), f€ Lo.. A regular probability measure » on
the unit square I X I is called doubly stochastic if #(AXI)=
wIx A)=,(A) for each Ac <% (I), the Borel field of the
unit interval I, Then there is a one-to-one correspondence be-
tween doubly stochastic operators and doubly stochastic meas-
ures, If we denote such a correspondence by T < u,, then

Slgw)Tf(oc)/(dx) - S @ Wrandl, 4, fge L.

Thus we will identify each Te & with the corresponding
doubly stochastic measure .7 € @, the doubly stochastic measure
e = pr, is singular with respect to Lebesgue measure /% on
the unit square. Let L be the set of all T'c <7 such that .

is absolutely continuous with respect to -2, i.e., ur < 72, The
metric

P(T,R)Zsup{SIITf—Rfld/: llfl\ooél}, TRer

defines a topology on &2 which will be called the uniform
topology. The purpose of this paper is to show that each
Te L can be approximated by a convex combination of opera-
tors from @ in the uniform topology, called the uniform
approximation theorem,

It is known [3] that every T € & arises from a Markov transition
function P(-,) as Tf () = S P(z, dy)f (), f € L. and S Pz, A)s(dz) =
I I
/(A) for Ae &#(I). For each Te = there is a unique T* € & such
that

| s@Tr@ a0 = | f@T 9@ ),  FoeL..
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T* is called the adjoint of 7. If T« p,, then T* — p,. where
pr(A X B) = p(B x A), A, Be Z(I). If TelL, then p, € % so by
the Radon-Nikodym theorem, there is an obvious one-to-one corre-
spondence between the elements of L and those ke L,(I x I), the real
Banach space of Lebesgue integrable functions on I x I, such that

k(x, y) = 0 and Slk(x, Msdy) = 1 a.e. (») and Ik(ac, Ys(dx) =1 a.e.

(). Henceforth we often identify each 7T ¢ L with the corresponding
element ke L,(I x I), which is called the kernel for T. Thus for each

Te L we have Tf(w) — S k@, 4)f )< (dy), f € L. Hereafter D} will
I

denote a dyadic interval of the form [(¢ — 1)/27, ¢/2"),1 < 4 < 2" and
D; =[1—1/2",1]. 1, denotes the characteristic function of the set
A. The operators U, defined by the kernels of the form wu,(z,y) =
2" 3% 1pppn(®, ¥), m = 1,2, -+, are often called the conditional ex-

pectation operators. Then U,eL and U,f=2">2, <S . fd/)lpzz,
Dy

f e L..

By the weak (strong) topology in & we mean the weak (strong)
operator topology in < {2, 8]. We note that the relative uniform
topology on @, coincides with the uniform topology on @, introduced
by Halmos [5]. We will also define the norm topology on < by the
metric

T, R) = sup {| p1(A) — pe(A)[: Ae ZUI x D)}, T,ReZ,

where <#(I x I) denotes the Borel field of I x I. We note that the
norm topology on < is the usual norm topology on signed measures
[4] restricted to the doubly stochastic measures.

Let L, = L,[0,1],1 < p < =, be the real Banach space of p-th
power Lebesgue integrable functions on the unit interval with the
usual norm. We denote the unit ball of L, by B,. For each p,
1< p< o, L, contains L.. as a dense subset in the L,-norm and so
we can extend each Te & from L. to L,. From Jensen’s inequality
[3], it follows that || T||, =1,1 < p < «. This extension will be
assumed hereafter. For notational convenience we write S fds as S .
We work with real functions on I only. !

Certain preliminary result regarding the sets @ and L are given
in §1. The main results of this paper are stated in § 2. We show
the uniform approximation theorems for L and a sharper form of the
strong approximation theorem [2, 8] by means of a concrete approach.
A simpler proof is given to the weak approximation theorem [2].

1. Preliminaries. The set @ plays an important role in the
study of &r. A characterization of @ is known [2]. We also add the
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following:
LEMMA 1.1. Let e: I — I be such that e(x) = . For each Te =,

Te@c—S(Te)Zz Sez.

Proof. The necessity of the condition is obvious. It remains to
show the sufficiency of the condition. We recall that for each T'e &
we have

Ti@) =\ f@)P@dy) , feL..
Suppose that for some x € I, (Te)*(x) = Te*(2), i.e.,

(Sle(y)P(x, dy)>2 = SI ()P (z, dy) .

It follows that the function ¢ is constant a.e. P(x, -), and so P(z, -) =

€ux(+), @ probability measure concentrated at some point ¢(x) of I.
If S(Te)2 = Sez, then by Jensen’s inequality [3]: (Te)* < T¢*, we

have (Te)X(x) = Te*(x) a.e.(s). Thus from the above discussion we

have P(x, -) = €,,)(+) a.e.,(#). @ is defined on I a.e.(s), but it can
be defined everywhere on I in the usual manner. Thus we have

Tf(x) = f(p@)), feLs.

Since T € &7, it follows that ¢ is measure preserving, and so 7 =
T,c.

It is known that <7 is metrizable and compact in the weak topol-
ogy [2]. The following argument also leads us to the assertion. By
identifying each element in & with the corresponding doubly stochastic
measure, we can topologize =2 by the subspace topology of the weak
* topology on C(I x I)*. By C(I x I) we mean the space of real con-
tinuous functions on I x I, and C(I x I)* is the dual space of C(I x I).
We call the topology on & so defined the weak * topology. By the
usual argument we can show that < is metrizable and compact in
the weak * topology. It is also straightforward to prove the equiv-
alence of the weak and the weak * topologies in <. It is interesting
to note that the metric topology defined by

w(T, R) = sup {| (A ¥ B) — p(A X B)|: A, Be 7 (I)},

where 7 (I) denotes the intervals of I, is equivalent to the weak
topology. Incidentally the metrics

s(T, R) = sup{| £,(A x B) — pt,(A x B)[: Ae Z(I), Be _#(I)}
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and u(T, R) = sup{| (A x B) — pz(A x B)|: A, Be & (I)} define topol-
ogies in < which are equivalent to the strong and the uniform
topologies respectively. We write 2%(<¢, 2% to denote =2 endowed
with the weak (strong, uniform) topology. The map T — T* defined
on 2%(=*) into itself is continuous. But this is not the case in &,
as we will show. TFirst we state without proof a well known fact.

LemmA 1.2. The following are equivalent.
(i) T,-“> T and S(Tng)z—aS(Tg)z for each g€ B..

(ii) T, —— T.

ProprosiTiON 1.1. The map T — T* defined on <&° into itself is
not continuous on @ — @, but is continuous on @*,

Proof. Given T € @ — @,, by @ = @7*: the closure of @, in the

strong topology [2], there is a sequence {7} in @, such that T, LN,
Since ¢ N @* = @,, we have T*¢ @, and so by Lemma 1.1,

S(Tn*e)2 = Sez > S(T*e)z , m=1,2 ...

It follows from Lemma 1.2 that T} - T* in the strong topology.

Suppose that T'e @* and T, %, T. Then T 2, T*c@ and for
each ge B, as n— oo,

lo =Tl Tzg 1k = | 770 Trg — [(140y = o

and so S(T;fg)z—» ng = S(T*g)z. Hence by Lemma 1.2, T* —> T*,
In view of Proposition 1.1, our Strong Approximation Theorem 2.2
is sharper than that of [2, 8]. We now prove

THEOREM 1.1. @ is a residual set in <™.
The proof follows from the following lemma.

LEMMA 1.3. The tdentity map T— T from <% to &° is con-
tinuous at T = T is in @,

Proof. (=) Suppose that T'e® and Tn—w—e T. We have for
each ge B,

r
|ZoT.0 < 1Ty Zagll = Nl 1111 g 1l = |o°
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and
STngg——e S(Tg)z = ng as m— oo

and so S(Tng)z—» ¢g® as n— . Hence from Lemma 1.2, Tn—s+ T.

(=) If T¢@, then from < = @7%: the closure of @, in the weak
topology [2], there is a sequence {7} in @, such that T, -2, T, Since
T ¢ @, we have from Lemma 1.1, S(Tne)2 = gez > S(Te)z, n=12 ...,
and thus T, -~ T in the strong topology.

Proof of Theorem 1.1. Since &% and <7° are metrizable spaces,
it follows from Lemma 1.8 that @ is a G, set in &2®. Furthermore,
2% is a complete metric space and @ is dense in &%, and thus @ is

a residual set in <.
Similarly we prove that @* is a residual set in =%. In the

remaining part of this section, we will discuss some properties of the
set L. The following lemma is obvious.

LEmMMA 1.4. (i) Each U, is a projection, i.e.,
u,=U, Uf=U,

(ii) Un—s—>I as n— oo, where I denotes the identity operator.
@iy) U, U,=U,U,=1U, if < m.

Sinece multiplication on < is jointly continuous in the strong
topology, we have for each Te &, U,,T—s——> T and UnTUn—L» T as
n— co, It is worthwhile to point out that o(U,,I) =2 1,n=1,2, ---,
Thus the uniform topology is strictly stronger than the strong topology.
It is easily shown that TeL™ — U,T—— T~ U,TU, — T. It
follows that L=L"Cc L* S L*=L"* = <. In Corollary to Theorem
2.4, we will show that the norm topology is strictly stronger than the
uniform topology, but it is not clear whether the same is true on the
set L. What is L=™? The question is not completely answered. But
we state the following:

THEOREM 1.2. L s nowhere dense in <*,

Proof. It will be enough to show that S(T, ) ¢ L~ for each ¢ > 0
and Te L™, where S(T,¢) = {R: p(R, T) <¢}. Let T, = U,TU,, be
such that o(T, T, ) <¢/2. Then S(T,,¢/2)cS(T,¢). Define @,;,0 <6< 1,
by @ = (1 — 8)T,, + 6I. Tt follows that @, —— T, as &— 0, and so
there is 0,,0 < 9. < 1, such that o(T,, @) < ¢/2. Thus
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Q;, € S(T,, €/2) c S(T, ¢) .
But we claim @, ¢ L. It follows from Lemma 1.4 that
U.Q,,=@1—-26)T, +90.U,, n=mn,,
and so U,Q;, — @, = 0(U, — I),n = m,. Since
oU,Qs,, @) 2 0.0(U,, I) 2. >0, nzmn,
we have U,Q,, » @,, in the uniform topology. Hence Q,, ¢ L™ and

S(T, ) & L.
We will prove

THEOREM 1.3. T C L™ < T(B..) is strongly conditionally compact
wn L.

Proof. (=) Suppose T e L. It will be enough to show that
T(B.) is sequentially compact in the L,-norm. Let {f;} be any se-
quence in B.. Let T, = U,TU.,,n=1,2, +--. Then T,—> T as
n— oo, Since the range of T, is contained in a finite dimensional
subspace of L,, T, is a compact operator in L, [9]. Thus we have a
family of subsequences {f,;};,n =1,2,.--, such that for each =,
{fasisti €{fu;}; and T, f,; — g, in the L-norm as j — < for some g, € L,.
Thus for each n, T,f;; —¢, in the L,-norm as j— oo. Then from the
inequality:

[ Tfi; — Tl £ | Tfs; — Tufiilli + 1| Tufss — Tulfirlls
+ | Tofir — Thulls £ 20(T, T,) + | Tufs; — Tufrells s

it follows that {T;;}; is a Cauchy sequence in the L,-norm and so
Tf;;— ¢ in the L,-norm for some ge L,.

(=) Suppose that T(B.) is conditionally ecompact in the L,-norm.
If T¢ L=, then U,T -~ T in the uniform topology. Thus there are
¢ > 0 and a sequence {f,,} in B, such that

S'U”in"i_Tfni|>5,’L.:l,2y-.. .

From the assumption, there is a subsequence {g,,} of {f,,} such that
Tg,.,—q in the L-norm for some g < L,. But then

e < 10,70, — T, | 211U(T0.) - Ul

as m; — oo, a contradiction.
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2. Approximation theorems. The problem of approximating
doubly stochastic operators is discussed by several authors [2, 7, 8].
In this section we discuss various approximation theorems. First we
will give a simple proof for the weak approximation theorem [2] and
a sharper form of the strong approximation theorem [2, 8].

THEOREM 2.1. (Brown [2]) For each Te < there is a sequence
{T.:m=1,2,.--} 90 @, such that Tn—w—a T as n— .
We prove the following lemma.

LEMMA 2.1. For each Te & and for n =12, .-+, thereis T,c @,
such that

SlD?Tlpy - SlDZLT,,ID;_L . 1< j<o,
where D! = [(t — 1)/2",1/2"),1 <+ < 2", and D, = [1 — 1/2*,1].
Proof. Let f; =1, and a;; = Sfinj. For each ¢ and for each 7,

an 9n

S, =2 and >, a,; =27,

k=1 k=1
We put

z; = (1 — Lk + kizlaiky Yi; = (0 — Dh + kzz‘,ldki ,

where h =2 and 1 < 4,7 £ 27,
Let @: I— I be such that

P@) =& — %5 + Yjri0 ON (5, @ 541) »

where 1 < 4,7 <2*. We note that z,, = 4, = 0, & = @12, and y; =
Yi—12.. Clearly T,e @, It remains to show

@ = Sfinfj, l<ij=<2.

Since D7 = [Y;_1m) Y; ) and D = [@; 1o, ¥;n), We have @7(D]) =
2 oY) s Y} = Ui [ 51, 5) and

DN (D]} = £{[® i1y i)} = @ij «
Thus we have
Sfiwai = Slb?n:p—l(pgh = Qi »

If we set T, = T,, then T, is a desired one.
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Proof of Theorem 2.1. Given n and Te <, we have from
Lemma 2.1, T, ¢ @, and

Sth - Sthlc . h keUy(B.),

and hence the equality holds for 4,ke U,(B.), m <n. It follows
that for m(<n) and f, g € B,

S FULTU.g = S FULT.Ung -

If a subsequence {T,} of {T,} converges weakly to @, then for
each fixed m and for every f, g < B.,

(a0 = {0,000 — (fU0U0 20—

and SfUmTU,,,g = SfUmQUmg, and so T = Q.

Since <7 is compact in the weak topology, we have T,,-ﬂ—» T as
N — oo,

We can also prove Theorem 2.1 by the usual approximation of
fe L. by U,f without using the weak compactness of <.

We will prove the following strong approximation theorem. Let
co(A) be the convex hull of the set A.

THEOREM 2.2. For each Te < there is a sequence {R,} in co(@,)
such that

R,—5T and R:—>T* atn—> .
We need to prove

LEMMA 2.2, For each Te <7 there is a sequence {R,} in co(@,)
such that
uv,Tv,=R,U, and U, T*U, = R:U, for n =1,2, ---.

Proof. If we write

U.f = 3 el ci:2”S fy feLen=1,2---,

then

ig=

(UTU)f = 3 U TUNy = 3% ciaislyy
i=1 v 1

where a,; = Z”S JT1pn .

J



UNIFORM APPROXIMATION OF DOUBLY STOCHASTIC OPERATORS 523

It is easy to see that the matrix D, = (a¢;;:1=<4,5 <2 is
doubly stochastic [6]. Let _#, be the subspace of L. spanned by
{11,?: 1 <4 < 2"}, By the linear operator D, we mean the linear operator
on _#, into itself corresponding to the doubly stochastic matrix D,.
Then the operators U,TU, and D, U, satisfy U,TU,=D,U,. Similarly
we have U,T*U, = D}U,, where the operator (matrix) D} is the
adjoint of the operator (matrix) D,.

From a theorem of Birkhoff [1, 6] the doubly stochastic matrix
D, is a convex combination of permutation matrices P,,i.e., D, =
SeieP, 1 <r < (2" — 1)+ 1, and so for adjoint, D= >, ¢, P.
By the operator P, we mean the linear operator on the subspace _#,
corresponding to the matrix P,.

For each operator P, we choose T, = T, €@, such that P,1,» =
Tlpr, 1 <4 <20 It follows that PFl,» = Ti¥1,» for each 4. Thus,
u.TrTu, = Cioe,TU, and U, T*U,= Ot ¢, Tw)*U,. By setting
R,=3>7.¢T, we establish the lemma.

Proof of Theorem 2.2. Given Te <, we have from Lemma 2.2
a sequence {R,} in co(®,) such that

v,TU, = R,U, and U,T*U,= R*U,, n=12.-..
From Lemma 1.4 and the argument following Lemma 1.4,

WTf = R fll = I TF — U TULS |l + | R UL — R Sfl
ST = UTUL+ U= Flli—0 as m— oo,

and hence R, LNy ) Similarly, R} LN L
We state the uniform approximation theorems:

THEOREM 2.3. If the kernel for T e L s an element of L,(I x I),
then there is a sequence {T,} in co(®@) such that

NT—Tpll:—0 as m— oo,

THEOREM 2.4. For each T e L, there is a sequence {T,} in co(P)
such that Tm—u—> T as m — oo,

Theorems 2.3 and 2.4 are easily derived from the following four
lemmas.

LEMMA 2.3. For each Te <7 and each n =1,2, «--,

T E) < || T - Ell. = || T — K},
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where Ef = S 1.

The proof is immediate.

We review the notion of the independence of measurable maps
(random variables)[3]. Let @, and ¢, be measurable maps on the unit
interval I into itself. Then ¢, and ¢, are said to be independent if
(@7 (A) N ¢ '(B)) = 2(p7(A))2(p;'(B)), A, Be &#(I). It follows easily
that if @, and ¢, are independent, measurable maps on I, then

[f@a7 (@) = (o) |70, FelLi.

LEMMA 2.4. Let ¢, and @, be independent, measure perserving
maps on I. If T=¢T, +(1—10)7T,,0<c<1, then o(T* E) <
| T —-E|,=||T-E|lfr={+A—-cf",n=12,--+, and o(T*", E) <

| T* — E|l,—0 as n— oo.

Proof. We observe that for each Te¢ =2,
T = Ell, =sup{| Tf — Efl;: f € B} = sup{l| T(f — Ef)l: f € B}
<sup{l| Tgll,: g€ B,, Eg = 0} .
If T=cT, +dT,,0<c<1,d=1-—c¢, then for each g such that Eg =0
and [|g|. =1,
1Tgllt = {(eTug + AT, 00
=@+ o+ 2a(fo) s+ @,

andso || T — E|, (¢ +d»*and || T — E|ji* < (¢ + d*)*. Thus Lemma
2.4 follows.

Since there are no invertible measure preserving maps ¢, and @,
on I that are independent, Lemma 2.4 can not be strengthened any
further.

LeMMA 2.5, Foreach n=1,2, ..., there are measure preserving
maps 0, and 6, on I such that

[[{eTy, + 1 — )T} — U, ||, < 2", m=1,2,.-.,
where * =c¢*+ (1 —¢),,0 < e < 1.

Proof. Let n be a positive integer. For each integer 7,1 < ¢ < 27,
the operator V,; defined by V,f = 2" S fy feL (DY), is a doubly
vy
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stochastic operator on L.(D?). We note that V,; is an analogue of
the operator E, i.e., V=V, and V,; = V,,R = RV,,; for each doubly
stochastic operator R on L.(D?). Hence we have an analogue of
Lemma 2.3, i.e.,

IB™ — Ve < ||R = Vall®, m=1,2 .-,

for each doubly stochastic operator R on L..(D}), where || - ||, denotes
the L,(Dr)-operator norm. Let ¢;;: D — D?P,j = 1,2, be independent,
measure preserving maps. We define

T;=cT,, + (1 -20T, 0<ex<l.

32

Clearly T; is doubly stochastic on L.(D{). By a similar argument
given in the proof of Lemma 2.4, we have

N T = Vaull S || T — Vs ™ < 0°m, m=12,....
Let 0, I—1,57 =1,2, be such that
0;(x) = @i;(x) , zxeDp, 12",

Then 6, and 6, are measure preserving but not necessarily independent.
Let T = ¢Ty, + (1 — ¢)T,,. For each m =1,2, ... and each feB,,

Jirmf —vpp = 5| 1Tenr = Vs 2 ST - Vil s 2o
and so || T —U,|j; <2*. It follows that ||7*" —U,|,—0 as

m — oo,

LEMMA 2.6, For each Te 2 and each U,, there exist S, € co(®,)
and R, € co(@) such that

Il UnTUn - Snstm ||2 é 2n2gim ’ m = 13 2s te
Proof. For each Te &7 there is S, €co(®?,), by Lemma 2.2, such

that U,TU, = S,U,.
By Lemma 2.5, there is R, € co(?) such that

1T, — Bn |l < 2o
and thus
NU.TU, — S, B, = || S. U, — S, B |: = | U, — R[], < 2™

Proof of Theorem 2.3. Let k(., -) be the kernel for Te¢ L and
k.(-, +) the kernel for U,TU,. If k(.,-)e L,I x I), then



526 CHOO-WHAN KIM

”T_UnTUangS |k — k,|’d/*——0 as m— oo .
IxI

By Lemma 2.6, there are S, €co(®,) and R, cco(®) such that
< {S ”C _ kn |2d/2}112 + Qnlzgm
IXI

Then S,R¥ ¢ co(®) and the assertion follows by usual argument.

Proof of Theorem 2.4. Let k and k, be as in the proof of Theorem
2.3. Then

MEUﬂwnéglk—mm/—ao as n— oo .
IxI

By using Lemma 2.6, we have
oT, S,R;") = o(T,U,TU,) + o(U,TU,, S,E")
= lk—klds+)UTU, - SR,

from which the assertion follows.
As a corollary to Theorem 2.4 we have the following.

COROLLARY. The mnorm topology is strictly stronger than the
untform topology.

Proof. It follows from Theorem 2.4 that there is a sequence {T,}

in co(®) such that T, ", Easn—c. Since tr, L 7* for each T, e @,
we have p, = p, 1 o* for each n =1,2,.--. Let (4,,B,) be a de-
composition of I x I such that /*B,) = 0 and g,(A4,) = 0. Then we
have

Htn = ANl 2 | a(As) — 2(A) | = 7%(4,) = 1,

and so p¢, -+ ~* in the norm topology.

It is not clear whether we can choose a sequence {T,,} from co(@,)
instead of co(®) in Theorems 2.3 and 2.4. By the Approximation
Theorems we have

co~¥(D,) C co YD) € co~*(P) = co™(D,) = OT¥ = .
U
L

It remains to be determined whether the inclusion relations in

co~(@,) C co (@) C co~*(D)



UNIFORM APPROXIMATION OF DOUBLY STOCHASTIC OPERATORS 527

are proper.

This paper contains a part of the author’s Ph. D. thesis submitted
to the University of Washington. The work was directed by Professor
R. M. Blumenthal to whom the author is deeply indebted for encour-
agement and guidance. The author also wishes to thank Professor
J. V. Ryff for many helpful conversations.
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