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A topological ring is said to have property (Y) if, and only
if, 24 = A; A has a proper continuous involution (with sym-
metric elements S) such that whenever the net {2x,} tends
to zero, so also does {r,}; A® is dense in A; and the left an-
nihilator of a closed Jordan ideal, U, of S is zero if, and only
if, Uis S.

One shows that for such rings and for annihilator rings
with the first two properties above that every closed Jordan
ideal of S is the intersection of S with a closed two-sided
ideal. Also shown is the fact that SoS is dense in S.

A study is made of relations between the socle and Jordan
ideals of S for topological rings. Finally, a new proof of
Herstein’s result for S in simple associative rings is given.

The purpose of this paper is twofold. The literature on rings
with involution contains little about a Jordan ideal U of S, the set
of symmetric elements; in fact, Herstein’s work [2] on such ideals in
a simple ring is one of the few results in this area. Therefore, we
attempt in the first part of this paper to make an algebraic beginning
into such a study for rings with proper involution, and with the
properties: 2¢ = 6 implies © = 0§ and 24 = A.

We introduce the notion of topological rings with property (Y),
these being the analog of the semiprime rings of [1] with the property
that for a closed proper two-sided ideal, I, <~ (I) == (6). We show
that for these rings and for annihilator rings (with certain conditions
on convergence) that a closed Jordan ideal, U, of S is the intersection
of S with a closed two-sided ideal of A.

We then apply these results to (i) a reproof of Herstein’s result
(for simple rings with proper involution) making use of the fact that
the subring generated by S is A; (ii) showing that in the annihilator
rings under discussion as well as for topological rings with property
(Y) that SoS is dense in S (these results are related to results on
the positive cone in Banach algebras); and (iii) considering relation-
ships between minimal Jordan ideals of S and two-sided ideals of
A, as well as relations concerning minimal idempotents and Jordan
ideals.

2. Pure algebra. We define for each pair (a, b) of elements of
Aa, b); = ab + b’a’ and (a, b), = ab — b’a’. Let U be a Jordan ideal
of S, then
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LEemMMA 1. (i) s€ S implies that t = (1/2s) such that 2t = s is
i S; (i) w*e U for all we U; (iii) usu and suse U for all we U,
se 8, and (iv) (w* a);e U for all ac A, ue U.

(i) 1is immediate. (ii) is immediate after the observation that
wv = vu where v = 1/2u. But, [u, v] = © implies that 22 = 6 and so
the desired conclusion. Now

usU = Uo(Uot) — u’ot and
sus = 2{to(tou) — uot?},

yielding (iii), and if a = s + k, se S, ke K then
(W', a); = w'os + uolu, kj

completing the argument.
Now define B={blbe A, (b, a),e U for all ae A}. The key to
what follows is the following lemma.

LEMMA 2. U-UCB, B s a right ideal and SB C B.

UoUc B by the last statement in Lemma 1, and the fact that
Uov = (U + v)F — u? — 2%,

It readily follows that B is a right ideal, while se S, be B, and
a € A implies that ((sb), a); = so (b, a), + (b, -as), the last assertion.

An involution, J, on A is proper if, and only if, xx’ =0 xc A
tmplies * = 0. Henceforth, our involution is proper. We note that
this implies that there exists no nilpotent ideals, and thus by Herstein
[2] no nil right or left ideals of bounded index of nilpotency. Thus
the first part of the following lemma is immediate. The second
follows since the involution is proper but we give a proof valid for
semi-prime rings and independent of proper involution.

LEMMA 8. If xe S and xSx = (0) then x = 0. Also, if W is a
Jordan ideal of S and w* = 6 for all we W then W = (0).

For all we W, w* = 0 implies that Wo W = (). Thus, wo(wos) =
2wsw = 0 for all se S, and so by the first statement we are done.
If C is a subset of A then <~ (C) ={bcA|bc =0 for all ceC}.

LEMMA 4. W= _B)NBNS = (9).
Now we W then sweB and wse & (B) by Lemma 2 for all

seS. Also, B and &~(B) are respectively right and left ideals.
Thus wse B and swe <(B). So, ws + swe W; that is W is a Jordan
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ideal of S with property of Lemma 8 and so the desired conclusion.

LemmA 5. ~(B)N U = (0).

Let we &#(B)N U then by Lemma 1, u*e BN S. Thus, u*e W,
of Lemma 4, or 4> =6 for all ue &»(BYN U. Now, if s€ S then
(uo8)b = u(sb) + s(ub) = 6 for all beB and so < (B)N U is Jordan
ideal of S and by Lemma 3, < (B)N U = (). We are now in a
position to prove our first theorem.

THEOREM 1. <~ (B) = < (U) = &~ (Bn U).

The following remarks are immediate. <~ (B)c (BN U) and
o (U)c #(BNU). Suppose we show that .~ (B)c < (U) and
A (BN U)c_#(B), then we see that we are done. Now, since
SB C B then .~ (B)SS c .(B). Thus let ue U, ¢ _~ (B) then z(z'x)
% e 5~ (B), a left ideal. Hence,

w(x’ ez’ 2)u = (wa’z)(uar’z) € L B)YN U,

the latter by Lemma 1 (iii). Thus, by Lemma 5 and fact that in-
volution is proper we conclude that ux’x =60 or (au)’(xu) =60 for
each vxe &7°(B), we U. Thus, 2u = 6 and so .~ (B)c <~ (U). Now
let xe <#(BN U) and be B, observing that (b, 1/2b7), = bb’ € U, we
conclude that xbb” = 6. Thus, (2b)(xb)’ = (#) and so x € 27 (B), finishing
the argument.

Now let ue BN U, ye (BN U), ke K. Then

(yho)u = y(u, -k), + yuk .

As we B then (u, -k); € U and so, by Theorem 1, we conclude that
yke (BN U). Therefore, we have proved the first statement in
the following.

THEOREM 2. _~(B) is a two-sided ideal of A and_~(B) N B = (0).

To see that &~ (B) N B = (4) all we need note is that <~ (B)N B
is a right ideal with the property that 2* = 6 for all xe <~ (B) N B.

3. Annihilator rings. Up to this point everything that has
been done, has been done algebraically. Henceforth we assume that
A s also a topological annihilator ring with continuous involution
and the property that if {2x,} 1s a met convergent to € A then {x,}
18 also a met converging to 6. This latter remark guarantees that
if {a, = s, + ks|8.€ 8, k.c K} converges to an element in S then {s,}
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also converges to that element, and that if C= S, B K and C + B
is dense in A then C is dense in S and B is dense in K.

The definition of an annihilator ring says that for any closed
right (left) ideal R, (L) of A, & (R) = (9) (# (L) = (9)) if, and only
if, R = AL = A).

Now Theorem 2 has shown that <(B) + B = H is a right ideal
and it is immediate that xe ¢°(H) implies %* =64, and so by our
previous reasoning with regards to nil left ideals we have that H is
dense in A.

We make good use of the following lemma.

LEMMA 6. If U is a closed Jordan ideal of S then B is a closed
right ideal in A.

Let b, be a net in B, b, —b. Then (b, — b, a);, = (b,, a), — (b, a),.
Thus

(bm a/)J —_— (b, a/)J .

Each (b,, a);e U, and U is closed. Thus, (b, a),e Uor be B. Hence-
forth, in this section U is a closed Jordan ideal in S.

THEOREM 3. B s a two-sided ideal of A.

H = B <°(B) is dense in A. Thus given ac A there exists a
net a,€ H such that a,—a. Write a, =25, + d,, b,e B, d,c & (B)
then for any be B,

ab — ab .

But a,b = b0 + d.,b = b,be B. Thus, b,b = a,b — ab and the latter is
in B, since B is closed.

Now B is a two-sided ideal and so B’ is two-sided also. Thus,
B’y = &2(B’) and similarly for B, Thus the following is immediate.

LeMmA 7. <~ (B’) = (&£ (B)).

Thus, H’ = (B + #(B))’ = B’ + &~ (B’) is dense in A.

THEOREM 4. B = B’ and UC B.

Let a,~a, a, a net in H’. Then, a, = bl + d}, where b)c B’
and dl = <°(B’). Thus, b,eB and d,ec <~(B) (the latter by using
Lemma 7). Let b’ e B’ then (b, a,), = (b, b} + dl), = (b’, b)), U.

Therefore, (b7, a,); — (b7, a);e U, as U is closed, or b’ ¢ B.
Also, for any uwe U, (u, a.); = (b,, w); + (d., w), as above. But
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d, ¢ #(B) = _~(U) and so (u, a,); = (b,, w);€ U. As before, this
means that (v, a); € U for arbitrary aec A, or UC B.

THEOREM 5. U =CnS for C a closed two-sided ideal of A,
and a sufficient condition for U= BN S is that BA be dense in B.

Let V be the additive group generated by {(u, @), | ue U, ac A}.
Using U c B observe that for all a,ce A and ue U:

auc + c¢'ua’ = ((a, u);, €); + (w, (—a’c)), € U and
auc — c’uwa’ = ((a, u),, ¢); + (u, (—a’c)), e V.
Thus, we U, a, ce A then w(2¢) = (4, ¢), + (u, ¢c),or UAC U + V.
Also,
(u, @).(2¢) = (u, ac), + (u, ac); + {a’u(—c)
+ (—¢)Yua} + {c'ua — a’ucte U + V,

or VAC U + V. Similarly, A(U + V)c V + V. Therefore, U + V
is an ideal of A and is dense in its closure C, a closed ideal of A.
Thus, U is dense in C N S. But U is closed and so C = U + V, the
latter is the closure of V.

Now if BA is dense in B then given be B there exists a net
b.,a,— b and so b,(1/2)a,— 1/2b and (1/2)albdl — 1/2b’. Thus,

b.(1/2)a, + (1/2)albl — 1/2(b + b’) .
Hence, 1/2(b + b’')c U, or if be BN S then be U.
We define
U,={x|xou =6 for all ue U}
and prove

Lemma 8. U, = ~(U), and ifac F(U),a =s + k, se€8S, ke K
then s and k are in & (U).

If xe U, then by Lemma 1, ux + zu = 6 and xu® + u*x = 6 for
each we U. Thus, 2xu® = 6; that is e <~ (U). So, U,c <~ (U).
Now by |[1], ~©(B) = B,. Therefore, using Theorem 1, we have
U, B,. But, since by Theorem 4, Uc B we have, B, c U,. Thus
B, =U, =_~U).

Now if a=s+ ke ¥ (U) then aec &~(B) and so for beB,
(s + k)b = 6 and also b/(s + k) = 0, the latter since .cZ(B) = <~ (B).
Now the conclusion is immediate.

4. Topological rings with property (Y). Civen and Yood, [1],
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assume as a hypothesis in part of their work that ¢~(I)= (6) for

any closed proper two-sided ideal I of A, A a semi-prime ring. We

note that this implies that A° is dense in A. For letting I = A%, we

have x e < (I) implies that z* = 0, a contradiction to semi-primeness.
We define an analogous condition for Jordan ideals of S.

PROPERTY (Y). A, a topological ring, has property (Y) if,
and only if, (i) 24 = A; (ii) A has a proper continuous involution such
that whenever the net {2z,} — 0 then {x,} — 0; (iii) A® is dense in A;
and (iv) a closed Jordan ideal, U, of S has < (U) = (¢) if, and only
if, U= 8.

We now show that for such rings the main theorems of § 3 hold.

THEOREM 6. Let A be a topological ring with property (Y).
Then for any closed Jordan ideal U S, <" (B) + B ts dense in A
(B as defined in §1).

Consider (¢ (B) + By NS = W. By Lemma 2, W is a Jordan
ideal of S and as before <~ (W)N S = (4). Thus, y'y =0 for all
ye A(W) or & (W)=(0). Now, (W)= (W) and so, by
hypothesis, W = S. Now, by Theorem 2, H = B + < (B) is a right
ideal and HNn S = W = S. Thus, given ac A then a + o’ and a’a ¢ H.
Thus, (@ + a’)ac H. Now, let acA,beB then b, + d,— ab + ba
where b,e B and d,e ~ (B). Therefore,

(b, — ba) + d,—— ab .

But, b, —bacB and so abec H. Since, & (B) is a (two-sided) ideal
we conclude that H is an ideal with 4.4 < H. It is well-known
that this implies that A°* & H or that H is dense in A.

COROLLARY 1. Let A be a topological ring with property (Y).
Then I, a closed two-sided ideal of A, with < (I) = (), implies that
I=A.

Note that in the last proof if one replaces H by I one concludes
that <~(I) = () implies that A°* < I and hence the desired conclusion.

Observing that this last corollary is the basis for much of the
argument in § 3, we conclude that

COROLLARY 2. Let A be a topological ring with property (Y)
then the conclusions of Theorem 3 and Theorem 5 hold.

5. Applications. We reprove Herstein’s result for Jordan ideals
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of S in a simple ring with involution. It is that theorem which
motivates this paper.

THEOREM 7. [Herstein]| Let A be a simple ring with involution
and with characteristic different than 2. Let Z, the center of A, be
zero or |A:Z] > 4 then S is simple Jordan.

By Lemma 2, B is a right ideal and SBc B. By Herstein [2],
under these hypothesis, the subring generated by S is A and so B
is a two-sided ideal. Now if B = (4) then, by Lemma 2, U- U = ()
and so uSu = () for each we U. Now, as stated before, we have
U= (). So, let B=A. Then for all a,be A we have (a, b),c U.
Thus in particular if se S then (as,b); = AsANScC U and so U = S.

In the literature on algebras there is interest as to when the
cone P, generated in bb’, be A, is such that P-Pis dense in S. Here,
we have not interested ourselves in algebras but rather in annihilator
rings and we prove several results related to additive subgroups con-
tained in P-P, the subgroup generated by the elements bb’, bec A.
Note, that S-S, [S, K] and K - K are all subsets of P-P.

THEOREM 8. Let A be a topological ring with property (Y) or
an annihilator rimg with proper continuous involution, 24 = A, and
the property that whenever the net 2x,— 0 then x,— 0, then we con-
clude that S-S 1s dense in S.

We note that S; = (¢). For, by Lemma 8, S,= < (S), and
x e 7(S) implies that xs = 0 for any se S or a’2a’x = 6 which yields
the conclusion. Now, let te & (S-S)NS. Then, since S-S is a
Jordan ideal of S, by Theorem 2, we have that < (S-8S) is a two-
sided ideal. Thus, for every se S

ts + ste(S-S)N _F(S-9),

which is () by Lemma 5 and Theorem 1. Thus, te S, = () or
Z(S.S)ynS =(0), and so ¥ (S-S) = (). Therefore

C=SoS+ {ua —a'u|uecS-S}

is a two-sided ideal of A and & (C) = _F(C)C £ (SeS)= (S 8) =
(6). Thus, C is dense in A. So, the symmetric part of C; namely,
S-S = S and we are done.

One might also consider the Jordan ideal KoK + [S, K] = W.
If te ?(W)N K then since

ta + a’t’ e KoK + [S, K]c W
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we have te <2(W) N By = (0), by Theorems 1 and 2. Using Lemma
6, we have <~ (W)c S. <~(W) being a two-sided ideal, implies that
for all a,bec A, ¢cec <~(W) that ca — a’c = ¢ and so cab — (ab)’c =
c(ab — ba) = 6. Thus, in particular, ekl — k) = 6 for all k,lec K,
Hence, 2¢kl = c(kl — lk) + e(kl +1lk) = 6 or ck* =6 for all keK,
ce ¥ (W); that is, ¢K = 4. Thus, ce Z, the center of A and if the
latter is (#) we conclude that W is dense in S. Thus we have proved

THEOREM 9. Let A be as wn Theorem 8 and with zero center
then KoK + [S, K] is dense in S.

We are interested next in results concerning both minimal and
minimal closed Jordan ideals of S for rings A of the previous sections.

THEOREM 10. Let U be a minimal Jordan ideal of S in a ring
A of §2. Then U is the intersection of S with a simple two-sided
ideal.

Consider T'={te U|[t, K|c U}. As U # (9) by assumption we
are guaranteed by Lemmas 1 and 2 that T = (4). Now, t€ T then
toseT for all seS as toseU and [tos, K| =tols, K|+ [t, K]es;
that is, T is a Jordan ideal of S. By minimality, T = U or
[U, Klc U. Thus, forming V, the additive subgroup generated by
the set {(u, a),|uec U, ac A} we have U + V = C is a two-sided ideal
of A. The latter is the same argument as in Theorem 5. Now, let
I = (6) be a two-sided ideal of C. Then, H = CIC is a nonzero two-
sided ideal of A, Hc I (the latter uses the fact that the involution
1s proper). Thus, HN S = U. Therefore, for all wue U, a ¢ A we have
(4, @), € H or C C H, completing the argument.

DEFINITION. A nonzero closed Jordan ideal U, of S is called
minimal closed if, and only if, H a closed Jordan ideal of S, H S U,
implies H = U or H = (4).

THEOREM 11. Let A be a topslogical ring with property (Y) or
an annthilator ring of §3, then there exists a one-to-one correspond-
ence between the minimal closed Jordan ideals of S, and the minimal
closed (hence topologically simple) two-sided ideals of A.

Let U be a minimal closed Jordan ideal of S. Theorem 5 says
that I = U + V is a closed two sided ideal of A. Let H = (0) be a
closed ideal of A, H< I. Then HN S = U. Thus, ua — a’u € H for
all ueU, acA. That is Vc H and hence U + V = I < H; that is;
I is minimal closed two-sided. However, A is semi-prime and so
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minimal-closed is equivalent to topologically simple. Thus, if we begin
with I topologically simple (I = I’ since the involution is proper) then
we are interested in 7N S. Let U = () be a closed Jordan ideal of
S, U< INS. Then U+ V is a closed ideal of A, contained in I.
Thus, U+ V =1, or INS = U implying minimality. The one-to-one
correspondence is clear.

We observe next that a topological sum of minimal closed Jordan
ideals is a direct topological sum in the sense of Richart, [4] p. 46,
(the generalization to Jordan ideals being the obvious). Let U,, and
U, be minimal closed Jordan ideals. U, = U, implies that U, N U, = (4).
Thus U, U, = (0) or U,e (U, = < (U,) = &#(U,). Thus, UU, =
U, U, = (6). Now, let U, be a minimal closed Jordan ideal and W the
algebraic sum of the other minimal closed Jordan ideals. Then xe W
implies * = «, + «++ + u,, u; € U; where Uy, = (6). Thus, U,W = ()
and so, U,W = (6). Now, U,N W is a closed Jordan ideal contained
in U,. If not zero, then U,e Wn <~(W) = (), the latter by Theorem
1 and Lemma 5. This is not possible. Thus, U,N W = ().

We make use of this to say something about the decomposition
of A.

THEOREM 12. Let A be a ring as described in paragraph 4.
Assume that S is a topological direct sum of its minimal closed Jordan
ideals {U,} them A is a topological direct sum of minimal closed two-
sided tdeals {I,} where I, = U, + |U,, U, + (U~ K,), K, =1,N K.

Let xc A then xz2’ and x + 2’ € S, and hence by Theorem 10, are
in the topological direct sum, 7, of the minimal closed ideals. Thus,
2*c T for all xe A, and so A*C T. Therefore, A = A® implies that
A=T.

Now, A=&@>,1,, where I, =U,+V,, U,=8SnI, and V, =
KnlI, Letxz;—a, x5 = Zym e > I.. Then, u,a —a’u, eV, u,cU,
is such that

Uolup — Yngla = Uollp — Thlhy —— Up @ — A7 U, .

Therefore, u.,0 — a’u,€|U,, U, + U,o K, which yields the desired
conclusion.

COROLLARY 3. Hypothesis of Theorem 12, then every closed Jordan
ideal U +# (8) contains a minimal closed Jordan ideal. Moreover, if
U, is a minimal closed Jordan ideal then either U, = U or U, < (U).

We see that for each U,, U,N U is either (§) or U,. If the
former, then x¢ U, implies that xze U, = < (U). However, if
U,NU= () for all &, then Se &+ (U) and so U = (f), a contradic-
tion.
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We are interested in saying something about idempotents; in
particular, minimal symmetric idempotents (as defined in Rickart [4],
Chapter II). If I is a minimal left ideal in a ring with proper involu-
tion then I = Ae¢, where ¢ = ¢ S (Rickart [4], p. 261).

LemMMA 7. Let U be a Jordan ideal in a ring Aof §2. Let ¢ + 0
be a minimal symmetric idempotent then either ec UNBoreec &~ (U).

Let U= (6) be given and let B be as defined in §2. Then,
eBC B and ¢B CeA. Therefore, if e¢ < (B) = <~ (U) then ¢B = ¢A.
However, eceA and thus, eeceBC B. 8o, (¢,1/2¢), = ec U.

THEOREM 13. Let A be as in §2. Then, if U is a Jordan ideal
of S and if ¢ + 0, ¢ = ¢* € U then the homogeneous component contain-
ing e (for definition see Jacobson [3], chapter 4) interected with S is
contained in U.

We note that if ec U then by Lemma 5, ec B. Also (ze, y), =
(we*, y), = (%, €);, ¥); + (¢, —’ey),. Hence, (v¢, y), = vey + y'ex’ e U,
or AeAN Sc U. But, the homogeneous component of A containing e
is simple and so the desired result.

COROLLARY 4. Let A be a primitive ring with proper involution,
24 = A, 22 = 0 implies x = 0, and with nonzero socle, {, then every
nonzero Jordan ideal U C S contains LN S.

Let U = (0) be given. Then, B # () and <~ (B) is a two-sided
ideal. Now, primitive implies prime and thus ~7(B) = (). Thus,
every symmetric idempotent of Lemma 7 is in B. Let ze{NS =
Sraiea; = >, ale,, Thus, o = 31, (e, (1/2)a,), € U.

COROLLARY 5. Let A be a topological ring which is primitive
and has dense socle. Let A have properties (1) and (ii) of property
(Y). Then, S is minimal closed.

Let U # (6) be a closed Jordan ideal of S. Then, by Corollary 5,
U contains { N S and hence its closure which is S.

THEOREM 14. Let A be a topological ring with properties (i)
and (ii) (of property (Y)) and suppose that A has dense socle than
if U is a maximal closed Jordan ideal of S, U is the intersection of
S with a closed two-sided ideal, I.

Let U be as given. If [U, K] U then as before U + V = C has
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the desired property. Now, if ec U for all minimal symmetric idem-
potents then ec B as ea + a’¢ = e(ea + a’e)e + ¢(—a—a’)ec U for all
a€A. Thus, { N Sc U and hence S < U, a contradiction. Therefore
there exists a minimal symmetric idempotent f such that fe¢ U. By
Lemma 7, fe <~ (U). Now, U + [U, K] is a Jordan ideal of S, and
so by the previous remarks, we assume that U + [U, K] is dense in
S. Therefore, there exists a net z,¢ U + [U, K] such that x,— f.
Now, %, = %, + Dot Vaka, — ka Ve, and 80 for, = fu, + 30, (f )k, —
(fko)v.,=6. Therefore, fx,—f*=0, a contradiction. Hence, [U, K]C U,
and we are done.

6. An example. In §2 we showed that B is a right ideal. We
now construct an example of a ring with proper involution (indeed
the ring is an integral domain) in which B is not a two-sided ideal.
Let R be the set consisting of the polynomials in two commuting
indeterminates over the complex numbers of the form

iT(x'y’ + 2% + w(xy® + 'y + ex'y + S a,xty?

itj238

where 7 and u are real, and where ¢ and «a,; are complex numbers.
Assume the usual addition and multiplication defined by

(b, 2 ) (S ety = Db, ot e Ry

where ¢ denotes conjugation % times. One verifies that R is a ring
. J . . . . .
and that the mapping > b, 2"y — >, blr*x*y” is an involution with

S = (u(x2y° + %) + ey + > a @ty el = ai,} .

it+g28

Letting

U= {o(xwl o) + ol D@+ o)+ Fry S ugey | o, T

i+525

real; F, u,;; complex; and u{}™ = uﬁ} ,
we see that if we U, s¢ S then us + su has each term of degree at
least 5 and so U is a Jordan ideal of S. Now let b = (1 + 7)2'y* then
ba + a’b’ is in U for all ac R. Thus, be B. Setting k& = i(2'y’+2"y")
then one verifies that

(kb)k + E7(kb) = 2kbk = 2(1 — ) (&*y' + '¥%) + 4(1 — )%y

is not in U. Thus B is not two-sided.
We note that if B = B’ then B is a two-sided ideal. Further-
more if B is two-sided then
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(@’d, ¢’); = (b’ @), € U

for all a,ce A and be B. Therefore, Ab’ ¢ B. Thus, for example if
A has an identity then B = B’. We now show that B being two-
sided does not guarantee that B = B’. Consider A, = {Mx'y* — 2%") +
Cx*y® + Dx*y® + Fa'y' + Dy zs @iy’ | N is real, C, D, F and «;; com-
plex}; U = {o(1 + i) (@*y’ — 2*y') + o (1L — 0)(@°Y® — &'Y’) + Diisjzs Bis®Y’ | 0
is real, B;; = 85} and b = (1 + ¢)2*°. Assuming the previously
defined multiplication one verifies that B is two-sided, be B but b’ ¢ B.

The author wishes to express his deepest thanks to the Depart-
ment of Mathematics, University of Oregon, for the cordiality shown
him during his stay there at which time this manuscript was prepared,
and particularly to Professor Bertram Yood for his many suggestions
and kindness.
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