AN L^1 ALGEBRA FOR LINEARLY QUASI-ORDERED COMPACT SEMIGROUPS

NEAL JULES ROTHMAN
AN L^1 ALGEBRA FOR LINEARLY QUASI-ORDERED
COMPACT SEMIGROUPS

NEAL J. ROTHMAN

This paper is concerned with obtaining an L^1 algebra for compact commutative linearly quasi-ordered topological semigroups. It will be shown that there is a suitable measure on such a semigroup so that the maximal ideal space of the L^1 algebra with respect to this measure and the bounded measurable semicharacters modulo equal almost everywhere can be identified. It is also proved that the condition $x^2 = y^2 = xy$ implies $x = y$ is necessary and sufficient that the L^1 algebra be semisimple.

Before we begin the study of the semigroups in the title, we wish to point out the differences in the measures discussed here and the L^1 algebra constructed here with those found in such papers as [3], [4], [7], [9], [10] and [11]. It is shown in [11] that "r*-invariant" measures on compact semigroups are supported on the minimal ideal of such semigroups. The measures used here will have support outside the minimal ideal. The work in [4] on compact simple semigroups reduces to the compact group situation in commutative semigroups and thus there is no relation to our work. In [3], the use of idempotent measures insures that the support is an ideal, again distinct from the situation here. The measures in [10] and [11] are again supported on the minimal ideal of the semigroup and for compact commutative semigroups would reduce to Haar measure on the minimal ideal, which is a compact topological group. The development in [7] of the L^1 algebra of an interval of idempotent elements is more interesting, since it involves part of the structure of S/\mathcal{I} (see below). In this paper, if such an interval is in the semigroup we have required it to have measure 0. In the special case of algebraically irreducible compact connected semigroups [14], an L^1 algebra, which combines the measure in [7] and the techniques to follow, could provide interesting results.

Let S be a compact commutative topological semigroup with identity satisfying the condition (*) $x, y \in S$ and $x^2 = y^2 = xy$ implies $x = y$. It is known [8, VIII 1.3] that such an S is the union of a family of nonintersecting subsemigroups each of which is a cancellation semigroup and that there is a finest such decomposition. This finest decomposition may be too fine for the proper introduction of a measure on S. In fact, the maximal subgroups of S need not be contained in elements of the decomposition. We will consider a class
of semigroups which allow a decomposition into cancellation subsemigroups each element of which will be either a compact topological group or a cancellation semigroup, which is embeddable in a locally compact topological group as a subset with interior. In this way, we will be able to introduce a measure on such an S, construct $L(S)$ as in [12] and use some of the theory developed there.

Let S now also satisfy the condition that the principal ideals of S are linearly ordered by inclusion. Such S were called linearly quasi-ordered in [13] and their structure was considered there. We will use the results concerning this order without further reference here.

Let E denote the idempotent elements of S and for each $e \in E$, let $H(e)$ be the maximal subgroup of S containing e. Since S is commutative with identity, Se is the principal ideal generated by e. If $e, f \in E$ and $Se \subseteq Sf$, then we write $e \leq f$ and note that $e \leq f$ if and only if $ef = e$. It is also clear that E, with \leq, is a naturally totally ordered set in the sense of Clifford [1]. Let $e, f \in E$ with $e \leq f$, then $[e, f] = H(e) \cup (Sf - Se)$, $(e, f) = Sf - Se$ and $(e, f) = Sf - (H(f) \cup Se)$.

Let $\mathcal{D}(S)$ be that decomposition of S such that $A \in \mathcal{D}(S)$ if and only if either $A = H(e)$ for some $e \in E$ or $A = (e, f) \neq \emptyset$ where $e, f \in E$ and $(e, f) \cap E = \emptyset$. We will show that $\mathcal{D}(S)$ is a decomposition of S into cancellation subsemigroups.

Lemma 1. Let S be a compact commutative linearly quasi-ordered topological semigroup with identity and satisfying (*). If $(e, f) \in D(S)$ then (1) (e, f) contains a subsemigroup $N(f)$ and $N(f)$ is either isomorphic to the usual open unit interval $(0, 1)$ or isomorphic to $\{2^{-n}\}_{n=1}^\infty$ as a subset of the usual unit interval (2) $(e, f) = N(f)H(f)$ and (3) (e, f) is a cancellation semigroup.

Proof. Let $e, f \in E$ with $(e, f) \neq \emptyset$ and $(e, f) \cap E = \emptyset$.

(1) Let us consider (e, f) as a subset of $S = Sf/Se$ ($Sf - Se \cong Sf/Se - \{0\}$) and let \mathcal{F} be the equivalence relation of Green [2]; i.e., $x \mathcal{F} y$ if and only if $S_x = S_y$. Set $T = S \mathcal{F}$ and let ϕ be the natural map. Then T is a naturally totally ordered semigroup in the sense of Clifford [1] and is a compact topological semigroup with 0 and 1 and no other idempotents in the order topology (which agrees with the original topology). If $0 \leq a, b, c \leq 1$ in T and $ac = bc$ then (since $a \leq b$ or $b \leq a$, we assume $b \leq a$) there is a $d \in T$ such that $b = ad$. From $ac = bc = ad = ad^{n}c$ for all integers $n > 0$ and the compactness of T, $d^n \rightarrow 0$ or $d^n \rightarrow 1$ and thus $ac = 0$ or $a = b$, since $bd^n = ad^{n+1}$. If $x, y \in T$ with $x^2 = y^2 = xy$ and $xy \neq 0$ then $x = y$ by the above and if $xy = 0$, $x^2 = 0$ and if $x \neq 0$ there is an $s \in (e, f)$.
with \(s^2 \in H(e) \). Then \(s^2 = es^2 = e^2s^2 = (es)(s) \) in \(S \) and \(es = s \) since \(S \) satisfies \((\ast)\), a contradiction. Hence \(x = 0 = y \) and \(T \) satisfies \((\ast)\).

If \(ac = 0 \) in \(T \), we assume without any loss of generality that \(a = tc \) for some \(t \in T \). Then \(Ta^2 = Tatc = Ttac = 0 \). Thus \(a^2 = 0 = 0^2 = 0a \) and \(a = 0 \) since \(T \) satisfies \((\ast)\). This is a contradiction, hence \(b = a \) and \(T - \{0\} \) satisfies \((\ast)\). Hence \(x = 0 = y \) and \(T \) satisfies \((\ast)\).

If \(ac = 0 \) in \(T \), we assume without any loss of generality that \(a = tc \) for some \(t \in T \). Then \(Ta^2 = Tatc = Ttac = 0 \). Thus \(a^2 = 0 = 0a \) and \(a = 0 \) since \(T \) satisfies \((\ast)\). This is a contradiction, hence \(b = a \) and \(T - \{0\} \) satisfies \((\ast)\).

It is clear that \(T = [0, 1] \) if \(1 \in (T - \{1\})^\circ \) (the bar denotes closure) and \(T = \{1\} \cup \{0\} \cup \{x_0, x_1, \ldots, x_n, \ldots\} \) if \(1 \in (T - \{1\})^- \). When \(T = [0, 1] \), \(N(f) \) exists by \([13]\); in the other case, for any \(s \in (e, f) \) which maps to \(x_0 \) under the \(f \) equivalence \(N(f) = \{s^n\}_{n=1}^{\infty} \) will work.

(2) Let \(x \in N(f) \), then for any \(g \in H(f) \), \(Sgx = Sfx = Sx \) and \(gx^g = x \). On the other hand, if \(y \in H(f) \) and \(s_1 \) and \(s_2 \in [e, f] \) so that \(x = s_1y \) and \(y = s_2x \). Now

\[
\phi(x) = \phi(s_1)\phi(y) = \phi(s_1)\phi(s_2)\phi(x)
\]

so that \(\phi(s_1)\phi(s_2) = 1 \) and \(s_1 \) and \(s_2 \in H(f) \); thus \(y \in xH(f) \). It follows that \(N(f)H(f) = (e, f) \).

(3) It is clear that \((e, f)\) is a subsemigroup of \(S \). In order to see that \((e, f)\) is a cancellation semigroup, let \(a, x \) and \(y \in (e, f) \) with \(ax = ay \). Let us choose the representations \(a = t_1g_1, x = t_2g_2 \) and \(y = t_3g_3 \), where \(t_1, t_2, t_3 \in N(f) \) and \(g_1, g_2, g_3 \in H(f) \). From \(ax = ay \), we have \(t_1t_2g_1g_2 = t_1t_2g_1g_3 \), hence \(t_1t_2 = t_1t_3 \) and then \(t_2 = t_3 \). Thus, for some \(t \in N(f) \), \(g_3^{-1}g_2t = t \). If \(N(f) = \{s^n\}_{n=1}^{\infty} \) and \(gs^k = s^k \) for some \(k > 1 \) and \(g \in H(f) \), then \(gs = s \). For if not, and if \(gs^3 = s^2 \) then \(g^3s^t = s^t \) by \((\ast)\), and if \(gs^t = s^t \) then \(g^3s^t = s^t \); but \(gs^k = s^k \) implies \(gs^m = s^m \) for all \(m \geq k \) and \(g^2s^t = s^t \) for \(2t \geq 2k \) and \(gs = s \). It follows that \(H(f) \) has a subgroup \(G \) leaving \(N(f) \) fixed. Now \(x = t_3g_3 \) and \(y = t_2g_2 \) and \(g_2^{-1}g_3 \in G \) implies \(x = y \), but \(t_1t_2g_1g_2 = t_2t_3g_3g_2 \), which implies \(g_3g_2^{-1} \in G \) and thus \(x = y \). If \(N(f) = (0, 1) \) the open unit interval, and if \(gx = x \) where \(g \in H(f) \) and \(x \in N(f) \), then \(g\sqrt{x} = \sqrt{x} \) since

\[
(g\sqrt{x})\sqrt{x} = g(x) = x = \sqrt{x} \sqrt{x} = (g\sqrt{x})^2 = g(gx) = gx.
\]

Thus \(g \) leaves \(N(f) \) fixed. Let \(x_n \rightarrow f, \{x_n\} \subset N(f) \). Then \(gx_n \rightarrow gf = g \) but \(g\sqrt{x_n} = x_n \rightarrow f \) so \(g = f \) and it is clear that \(N(f) \) is a cancellation semigroup.

It should be noted that the proof above shows that if \((e, f) \in \mathcal{D}(S) \) and \((e, f)/f \approx (0, 1), \) then \(H(f) \) operates in a fixed point free manner on \((e, f) \). Thus, \((e, f) \) is a cancellation semigroup. We also note that if \((e, f)/f \neq (0, 1) \) then \((e, f) \) need not be a cancellation semigroup, for let \([e, f] = \{-1, 1\} \cup \{0\} \cup \{2^{-n}\}_{n=1}^{\infty} \) where \(-1 \) and \(1 \) both act as the identity on their complement.
It was shown in [5] that the condition (*) was necessary and sufficient that the l_1 algebra of a discrete topological semigroup be semisimple. We have used the condition here first to obtain the preceding lemma so that the choice of a decomposition for a linearly quasi-ordered semigroup into subsemigroups on which measures can be introduced would be as natural as possible. We now will drop the condition (*) until the time to prove it is a necessary and sufficient condition for the semisimplicity of the algebra we shall construct. However, in order to be able to introduce a measure on S satisfying conditions such as in [12, 2.5], we assume that the sets (e, f), with $(e, f) \cap E = \emptyset$, are subsemigroups of S.

Let $\mathcal{D}(S)$ be such that $D \in \mathcal{D}(S)$ implies D is a subsemigroup of S.

Let $E^1 = \{ e \in E : e \in S \setminus H(e) \}$. Let $\mathfrak{A}(S)$ be that decomposition of S into subsemigroups such that $A \in \mathfrak{A}(S)$ if and only if either (1) $A = H(e)$ for some $e \in E^1$;
or (2) $A = (e, f)$ where $(e, f) \in \mathcal{D}(S)$ and $f \in E^1$;
or (3) $A = (e, f)$ where $(e, f) \in \mathcal{D}(S)$ and $f \not\in E^1$;
or (4) $A = H(e)$ where $(f, e) \in \mathcal{D}(S)$ for all $f \leq e$.

A measure can be introduced on each $A \in \mathfrak{A}(S)$ in the following manner. If $A = H(e)$ and $e \in E^1$, let m_e be normalized Haar measure on the compact group $H(e)$. If $A = H(e)$ and $e \in E^1$, let $m_e = 0$. In the remaining cases, $A = (e, f)$ or $A = (e, f)$. Let $\tau : N(f) \times H(f) \rightarrow (e, f)$ be given by $\tau(t, h) = th$; then τ is a continuous function. Let μ_f denote Haar measure on $H(f)$. Let λ_f denote Lebesgue measure on $N(f)$ if $N(f) \approx (0, 1)$ and counting measure on $N(f)$ if $N(f) \approx \{2^{-n}\}_{n=1}^\infty$. Giving $N(f) \times H(f)$ the product measure $\lambda_f \times \mu_f$, we decree $B \subset (e, f)$ measurable if $\tau^{-1}(B)$ is measurable in $N(f) \times H(f)$, and define $m_f(B) = \lambda_f \times \mu_f(\tau^{-1}(B))$.

In this way each $A \in \mathfrak{A}(S)$ has a measure m_A assigned such that $E \subset A$ and $x \in A$ imply $m_A(Ex) \geq m_A(E)$. A set $B \subset S$ is measurable if and only if $B \cap A$ is measurable for all $A \in \mathfrak{A}(S)$ and $m(B) = \sum_{A \in \mathfrak{A}(S)} m_A(B \cap A)$ is a measure on S.

Theorem 1. Let S be a compact commutative linearly quasi-ordered topological semigroup with identity. If the decomposition $\mathcal{D}(S)$ is such that each element of the decomposition is a subsemigroup of S, then the decomposition $\mathfrak{A}(S)$ consists of semigroups and there is a measure m on S such that $A \in \mathfrak{A}(S)$, $E \subset A$, and $x \in A$ imply $m_A(Ex) \geq m_A(E)$, where $m_A = m | A$.

Definition. For S a locally compact topological semigroup and m a regular Borel measure on S, $L'(S, m) = \{ \mu : \mu \in M(S) \text{ and } \mu << m \}$.
The definition of $L'(S, m)$ above is the same as we used in [12]. The measure m has been chosen so that the conditions of [12, Th. 2.5] are satisfied. We also note that for each $A \in \mathcal{A}(S)$ the hypotheses of [12, Th. 2.3] and [12, Th. 3.3] are satisfied. The Theorem 3 and 4 to follow arise because the condition, $x \cdot L'(S, m) \subseteq L'(S, m)$ for all $x \in S$ of [12, Th. 3.4] need not hold. However, that condition was sufficient but not necessary. We have here a weaker condition that is sufficient to obtain the same conclusions.

Theorem 2. Let S be as in the previous theorem. Each measurable semicharacter θ on an $A \in \mathcal{A}(S)$ can be uniquely extended to a measurable semicharacter $\hat{\theta}$ on S which is zero below A; i.e.,

\begin{align*}
A &= H(e), \; x \in Se \setminus H(e) \Rightarrow \hat{\theta}(x) = 0. \\
A &= (e, f], \; x \in Se \Rightarrow \hat{\theta}(x) = 0.
\end{align*}

Proof. If $A = H(e)$, then θ measurable on $H(e)$ implies θ is continuous on $H(e)$.

Define $\hat{\theta}$ on S by

\[\hat{\theta}(x) = \begin{cases}
\theta(x) & \text{if } x \in (S \setminus Se) \cup H(e) \\
0 & \text{if } x \in Se \setminus H(e).
\end{cases} \]

Since $\hat{\theta}$ is continuous on $S \setminus Se \cup H(e)$ and $Se \setminus H(e)$ is open, hence measurable, $\hat{\theta}$ is measurable on S.

If $A = (e, f]$ then let

\[\hat{\theta}(x) = \begin{cases}
\theta(xf) & x \in S \setminus Se \\
0 & x \in Se.
\end{cases} \]

Now $\hat{\theta}$ is continuous on $S \setminus Se$. Since θ can be extended to the group generated by $N(f) \times H(f)$ to be measurable, and therefore continuous, and Se is closed, $\hat{\theta}$ is measurable on S.

Corollary. If in addition S is connected, then each such extension of a measurable semicharacter on an $A \in \mathcal{A}(S)$, is continuous a.e. (m).

This makes for the great distinction between groups and semigroups. Let $S = [0, 1], xy = \min (x, y)$. Then, every set is measurable and for each $A = H(e), m_A = 0$ unless $A = \{0\}$, where m_A is point mass at 0 and so is m. Thus each semi-character is measurable and continuous a.e.

However, in the above example, all nonzero and not identically 1 semicharacters are equal almost everywhere to 0. Hence, they all
generate the multiplicative linear functional \(h \) on \(L'(S, m) \),
\[
h(\mu) = \int \tau \, d\mu = 0.
\]
It should also be noted that the above semigroup satisfies condition (*)).

Definition. Let \(\Delta \) denote the \(m \) measurable semicharacters on \(S \) modulo the relation equal almost everywhere with respect to \(m \).

Let \(\tau \) be a representative of an element of \(\Delta \). For \(\mu \in L'(S, m) \), define \(h(\mu) = \int \tau \, d\mu \). Then, for \(\mu, \gamma \in L'(S, m) \),
\[
\begin{align*}
h(\mu \ast \gamma) &= \int \tau d(\mu \ast \gamma) = \int \int \tau(x \gamma)\mu(dx)\gamma(dy) = \int \int \tau(x)\tau(y)\mu(dx)\gamma(dy) \\
&= h(\mu)h(\gamma)
\end{align*}
\]
and \(h \) is a multiplicative linear functional on \(L'(S, m) \). Further, if \(\lambda = \tau \) a.e. \((m) \), then
\[
\lambda \ast d\mu = \int \lambda - \tau \, d\mu + \int \tau \, d\mu = \int \tau \, d\mu
\]
since \(\lambda - \tau = 0 \) a.e. \((m) \) and hence \(\lambda - \tau = 0 \) a.e. \((\mu) \). Thus, there is

Theorem 3. Let \(S \) be a compact commutative linearly quasi-ordered topological semigroup with identity. Let \(S \) be such that the decomposition \(\mathfrak{H}(S) \) consists of semigroups and \(m \) the measure on \(S \) defined as above. Then each measurable semicharacter \(\tau \) on \(S \) induces a multiplicative linear functional \(h \) on \(L'(S, m) \) such that \(h(\mu) = \int \tau \, d\mu \). Further two measurable semicharacters induce the same \(h \) if and only if they are equal a.e. \((m) \).

Let \(h \) be any multiplicative linear functional on \(L'(S, m) \). It was shown in [12] that if \(x \in S \) and \(\mu \in L'(S, m) \) imply \(\overline{x} \ast \mu \in L'(S, m) \) then \(\tau(x) = h(\overline{x} \ast \mu)/h(\mu) \) was a measurable semicharacter on \(S \) \((h(\mu) \neq 0) \).

It is not always true that \(\overline{x} \ast \mu \in L'(S, m) \), but we will still be able to construct the measurable semicharacter from a given multiplicative linear functional.

Example. Let \(S = [0, 2] \) where \([0, 1]\) is a usual unit interval, \([1, 2]\) is a usual unit interval and each element of \([1, 2]\) acts as an identity element on \([0, 1]\). Let \(\mu \) be Lebesgue measure of the interval \([3/2, 2]\) and \(x = 1/2 \). Then \(\mu \ll m \) but
\[
(\overline{x} \ast \mu)(\{x\}) = \mu[y; xy = x] = \mu([1, 2]) \neq 0
\]
while \(m(\{x\}) = 0 \). Thus \(\bar{x} \ast \mu \in \ell'(S, m) \).

Let \(h \) be a nonzero multiplicative linear functional on \(\ell'(S, m) \). Now, for some \(A \in \mathcal{A}(S) \), \(h|\ell'(A, m_A) \neq 0 \), for if not then since \(\ell'(S, m) \) is the least closed subalgebra of \(C(S)^* \) containing all \(\ell'(A, m_A), A \in \mathcal{A}(S) \), \(h \) would be identically zero.

Consider then \(\mathcal{A}_0 = \{A: A \in \mathcal{A}(S) \text{ and } h|\ell'(A, m_A) \neq 0\} \) and partially order by \(A_1 \subseteq A_2 \) if and only if \(SA_2 \subseteq SA_1 \). Now if \(A = H(e), e \in E \), then \(SA = Se \) and if \(A = (e, f), e, f \in E \), \(SA = Sf \setminus H(f) \) and if \(A = (e, f], e, f \in E \), \(SA = Sf \). We now have a family of closed sets \(\{SA: A \in \mathcal{A}_0\} \), and these are nested; thus \(\bigcap_{A \in \mathcal{A}_0} SA \neq \emptyset \). If \(\mathcal{A}_0 \) has a maximal element \(A_0 \), let \(\mu_0 \in \ell'(A_0, m_{A_0}) \) such that \(h(\mu_0) \neq 0 \). If \(x \in (S \setminus SA_0) \cup A_0 \), then \(\bar{x} \ast \mu_0 \in \ell'(S, m) \). If \(x \in A_0 \) then trivially

\[
\bar{x} \ast \mu_0 \in \ell'(A_0, m_{A_0}).
\]

If \(x \in S \setminus SA_0 \), then, letting \(e \) denote the maximal idempotent element of \(A_0 \), \(xe \in A_0 \) is such that \(\bar{x} \ast \mu_0 = \bar{x} \ast \mu_0 \) and hence \(\bar{x} \ast \mu_0 \in \ell'(S, m) \).

Let us now define

\[
\tau(x) = \begin{cases} \frac{h(\bar{x} \ast \mu_0)}{h(\mu_0)} & x \in (S \setminus SA_0) \cup A_0 \\ 0 & \text{otherwise.} \end{cases}
\]

Then \(\tau \) is a semicharacter on \(S \) and its restriction to \(A_0 \) is a measurable semicharacter on \(A_0 \). Thus \(\tau \) is measurable on \(S \).

If \(\mathcal{A}_0 \) has no maximal element, let \(T = \bigcap \{SA: A \in \mathcal{A}_0\} \) and \(x \in S \setminus T \). Now \(x \in A_0 \) for some \(A_0 \in \mathcal{A}(S) \) and there is an \(A \in \mathcal{A}_0 \) such that \(SA \subseteq SA_0 \). Hence, there is a \(\mu_0 \in \ell'(S, m) \) whose support is contained in \(A \) and \(h(\mu_0) \neq 0 \). Let \(e \) denote the maximal idempotent in \(A \), then \(\bar{x} \ast \mu_0 = \bar{x} e \ast \mu_0 \in \ell'(A, m_A) \) and \(\bar{x} \ast \mu_0 \in \ell'(S, m) \). Note that for any \(\nu \in \ell'(S, m) \) for which \(\bar{x} \ast \nu \in \ell'(S, m) \) and \(h(\nu) \neq 0 \),

\[
h(\mu \ast (\bar{x} \ast \nu)) = h(\mu)h(\bar{x} \ast \nu) = h(\bar{x} \ast \mu)h(\nu)
\]

and thus

\[
h(\bar{x} \ast \mu_0)/h(\mu_0) = h(\bar{x} \ast \nu)/h(\nu).
\]

We define

\[
\tau(x) = \begin{cases} \frac{h(\bar{x} \ast \mu_0)}{h(\mu_0)} & x \in S \setminus T \text{ and } h(\mu_0) \neq 0 \\ 0 & \text{otherwise.} \end{cases}
\]

It is easily seen that \(\tau \) is a well defined semicharacter on \(S \) and that \(\tau|A \) is measurable for each \(A \in \mathcal{A}(S) \). Hence \(\tau \) is measurable on \(S \).

Let \(\mu \in \ell'(S, m) \) and let \(\phi \in L^\infty(S, m) \) such that \(h(\mu) = \int \phi d\mu \) is a multiplicative linear functional on \(\ell'(S, m) \). If \(\mathcal{A}_0 \) has a maximal element and \(\tau \) is the measurable semicharacter constructed above and
\(\mu_0 \in L^1(S, m) \) such that \(h(\mu_0) \neq 0, \tau(x) = h(\bar{x} \ast \mu_0)/h(\mu_0) \) (if \(\tau(x) \neq 0 \)) then

\[
\int \tau(x) \mu(dx) = \int h(\bar{x} \ast \mu_0) \mu(dx) = \int \int \phi(zw)\bar{x}(dz)\mu_0(dw)\mu(dx)
\]

\[
= \int \int \phi(xw)\mu_0(dw)\mu(dx) = \int \phi(y)(\mu_0 \ast \mu)(dy) = h(\mu_0 \ast \mu)
\]

\[= h(\mu_0)h(\mu) \text{ and hence } h(\mu) = \int \tau d\mu . \]

If, on the other hand, \(\mathcal{A}_0 \) has no maximal element, and \(\tau \) is constructed as before this case, then we can still obtain \(h(\mu) = \int \tau d\mu . \) Now

\[
\int_s \tau d\mu = \sum \int_A \tau d\mu \text{ (the sum over all } A \in \mathcal{A}(S))
\]

\[= \sum \int \tau d(\mu \mid A) . \]

Now, for each \(A \in \mathcal{A}(S) \) where \(\tau \neq 0 \) on \(A \) there is a \(\mu \in L^1(S, m) \) such that \(h(\mu \mid A) \neq 0 \) and \(\bar{x} \ast \mu_A \in L^1(S, m) \) for all \(x \in A \). Thus by repeating the earlier proof \(h(\mu \mid A) = \int_A \tau d\mu \) and hence \(h(\mu) = \int_s \tau d\mu . \)

There follows

Theorem 4. Let \(S \) be a compact commutative linearly quasi-ordered topological semigroup with identity. Let \(S \) be such that \(\mathcal{A}(S) \) consists of subsemigroups and \(m \) is the measure on \(S \) defined therefrom. Then each nonzero multiplicative linear functional \(h \) on \(L^1(S, m) \) is such that there is a measurable semicharacter \(\tau \) on \(S \) such that \(h(\mu) = \int \tau d\mu \) for all \(\mu \in L^1(S, m) \).

The above two theorems establish a one to one correspondence between the maximal ideal space of \(L^1(S, m) \) and the space \(\mathcal{A} \) of equivalent measurable semicharacters on \(S \).

Example. Let \(S = [0, 3] \) where \([0, 1] \) is a usual unit interval and \([2, 3] \) is a usual unit interval but \([1, 2] \) is a continuum of idempotent elements and each interval acts as identity for the ones below

```
0 -- 1 -- 2 -- 3
```

The measurable semicharacters on \(S \) separate points, but the semicharacters \(\chi_{[x,3]} \) where \(1 \leq x \leq 2 \) agree (a.e.) with \(\chi_{[2,3]} \) which is also a measurable semicharacter.
THEOREM 5. Let S be a compact connected commutative linearly quasi-ordered topological semigroup with identity and $L'(S, m)$ the associated L^1 algebra as in the proceeding. Then $L'(S, m)$ is semisimple if and only if (*) $x, y \in S$ with $x^2 = y^2 = xy$ implies $x = y$.

Before proving the theorem, let us note that we do not exclude there being a continuum of idempotent elements in S/\mathcal{I}. It is also clear that condition (*) is equivalent to the separation of points by measurable semicharacters, since as was shown in [6], each $A \in \mathfrak{A}(S)$, $A \neq H(e)$, is a cancellation semigroup.

Proof. If $L'(S, m)$ is semisimple, then $L'(A, m \mid A)$ is semisimple for each $A \in A(S)$. It follows that each $A \in A(S)$ is a cancellation semigroup and hence (*) is satisfied.

On the other hand, if (*) is satisfied each $A \in \mathfrak{A}(S)$ is a cancellation semigroup and $L'(A, m \mid A)$ is semisimple. If μ is in the radical of $L'(S, m)$, then $\int \tau d\mu = 0$ for all measurable semicharacters τ. Let $A \in \mathfrak{A}(S)$ with $m(A) \neq 0$. Now A is either a compact group $H(f)$ with $f \in E'$, or $A = (e, f)$ or $A = (e, f)$.

Let τ be any semicharacter which is the extension of a semicharacter on A and 0 below A. Let

$$\theta = \begin{cases} \tau & \text{on } S \setminus A \\ 0 & \text{elsewhere} \end{cases}.$$

Then θ is a measurable semicharacter on S and not equal a.e.(m) to τ. Thus $\int \tau - \theta d\mu = 0$. But, $\int \tau - \theta d\mu = \int_A \tau d(\mu \mid A)$ and $\mu \mid A$ is in the radical of $L'(A, m \mid A)$, that is $\mu \mid A = 0$ and hence $\mu \equiv 0$ and $L'(S, m)$ is semisimple.

REFERENCES

7. L. J. Lardy, $L^1(a, b)$ with order convolution, Studia Math. 27 (1966), 1–8.

Received August 11, 1967. The author was supported in part by the National Science Foundation, Research grant GP 5370.

UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. ROYDEN
Stanford University
Stanford, California

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. R. PHELPS
University of Washington
Seattle, Washington 98105

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY
CHEVRON RESEARCH CORPORATION
TRW SYSTEMS
NAVAL WEAPONS CENTER

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California 90024.

Each author of each article receives 50 reprints free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners of publishers and have no responsibility for its content or policies.
Leonard Asimow, *Universally well-capped cones* .. 421
Lawrence Peter Belluce, William A. Kirk and Eugene Francis Steiner, *Normal structure in Banach spaces* ... 433
William Jay Davis, *Bases in Hilbert space* ... 441
Larry Lee Dornhoff, *p-automorphic p-groups and homogeneous algebras* .. 447
William Grady Dotson, Jr. and W. R. Mann, *A generalized corollary of the Browder-Kirk fixed point theorem* .. 455
John Brady Garnett, *On a theorem of Mergelyan* 461
Matthew Gould, *Multiplicity type and subalgebra structure in universal algebras* .. 469
Marvin D. Green, *A locally convex topology on a preordered space* 487
Pierre A. Grillet and Mario Petrich, *Ideal extensions of semigroups* 493
Kyong Taik Hahn, *A remark on integral functions of several complex variables* .. 509
Choo Whan Kim, *Uniform approximation of doubly stochastic operators* ... 515
Charles Alan McCarthy and L. Tzafriri, *Projections in L_1 and L_∞-spaces* ... 529
Alfred Berry Manaster, *Full co-ordinals of RETs* 547
Donald Steven Passman, *p-solvable doubly transitive permutation groups* ... 555
Neal Jules Rothman, *An L^1 algebra for linearly quasi-ordered compact semigroups* ... 579
James DeWitt Stein, *Homomorphisms of semi-simple algebras* 589
Jacques Tits and Lucien Waelbroeck, *The integration of a Lie algebra representation* ... 595
David Vere-Jones, *Ergodic properties of nonnegative matrices. II* 601
Donald Rayl Wilken, *The support of representing measures for $R(X)$* 621
Abraham Zaks, *Simple modules and hereditary rings* 627