H\textsc{ENSOR PRODUCTS OF W*-ALGEBRAS}

\textsc{DONALD JOHN CHARLES BURES}
TENSOR PRODUCTS OF W*-ALGEBRAS

Donald Bures

This paper deals primarily with a characterization of the tensor products of a family of W*-algebras (abstract von Neumann algebras). It is especially concerned with infinite tensor products; the results, however, apply and have interest in the finite case.

A tensor product for a family \((\mathcal{A}_i)\) of W*-algebras is defined to be a W*-algebra \(\mathcal{A}\) together with injections \(\alpha_i\) of \(\mathcal{A}_i\) into \(\mathcal{A}\) satisfying four conditions: the first two are that the \(\alpha_i(\mathcal{A}_i)\) commute and generate \(\mathcal{A}\); the last two are conditions on the set of positive normal functionals of \(\mathcal{A}\) which are products with respect to the \(\alpha_i(\mathcal{A}_i)\). A local tensor product is defined to be a tensor product satisfying a fifth condition—that its tail reduce to the scalars. It is shown that the local tensor products of \((\mathcal{A}_i)\) are precisely the incomplete direct products \(\bigotimes(\mathcal{A}_i, \mu_i)\), and that every tensor product is a direct sum of local tensor products which are not product isomorphic.

Suppose that \((\mathcal{A}_i)_{i \in I}\) is a family of W*-algebras. We call \((\mathcal{A}, (\alpha_i)_{i \in I})\) a product for the family \((\mathcal{A}_i)_{i \in I}\) if \(\mathcal{A}\) is a W*-algebra if, for each \(i \in I\), \(\alpha_i\) is an injection of \(\mathcal{A}_i\) into \(\mathcal{A}\) with \(\alpha_i(1) = 1\) and if the following conditions hold:

(I). \(\alpha_i(\mathcal{A}_i)\) commutes with \(\alpha_j(\mathcal{A}_j)\) for all \(i, j \in I\) with \(i \neq j\).

(II). \(\mathcal{B}(\alpha_i(\mathcal{A}_i); i \in I) = \mathcal{A}\): that is, \(\mathcal{A}\) is the smallest W* subalgebra of \(\mathcal{A}\) which contains all \(\mathcal{A}_i\) for \(i \in I\).

By a product functional for \((\mathcal{A}, (\alpha_i))\) we mean a nonzero norm positive functional \(\mu\) on \(\mathcal{A}\) for which there exist normal positive functionals \(\mu_i\) on \(\mathcal{A}_i\) for each \(i \in I\) such that:

\[\mu\left(\prod_{i \in I} \alpha_i(A_i)\right) = \prod_{i \in I} \mu_i(A_i) \]

whenever each \(A_i \in \mathcal{A}_i\) and \(A_i = 1\) for a.a. \(i \in I\). (a.a. \(i \in I\) means—here and throughout the paper—all but a finite number of \(i \in I\))

Because of (II), it is evident that the \(\mu_i\) determine \(\mu\) uniquely, and we write \(\mu = \bigotimes_{i \in I} \mu_i\). We will denote the set of product functional for \((\mathcal{A}, (\mathcal{A}_i))\) by \(\Sigma_p\).

We call \((\mathcal{A}, (\alpha_i))\) a tensor product for \((\mathcal{A}_i)\) if it is a product for \((\mathcal{A}_i)\) (i.e., if (I) and (II) hold) and if the following conditions hold

(III). \(\Sigma_p\) is separating: i.e., if \(A \in \mathcal{A}^+\) and \(\mu(A) = 0\) for all \(\mu \in \Sigma_p\), then \(A = 0\).
(IV). For all $\mu \in \Sigma_p$, (IV-μ) holds.

(IV-μ). $\mu = \otimes_{i \in I} \mu_i \in \Sigma_p$, and, if ν_i is a nonzero normal positive functional on \mathcal{A}_i with $\nu_i = \mu_i$ for a.a. $i \in I$, then $\otimes_{i \in I} \nu_i$ exists in Σ_p.

We define the tail \mathcal{I} of a product $(\mathcal{A}_i (\alpha_i))$ to be the intersection over all finite subsets F of I of the algebras

$$\mathcal{A}_{I-F} = \mathcal{B} \{ \alpha_i (\mathcal{A}_i) : i \in I - F \}.$$

We call $(\mathcal{A}_i (\alpha_i))$ a local tensor product if it is a tensor product and the following condition holds:

(V). The tail \mathcal{I} of the product $(\mathcal{A}_i (\alpha_i))$ consists of the scalars only.

A local tensor product will be called a (μ_i)-local tensor product if $\otimes \mu_i \in \Sigma_p$.

We show (Theorem 4.7) that, for every family $(\mathcal{A}_i, \mu_i)_{i \in I}$ with μ_i a normal positive functional on the W^*-algebra \mathcal{A}_i and

$$0 < \prod_{i \in I} \mu_i(1) < \infty,$$

a (μ_i)-local tensor product exists and is unique up to isomorphism. (An isomorphism of a product $(\mathcal{A}_i (\alpha_i))$ with a product $(\mathcal{A}_i (\beta_i))$ is an isomorphism ψ of \mathcal{A}_i onto \mathcal{B}_i such that $\psi \circ \alpha_i = \beta_i$ for all $i \in I$.)

In fact, a (μ_i)-local tensor product for (\mathcal{A}_i) can be constructed as follows. For each $i \in I$ let ϕ_i be an isomorphism of \mathcal{A}_i onto a von Neumann algebra on the Hilbert space H_i and let $x_i \in H_i$ induce μ_i:

$$\mu_i(A_i) = (\phi_i(A_i)x_i | x_i) \quad \text{for all } A_i \in \mathcal{A}_i.$$

Let \mathcal{A} be $\otimes_{i \in I} (\phi_i (\mathcal{A}_i), x_i)$, i.e., von Neumann's incomplete direct product of $(\phi_i (\mathcal{A}_i))_{i \in I}$ with respect to the C^*-sequence (x_i) (see [7], [1], [2], or §2 below); and for each $i \in I$ let $\alpha_i = \gamma_i \circ \phi_i$, where γ_i is the natural injection of $\phi_i (\mathcal{A}_i)$ into \mathcal{A}. Then $(\mathcal{A}_i (\alpha_i))$ is a (μ_i)-local tensor product for $(\mathcal{A}_i)_{i \in I}$. A special consequence of the uniqueness of (μ_i)-local tensor products is, then, roughly that the tensor product of a family of von Neumann algebras depends on their algebraic structure only (see Corollary 3.5, below, for a proper statement). This is an easy result which can be proved also from [9] or directly (see remark in [2, §3]). For finite I, it is a result due to Misonou [4].

If I is finite, all tensor products of $(\mathcal{A}_i)_{i \in I}$ are local and all are isomorphic. Thus properties (I), (II), (III), and (IV) characterize the finite tensor product. A special case of this result was proved by Nakamura [6]: he showed that (I) and (II) characterize the finite tensor product of finite factors. A stronger result of this kind was proved by Takesaki [10]: he showed that (I), (II) and the existence
of a nonzero ultraweakly continuous (not necessarily positive) product functional characterize the finite tensor product of factors (c.f. Lemma 6.2, below).

In §5, we determine all possible tensor products for \((\mathcal{A}_i)_{i \in I}\). Let \(A\) be the set of all families \((\mu_i)_{i \in I}\) where each \(\mu_i\) is a normal positive functional on \(\mathcal{A}_i\) and \(0 < \prod_{i \in I} \mu_i(1) < \infty\). Define an equivalence relation \(R\) on \(A\) by writing \((\mu_i) \sim (\nu_i)\) when a \((\mu_i)\)-local tensor product is necessarily a \((\nu_i)\)-local tensor product. Denote \(A/R\) by \(\Delta\) and the natural quotient map \(A \to A/R\) by \(\varphi\). If \(\Gamma\) is a subset of \(\Delta\), we call \((\mathcal{A}_i, (\mu_i))\) a \(\Gamma\)-tensor product for \((\mathcal{A}_i)_{i \in I}\) if \((\mathcal{A}_i, (\mu_i))\) is a tensor product for \((\mathcal{A}_i)_{i \in I}\) and if

\[
\{(\mu_i) \in A : \bigotimes \mu_i \text{ exists on } \mathcal{A} \} = \varphi^{-1}(\Gamma).
\]

Then:

1. Every tensor product for \((\mathcal{A}_i)_{i \in I}\) is a \(\Gamma\)-tensor product for some subset \(\Gamma\) of \(\Delta\).
2. For every nonempty subset \(\Gamma\) of \(\Delta\) a \(\Gamma\)-tensor product exists for \((\mathcal{A}_i)_{i \in I}\).
3. A \(\Gamma_1\)-tensor product is isomorphic (as a product) to a \(\Gamma_2\)-tensor product if and only if \(\Gamma_1 = \Gamma_2\).
4. A \(\Gamma\)-tensor product is a local tensor product if and only if \(\Gamma\) consists of only one point.
5. A \(\Gamma\)-tensor product is the direct sum of \(\{\alpha\}\)-tensor products as \(\alpha\) runs through \(\Gamma\).

In case each \(\mathcal{A}_i\) is semi-finite, the equivalence relation \(R\) may be defined explicitly by using the Kakutani product theorem for \(W^*\)-algebras [2]. We obtain \((\mu_i) \sim (\nu_i)\) if and only if

\[
\sum_{i \in I} [d(\mu_i, \nu_i)]^2 < \infty,
\]

where \(d(\mu, \nu)\) is roughly the infimum of \(\|x - y\|\) over all representations of \(\mathcal{A}\) as a von Neumann algebra and all \(x, y\) inducing \(\mu\) and \(\nu\) respectively.

It is not difficult to see that Takeda's infinite direct product of \((\mathcal{A}_i)_{i \in I}\) (see [9]) is a \(\Delta\)-tensor product for \((\mathcal{A}_i)_{i \in I}\).

Section 6 contains some special results on tensor products of factors. Section 7 contains a few simple counterexamples which demonstrate that conditions (III) and (IV) are necessary.

1. Products and factorizations. If \(\mu\) is a normal positive functional on a \(W^*\)-algebra \(\mathcal{A}\), we denote the support of \(\mu\) by \(S(\mu)\), and the central support (the smallest projection of the center of \(\mathcal{A}\) larger than \(S(\mu)\)) by \(Z(\mu)\).

Throughout this section \((\mathcal{A}_i)_{i \in I}\) will be a factorization of the
W^*-algebra \mathcal{A}. By this we mean that each \mathcal{A}_i is a W^*-subalgebra of \mathcal{A} and that, if λ_i denotes the inclusion mapping of \mathcal{A}_i into \mathcal{A}, $(\mathcal{A}, (\lambda_i))$ is a product for $(\mathcal{A}_i)_{i \in I}$. \mathcal{Z} will denote the center of \mathcal{A} and \mathcal{Z}_i the center of \mathcal{A}_i. For J a subset of I we let $\mathcal{A}_J = R(\mathcal{A}; i \in J)$. We call an element of \mathcal{A} tail if it is in $\mathcal{I} = \bigcap_F \mathcal{A}_{F^{-1}}$. For $\mu \in \Sigma_p$, $T(\mu)$ will denote the smallest tail projection larger than $S(\mu)$.

Lemma 1.1. (i). If $\mu \in \Sigma_p$ and $x > 0$, then $x\mu \in \Sigma_p$, where $(x\mu)(A) = x(\mu(A))$ for all $A \in \mathcal{A}$.

(ii). Suppose that μ is a normal positive functional on \mathcal{A} with $\mu(1) = 1$. Then $\mu \in \Sigma_p$ if and only if the family $(\mathcal{A}_i)_{i \in I}$ is independent with respect to μ: i.e., if and only if

$$u\left(\prod_{i \in F} A_i\right) = \prod_{i \in F} \mu(A_i)$$

for all $A_i \in \mathcal{A}_i$ and all finite subsets F of I.

Proof. (i) is obvious. Suppose that μ is a normal positive functional on \mathcal{A} with $\mu(1) = 1$. If (1.1) holds let μ_i be the restriction of μ to \mathcal{A}_i; then $\mu = \bigotimes_{i \in I} \mu_i \in \Sigma_p$. Suppose, on the other hand, that $\mu \in \Sigma_p$. Then $\mu = \bigotimes_{i \in I} \mu_i$ for normal positive functionals μ_i on \mathcal{A}_i. We have $\mu(1) = \prod_{i \in I} \mu_i(1)$, so that $\mu = \bigotimes_{i \in I} \mu_i'$ where $\mu_i' = (\mu_i(1))^{-1} \mu_i$ and $\mu_i'(1) = 1$. Evidently μ_i' is the restriction of μ to \mathcal{A}_i, and (1.1) follows.

Lemma 1.2. (i) $\mathcal{I} \subseteq \mathcal{Z}$.

(ii) $Z(\mu) \leq T(\mu)$ for all $\mu \in \Sigma_p$.

Proof. \mathcal{I} commutes with each \mathcal{A}_i because $\mathcal{I} \subseteq \mathcal{A}_{F^{-1}}$; therefore \mathcal{I} commutes with $\mathcal{A} = R\{\mathcal{A}_i; i \in I\}$.

Lemma 1.3. (i) $\mathcal{Z} \supseteq \mathcal{Z}_i$ for each $i \in I$.

(ii) If \mathcal{A} is a factor then each \mathcal{A}_i is a factor.

Lemma 1.4. For all $\mu = \bigotimes_{i \in I} \mu_i \in \Sigma_p$:

$$S(\mu) \leq \prod_{i \in I} S(\mu_i)$$

and

$$Z(\mu) \leq \prod_{i \in I} Z(\mu_i)$$

Proof.
\[\mu \left(\prod_{i \in I} S(\mu_i) \right) = \prod_{i \in I} \mu_i(S(\mu_i)) = \prod_{i \in I} \mu_i(1) = \mu(1) . \]

Therefore (1.2) holds. (1.3) holds because \(\prod_{i \in I} Z(\mu_i) \) is a projection of \(\mathcal{A} \) larger than \(\prod_{i \in I} S(\mu_i) \) and, hence, by (1.2), larger than \(S(\mu) \).

Remark. The two propositions which follow are stated now for convenience in referring to them later. For the moment, we need only parts (i) and (ii) of Proposition 1.6.

Proposition 1.5. Suppose that \(J \) is a subset of \(I \). Then:

(i). \((\mathcal{A}_i)_{i \in I}\) is a factorization of \(\mathcal{A}_J \).

(ii). If \(\mu = \bigotimes_{i \in I} \mu_i \in \Sigma_\mu \), then the restriction \(\mu' \) of \(\mu \) to \(\mathcal{A}_J \) is a product functional on \(\mathcal{A}_J \) for the factorization \((\mathcal{A}_i)_{i \in J}\), and \(\mu' \) is a scalar multiple of \(\mu_J = \bigotimes_{i \in J} \mu_i \).

(iii). If \(\Sigma \) is a separating subset of \(\Sigma_\mu \), then \(\{\mu_J: \bigotimes_{i \in I} \mu_i \in \Sigma\} \) is separating on \(\mathcal{A}_J \).

(iv). If (III) holds for \((\mathcal{A}_i)_{i \in I}\) then (III) holds for \((\mathcal{A}_i)_{i \in J}\).

(v). If (III) and (IV) hold for \((\mathcal{A}_i)_{i \in I}\), then (IV-\(\mu\)) holds for \((\mathcal{A}_i)_{i \in J}\) for \(\mu \) in a separating subset of product functionals on \(\mathcal{A}_J \).

(vi). If (V) holds for \((\mathcal{A}_i)_{i \in I}\) then (V) holds for \((\mathcal{A}_i)_{i \in J}\).

Proof. (i) and (ii) are obvious, (iii) follows from (ii) and (iv) from (iii). To prove (v) observe that (IV-\(\mu_j\)) clearly holds for all \(\mu \in \Sigma_\mu \). To prove (vi) let \(T_J \) be the tail of the factorization \((\mathcal{A}_i)_{i \in J}\). For every finite subset \(F \) of \(I \):

\[\mathcal{A}_{I-F} \cap \mathcal{A}_J = \mathcal{A}_{I-F} \]

Taking the intersection as \(F \) runs over all finite subsets of \(I \), since \(F \cap J \) runs over all finite subsets of \(J \), we obtain \(T_J \subseteq T \).

Proposition 1.6. Suppose that \((I(j))_{j \in J}\) is a mutually disjoint family of subsets of \(I \) whose union is \(I \). Then:

(i). \((\mathcal{A}_{I(j)})_{j \in J}\) is a factorization of \(\mathcal{A}_J \).

(ii). If \(\mu = \bigotimes_{i \in I} \mu_i \in \Sigma_\mu \) then \(\mu \) is a product functional for the factorization \((\mathcal{A}_{I(j)})_{j \in J}\) and \(\mu' = \bigotimes_{j \in J} (\bigotimes_{i \in I(j)} \mu_i) \).

(iii). If (III) holds for the factorization \((\mathcal{A}_i)_{i \in I}\) then (III) holds for the factorization \((\mathcal{A}_{I(j)})_{j \in J}\).

(iv). If (V) holds for the factorization \((\mathcal{A}_i)_{i \in I}\) then (V) holds for the factorization \((\mathcal{A}_{I(j)})_{j \in J}\).

Remark. (IV) holding for \((\mathcal{A}_i)_{i \in J}\) does not necessarily mean that (IV) holds for \((\mathcal{A}_{I(j)})_{j \in J}\); see Example 7.3.
Proposition 1.7. (Zero-one law). For all \(\mu \in \Sigma_p \) with \(\mu(1) = 1 \) and all tail projections \(T \):

\[
\mu(T) = 0 \text{ or } 1.
\]

Proof. Let \(F \) be a finite subset of \(I \). Then \(\mu \) is a product functional for the factorization \(\{ \mathcal{A}_F, \mathcal{A}_{\sim F} \} \) of \(\mathcal{A} \) (Proposition 1.6. (i)) and \(T \in \mathcal{A}_{\sim F} \); therefore (Lemma 1.1), for all \(A \in \mathcal{A}_F \):

\[
(1.4) \quad \mu(AT) = \mu(A)\mu(T).
\]

Now \(\bigcup_F \mathcal{A}_F \) is ultraweakly dense in \(\mathcal{A} \), so (1.4) holds for all \(A \in \mathcal{A} \). Putting \(A = T \in \mathcal{A} \), we obtain:

\[
\mu(T) = (\mu(T))^2.
\]

Corollary 1.8. If \(\mu \in \Sigma_p \) and \(T \) is a tail projection:

\[
\mu(T) \neq 0 \text{ implies } S(\mu) \leq T.
\]

Proposition 1.9. For every \(\mu \in \Sigma_p \), \(T(\mu) \) is an atomic projection of \(\mathcal{T} \).

Proof. Suppose that \(T \) is a projection of \(\mathcal{T} \) with \(0 \leq T \leq T(\mu) \). Then either \(\mu(T) = 0 \) or \(S(\mu) \leq T \), by Corollary 1.8. If \(S(\mu) \leq T \) then \(T = T(\mu) \) by definition. If \(\mu(T) = 0 \) then \(T \leq 1 - S(\mu) \) and \(T(\mu) - T \geq S(\mu) \); that implies \(T = 0 \).

Corollary 1.10. For all \(\mu, \nu \in \Sigma_p \):

\[
either T(\mu) = T(\nu) \text{ or } [T(\mu)][T(\nu)] = 0.
\]

Corollary 1.11. If condition (III) holds, then \(\mathcal{T} \) is an atomic \(W^* \)-algebra.

Lemma 1.12. Suppose that conditions (III) and (IV) hold and that \(i \in I \). For all \(A_i \in \mathcal{A}_i^+ \) and all \(T \in \mathcal{T}^+ \):

\[
A_i T = 0 \text{ implies } A_i = 0 \text{ or } T = 0.
\]

Proof. Suppose that \(T \neq 0 \). Then because of (III), there exists \(\mu \in \Sigma_p \) with \(\mu(T) \neq 0 \). By Proposition 1.6, \(\{ \mathcal{A}_i, \mathcal{A}_{\sim i} \} \) is a factorization for \(\mathcal{A} \) and \(\mu = \mu_i \otimes \mu' \) is a product functional for this factorization. We have \(T \in \mathcal{A}_{\sim i} \) and \(\mu'(T) \neq 0 \). Now for every nonzero normal positive functional \(\nu_i \) on \(\mathcal{A}_i \), \(\nu_i \otimes \mu' \) exists on \(\mathcal{A} \) by (IV). Hence \(A_i T = 0 \) implies that \((\nu_i \otimes \mu')(A_i T) = 0 \) or that \(\nu_i(A_i) = 0 \) for each \(\nu_i \). Therefore \(A_i T = 0 \) implies \(A_i = 0 \).
Definition 1.13. Suppose that \((\mathcal{A}_i, (\alpha_i))\) is a product for \((\mathcal{A}_i)_{i \in I}\) and that \(\mu = \bigotimes_{i \in I} \mu_i \in \Sigma_p\). Let \(E(\mu) = \sup \{S(\nu): \nu \in \Sigma_p\text{ and } \nu = \bigotimes_{i \in I} \nu_i\text{ with } \nu_i = \mu_i \text{ for a.a. } i \in I\}\).

Remark. It is clear that \(E(\mu)\) is well defined: i.e., \(E(\mu)\) does not depend on how \(\mu\) is expressed as \(\bigotimes \mu_i\).

Definition 1.14. A product \((\mathcal{A}_i, (\alpha_i))\) for \((\mathcal{A}_i)_{i \in I}\) will be said to satisfy \((VI-(\mu_i))\), where each \(\mu_i\) is a normal positive functional on \(\mathcal{A}_i\), if the following conditions hold:

(i). \(\mu = \bigotimes_{i \in I} \mu_i\) exists on \(\mathcal{A}\).

(ii). \((IV-\mu)\) holds.

(iii). \(E(\mu) = 1\).

Proposition 1.15. For all \(\mu \in \Sigma_p\):

\[E(\mu) \leq T(\mu).\]

Proof. Suppose that \(\nu = \bigotimes_{i \in I} \nu_i \in \Sigma_p\) with \(\nu_i = \mu_i\) for a.a. \(i \in I\). Let \(F = \{i \in I: \nu_i = \mu_i\}\). Then \(F\) is finite so that \(T(\mu) \in \mathcal{A}_{I-F}\). By Proposition 1.6, \(\{\mathcal{A}_F, \mathcal{A}_{I-F}\}\) is a factorization of \(\mathcal{A}\) for which \(\mu\) and \(\nu\) are product functionals: \(\mu = \mu_F \bigotimes \mu'\) and \(\nu = \nu_F \bigotimes \nu'\). Clearly \(\mu' = \nu'\). We have \(0 \neq \nu(T(\mu)) = \mu'(T(\mu))\), so that \(\nu'(T(\mu)) \neq 0\). Hence \(\nu(T(\mu)) = \nu_F(1)\nu'(T(\mu)) = 0\) and by Corollary 1.8, \(S(\nu) \leq T(\mu)\).

Since \(E(\mu)\) is the supremum of such \(S(\nu)\), \(E(\mu) \leq T(\mu)\).

Proposition 1.16. Condition \((VI-(\mu_i))\) implies conditions (III), (V) and (IV-\(\nu\)) for \(\nu\) in a separating subset of \(\Sigma_p\).

Proof. Evidently \((VI-(\mu_i))\) implies (IV-\(\nu\)) for \(\nu\) in a separating subset of \(\Sigma_p\), and hence (III). That it implies (V) is a consequence of Proposition 1.9 and Proposition 1.15.

Lemma 1.17. Suppose that \(Z\) is a projection of \(\mathcal{A}\). Let \(\alpha_i: \mathcal{A}_i \to Z\mathcal{A}\) be defined, for each \(i \in I\), by:

\[\alpha_i(A_i) = ZA_i \quad \text{for all } A_i \in \mathcal{A}_i.\]

Let \(Z_i\) be the support of \(\alpha_i\). Then \((Z, \mathcal{A}_i, (\alpha_i'))\) is a product for \((Z, \mathcal{A}_i)\), where \(\alpha_i'\) denotes the restriction of \(\alpha_i\) to \(Z_i\mathcal{A}_i\). Suppose that \(\mu' = \bigotimes \mu_i'\) is a product functional for \((Z, \mathcal{A}_i, (\alpha_i'))\). Define \(\mu\) on \(\mathcal{A}\) and \(\mu_i\) on \(\mathcal{A}_i\) by:

\[\mu(A) = \mu'(ZA) \quad \text{for all } A \in \mathcal{A};\]

\[\mu_i(A_i) = \mu_i'(Z_iA_i) \quad \text{for all } A_i \in \mathcal{A}_i.\]
Then \(\mu \) is in \(\Sigma_p \), \(S(\mu) = S(\mu') \), and \(\mu = \bigotimes \mu_i \).

Proof. Obviously, since \(\alpha'_i(Z_i, \mathcal{A}_i) = \alpha_i(\mathcal{A}_i) = Z_i, (Z, \mathcal{A}, (\alpha_i)) \) is a product for \((Z_i, \mathcal{A}_i) \). Suppose \(\mu', \mu_i', \mu_i \), and \(\mu_i \) are as in the lemma. Then whenever each \(A_i \in \mathcal{A}_i \) and \(A_i = 1 \) for a.a. \(i \in I \):

\[
\mu\left(\prod_{i \in I} A_i \right) = \mu'\left(Z \prod_{i \in I} A_i \right) = \mu'\left(\prod_{i \in I} \alpha_i(A_i) \right) \\
= \mu'\left(\prod_{i \in I} \alpha'_i(Z_i A_i) \right) = \prod_{i \in I} \mu'_i(Z_i A_i) = \prod_{i \in I} \mu_i(A_i).
\]

Proposition 1.18. Suppose that the factorization \((\mathcal{A}_i)_{i \in I} \) satisfies (III) and (IV), and suppose that \(T \) is a nonzero tail projection. Let \(\alpha_i : \mathcal{A}_i \to T_\mathcal{A}_i \) be defined, for each \(i \in I \), by:

\[
\alpha_i(A_i) = TA_i \quad \text{for all } A_i \in \mathcal{A}_i.
\]

Then:

(i). Each \(\alpha_i \) is an isomorphism and \((T_\mathcal{A}_i, (\alpha_i)) \) is a tensor product for \((\mathcal{A}_i) \) i.e., \((T_\mathcal{A}_i, (\alpha_i)) \) is a product for \((\mathcal{A}_i) \) satisfying (III) and (IV).

(ii). \((T_\mathcal{A}_i, (\alpha_i)) \) is a local tensor product if and only if \(T \) is atomic in \(\mathcal{F} \).

(iii). There is a one-to-one correspondence \(\mu' \leftrightarrow \mu \) between product functionals \(\mu' \) for \((T_\mathcal{A}_i, (\alpha_i)) \) and product functionals \(\mu \) on \(\mathcal{A} \) for \((\mathcal{A}_i) \) with \(S(\mu) \leq T \), where \(\mu' \) is the restriction of \(\mu \) to \(T_\mathcal{A}_i \) and \(\mu(A) = \mu'(TA) \) for all \(A \in \mathcal{A}_i \). We have \(S(\mu) = S(\mu') \) and \(\mu = \bigotimes \mu_i \) if and only if \(\mu' = \bigotimes \mu_i \).

Proof. Lemma 1.12 shows that each \(\alpha_i \) is an isomorphism. Then Lemma 1.17 shows both that \((T_\mathcal{A}_i, (\alpha_i)) \) is a product for \((\mathcal{A}_i) \), and also that, if \(\mu' = \bigotimes \mu_i \) is a product functional for \((T_\mathcal{A}_i, (\alpha_i)) \), then the \(\mu \) corresponding to \(\mu' \) is in \(\Sigma_p \), \(\mu = \bigotimes \mu_i \), and \(S(\mu) = S(\mu') \). Suppose that \(\mu = \bigotimes \mu_i \) is in \(\Sigma_p \) with \(S(\mu) \leq T \), and let \(\mu' \) be the restriction of \(\mu \) to \(T_\mathcal{A}_i \). Suppose \(A_i \in \mathcal{A}_i \) and \(A_i = 1 \) for all \(i \in I - F \) for a finite subset \(F \) of \(I \). Then:

\[
\mu' \left(\prod_{i \in I} \alpha_i(A_i) \right) = \mu \left(\prod_{i \in I} TA_i \right) = \left[\prod_{i \in F} \mu_i(A_i) \right] \left[\mu_{I-F}(T) \right]
\]

because \(T \in \mathcal{A}_{I-F} \). Now \(\mu(T) = \mu_F(1)\mu_{I-F}(T) \), and, since \(S(\mu) \leq T \), \(\mu(T) = \mu(1) = \mu_F(1)\mu_{I-F}(1) \). Therefore:

\[
\mu_{I-F}(T) = \mu_{I-F}(1) = \prod_{i \in I-F} \mu_i(1).
\]

Combining (1.5) and (1.6), we conclude that \(\mu = \bigotimes \mu_i \in \Sigma_p \). That completes the proof of (iii).
Since (III) holds for the factorization \((\mathcal{A}_i)\), evidently Corollary 1.8 and (iii) demonstrate that (III) holds for \((T, \mathcal{A}, (\alpha_i))\). To prove (IV) for \((T, \mathcal{A}, (\alpha_i))\), let us assume that \(\mu' = \bigotimes \mu_i\) is a product functional for \((T, \mathcal{A}, (\alpha_i))\) and that \(\nu_i\) is a non-zero normal positive functional on \(\mathcal{A}_i\) with \(\nu_i = \mu_i\) for a.a. \(i \in I\). Let \(\mu\) correspond to \(\mu'\) as in (iii) so that \(\mu = \bigotimes \mu_i\) for \((\mathcal{A}_i)\) and \(S(\mu) \leq T\). Now (IV) holds for \((\mathcal{A}_i)\), so that \(\nu = \bigotimes \nu_i\) exists on \(\mathcal{A}\). We have \(S(\nu) \leq E(\mu) \leq T(\mu) \leq T\) by Propositions 1.15 and 1.9. \(\nu' = \bigotimes \nu_i\) exists as a product functional for \((T, \mathcal{A}, (\alpha_i))\) by (iii). That demonstrates (IV) and thus (i).

Since \(T\) is in \(\mathcal{K}\) and each \(\mathcal{A}_i\), a direct calculation shows that the tail of the product \((T, \mathcal{A}, (\alpha_i))\) is precisely \(T\mathcal{F}\). Hence (V) holds for \((T, \mathcal{A}, (\alpha_i))\) if and only if \(T\) is atomic in \(\mathcal{F}\). That proves (ii).

2. Direct products of von Neumann algebras. We summarize here the definition and same basic properties of the direct product of a family of von Neumann algebras. For details and omitted proofs, see [7] or [1].

Let \(I\) be an arbitrary indexing set. Suppose that \((H_i)_{i \in I}\) is a family of Hilbert spaces and that, for each \(i \in I\), \(x_i\) is in \(H_i\) with \(0 < \prod_{i \in I} \|x_i\| < \infty\). Then we denote by \(\bigotimes_{i \in I} (H_i, x_i)\) von Neumann's incomplete direct product of the family \((H_i)\) with respect to the \(C_0\)-sequence \((x_i)\), (see [7]). Let \(A = \{(y_i)\} : \) each \(y_i \in H_i, \sum |1 - (x_i|y_i)| < \infty\) and \(\sum |1 - \|y_i\|| < \infty\}\). Then there is a natural multilinear mapping \((y_i) \mapsto \bigotimes y_i\) from \(A\) into a dense subset of \(H\) with:

\[(\bigotimes y_i | \bigotimes z_i) = \prod (y_i, z_i)\quad \text{for all} \quad (y_i), (z_i) \in A.
\]

Lemma 2.1. Suppose that \(x_i, y_i \in H_i\) with \(0 < \prod \|x_i\|, \prod \|y_i\| < \infty\) and that \(\sum |1 - (x_i|y_i)| < \infty\). Then \(\bigotimes (H_i, x_i) = \bigotimes (H_i, y_i)\).

Lemma 2.2. Suppose that, for each \(i \in I\), \(L_i\) is a dense linear subset of \(H_i\) with \(x_i \in L_i\), and suppose that

\[0 < \prod \|x_i\| < \infty.
\]

Let \(L = \{\bigotimes_{i \in I} y_i : y_i \in L_i\ \text{for all} \ i \in I\ \text{and} \ y_i = x_i \ \text{for a.a.} \ i \in I\}\). Then \(L\) is dense in \(\bigotimes_{i \in I} (H_i, x_i)\).

Lemma 2.3. Let \(H = \bigotimes_{i \in I} (H_i, x_i)\). Then, for each \(j \in I\), there exists a normal isomorphism \(\alpha_j\) of \(\mathcal{L}(H_j)\) into \(\mathcal{L}(H)\) such that, for all \(A_j \in \mathcal{N}_j\) and all \((y_i) \in A\):

\[(\alpha_j(A_j))(\bigotimes y_i) = \bigotimes y'_i\]

where \(y'_i = y_i\) for \(i \neq j\) and \(y'_j = A_j y_j\). We call \(\alpha_j\) the natural injection of \(\mathcal{L}(H_j)\) into \(\mathcal{L}(H)\).
DEFINITION 2.4. Suppose that, for each \(i \in I \), \(\mathcal{A} \) is a von Neumann algebra on \(H_i \) and \(x_i \in H_i \), and suppose that \(0 < \prod ||x_i|| < \infty \). Then by \(\bigotimes_{i \in I} (\mathcal{A}, x_i) \) we will mean \(\mathcal{B}(\alpha_i(\mathcal{A}); i \in I) \), where \(\alpha_i \) is the natural injection of \(\mathcal{F}(H_i) \) into \(\mathcal{L}(\bigotimes (H_i, x_i)) \).

LEMMA 2.5. (i). \(\bigotimes_{i \in I} (\mathcal{A}(H_i), x_i) = \mathcal{L}(\bigotimes_{i \in I} (H_i, x_i)) \).

(ii). \(\bigotimes_{i \in I} (\mathcal{A}, x_i) \) is a factor if and only if each \(\mathcal{A} \) is a factor.

PROPOSITION 2.6. Suppose that, for each \(i \in I \), \(\mathcal{A} \) is a von Neumann algebra on \(H_i \) and \(x_i \in H_i \), and suppose that \(0 < \prod ||x_i|| < \infty \). Let \(\mu_i(A_i) = \langle A_i x_i | x_i \rangle \). Let \(\alpha_i \) be \(\bigotimes_{i \in I} (\mathcal{A}, x_i) \), and let \(\alpha_i \) be the natural injection of \(\mathcal{A} \) into \(\mathcal{A} \) for each \(i \in I \). Then \((\mathcal{A}, \alpha_i) \) is a product for \((\mathcal{A}, \alpha_i) \) which satisfies (VI-(\(\mu_i \)). Furthermore, if \(\mu = \bigotimes_{i \in I} \mu_i \), then

\[
S(\mu) = \prod_{i \in I} \alpha_i(S(\mu_i)) .
\]

REMARK. (IV) also holds, of course, and is easily proved directly. See Proposition 4.2.

Proof. Obviously \((\mathcal{A}, \alpha_i)\) is a product for \((\mathcal{A})\) and \(\mu = \bigotimes_{i \in I} \mu_i \) exists in \(\Sigma \); in fact, if \(x = \bigotimes_{i \in I} x_i \) then \(\mu(A) = \langle A x | x \rangle \) for all \(A \in \mathcal{A} \). By Lemma 1.4,

\[
S(\mu) \leq \prod_{i \in I} \alpha_i(S(\mu_i)) .
\]

Now \(S(\mu) = \text{pr} [\mathcal{A}' x] \) (By \([L]\) we mean the closure of \(L \); by \(\text{pr} [L] \) we mean the orthogonal projection onto \([L]\)). Because \(\mathcal{A}' \) contains each \(\alpha_i(\mathcal{A}') \), \([\mathcal{A}' x] \) contains the closure of

\[
\{ \bigotimes A'_i x_i; \text{each } A'_i \in \mathcal{A}' \text{ and } A'_i = 1 \text{ for a.a. } i \in I \} .
\]

Thus (Lemma 2.2) \([\mathcal{A}' x] \) contains \(\bigotimes ([\mathcal{A}' x_i], x_i) \). The projection onto this last subspace of \(H = \bigotimes (H_i, x_i) = \prod \alpha_i(S(\mu_i)) \). Hence \(S(\mu) \geq \prod \alpha_i(S(\mu_i)) \) and (2.1) follows from (2.2).

To prove (VI-(\(\mu_i \)), let us assume first that every normal positive functional on \(\mathcal{A} \) is induced by a vector of \(H_i \). Let

\[
L = \{ \bigotimes y_i; y_i \in H_i, y_i = x_i \text{ for a.a. } i \in I \} .
\]

Then \(L \) is dense in \(H \) by Lemma 2.2. For each nonzero \(y \in L \), let \(\nu_y \) be the functional induced by \(y
\]

\[
\nu_y(A) = \langle A y | y \rangle \text{ for all } A \in \mathcal{A} .
\]

Then a direct calculation shows that \(\nu_y = \bigotimes \nu_i \) where \(\nu_i \) is induced by \(y_i \) and \(\nu_i = \mu_i \) for a.a. \(i \in I \). We have \((S(\nu_y))y = y \). Since every
normal positive functional on \mathcal{A} is induced by a vector, as y runs through L, y_i runs through $\Sigma = \{\otimes y_i: y_i = \mu_i \text{ for a.a. } i \in I\}$.

Thus (IV-μ) holds, and

$$E(\mu) = \sup \{S(y): y \in \Sigma\} \geq \text{pr } [L] = 1.$$

To prove (VI-μ_i) in the general case we will show that there exist von Neumann algebras \mathcal{B}_i on G_i and vectors $z_i \in G_i$, and that there exists an isomorphism ψ of \mathcal{A} onto $\otimes (\mathcal{B}_i, z_i)$ such that:

1. Every normal positive functional on \mathcal{B}_i is induced by a vector.

2. $\psi(\alpha_i(\mathcal{A}_i)) = \beta_i(\mathcal{B}_i)$ where β_i is the natural injection of $\mathcal{A}(G_i)$ into $\mathcal{L}(G)$ and $G = \otimes (G_i, z_i)$.

3. If $z = \otimes z_i$ then

$$\langle \psi(A)z | z \rangle = \mu(A) \text{ for all } A \in \mathcal{A}.$$

Then by the preceding paragraph (VI-μ_i) will hold for the product $(\mathcal{B}, (\beta_i))$ and thus for the product $(\mathcal{A}, (\alpha_i))$.

For each $i \in I$, let H'_i be a Hilbert space of infinite dimension, let $x'_i \in H'_i$ with $\|x'_i\| = 1$, and let \mathcal{C}_i be the algebra of scalars on H'_i. Let $\mathcal{B}_i = \mathcal{A}_i \otimes \mathcal{C}_i$ on $G_i = H_i \otimes H'_i$ and let $z_i = x_i \otimes x'_i$. Let $G = \otimes (G_i, z_i) = \otimes (H_i \otimes H'_i, x_i \otimes x'_i)$ and let $H' = \otimes (H'_i, x'_i)$. Then [7] it is easy to construct a natural isometry ϕ from $H \otimes H'$ onto G such that:

$$\phi(\alpha_i(T_i) \otimes 1_{H'})\phi^{-1} = \beta_i(T_i \otimes 1_{H'})$$

for all $T_i \in \mathcal{A}(H_i)$ and all $i \in I$. Define $\psi: \mathcal{A} \rightarrow \mathcal{L}(G)$ by:

$$\psi(A) = \phi(A \otimes 1_{H'})\phi^{-1} \text{ for all } A \in \mathcal{A}.$$

Then (2.4), (2.5), and $\psi(\mathcal{A}) = \mathcal{B}$ follow immediately.

Corollary 2.7. Suppose that $(\mathcal{A}_i)_{i \in F}$ is a finite family of von Neumann algebras. Let $\mathcal{A} = \bigotimes_{i \in F} \mathcal{A}_i$ and let α_i be the natural injection of \mathcal{A}_i into \mathcal{A}. Then $(\mathcal{A}_i, (\alpha_i))$ is a tensor product for $(\mathcal{A}_i)_{i \in F}$ which satisfies (V). In particular $\otimes \mu_i$ exists in Σ, for every nonzero normal positive functional μ_i of \mathcal{A}_i.

Lemma 2.8. Suppose that $(H_i)_{i \in I}$ is a family of Hilbert spaces and that, for each $i \in I, H_i = \bigoplus_{j \in J(i)} H_i^j$ where $0 \in J(i)$ (by $H_i = \bigoplus_{j \in J(i)} H_i^j$ we mean that the H_i^j are mutually orthogonal subspaces of H_i which span H_i). Suppose that, for each $i \in I$ and $j \in J(i), x_i^j$
is a nonzero vector of \(H_i \), and suppose that \(0 < \prod_{i \in I} ||x_i^*|| < \infty \). Denote by \(J \) the set of families \((j(i))_{i \in I}\) with each \(j(i) \in J(i) \) and \(j(i) = 0 \) for a.a. \(i \in I \). If \(j = (j(i)) \in J \) let \(H_j = \bigotimes_{i \in I} (H_i^{j(i)}, x_i^{j(i)}). \) Then each \(H_j \) is a subspace of \(H = \bigoplus_{j \in J} H_j. \) Furthermore, if \(\alpha_j \) denotes, for each \(j = (j(i)) \in J \), the natural injection of \(\mathcal{L}(H_j^{j(i)}) \) into \(\mathcal{L}(H_j) \), then:

\[
(2.6) \quad \alpha_j(\bigoplus_{i \in J(i)} T_i^j) = \bigoplus_{i \in J(j(i))} [\alpha_i^j(T_i^j)] \quad \text{for all } (T_i^j)_{j \in J}, \quad \text{with each } T_i^j \in \mathcal{L}(H_j^i). \quad \text{(Here } \bigoplus \text{ maps } T_i^j : \otimes x_i^j \rightarrow \bigoplus T_i^j x_i^j).\]

Proof. The \(H_j \) are clearly mutually orthogonal, and \([H_j ; j \in J] \) is \(H \) by Lemma 2.2. Formula (2.6) can be confirmed by a direct calculation.

3. The basic isomorphism theorems. By a representation \(\psi \) of a \(W^* \)-algebra \(\mathcal{A} \) on a Hilbert space \(H \) we mean a normal homomorphism \(\mathcal{A} \rightarrow \mathcal{B}(H) \) onto a von Neumann algebra on \(H \) (Notice that \(\psi(1) \) is the identity on \(H \)). If \(\psi \) is a representation of \(\mathcal{A} \) on \(H \) and \(\mu \) is a normal positive functional on \(\mathcal{A} \), a vector \(x \in H \) will be called a \(\mu \)-cyclic vector for \(\psi \) if \([\psi(\mathcal{A})x] = H \) and

\[
\mu(A) = \langle \psi(A)x | x \rangle \quad \text{for all } A \in \mathcal{A}. \]

Given \(\mathcal{A} \) and \(\mu \) it is well known (see [3, p. 51], for example) that a representation \(\psi \) with a \(\mu \)-cyclic vector exists (and is essentially unique), and that such a \(\psi \) acts isomorphically on \((Z(\mu))_{\mathcal{A}} \) and takes \((1 - Z(\mu))_{\mathcal{A}} \) into 0.

PROPOSITION 3.1. Suppose that \((\mathcal{A}_i)_{i \in I}\) is a factorization of the \(W^* \)-algebra \(\mathcal{A} \) and that \(\mu = \bigotimes_{i \in I} \mu_i \) is a product functional for this factorization. Suppose that \(\psi \) is a representation of \(\mathcal{A} \) on \(H \) with \(\mu \)-cyclic vector \(x \). Suppose that, for each \(i \in I \), \(\psi_i \) is a representation of \(\mathcal{A}_i \) on \(H_i \) with \(\mu_i \)-cyclic vector \(x_i \). Then there exists an isometry \(\phi \) of \(H \) onto \(\bigotimes_{i \in I} (H_i, x_i) \) such that:

(i). \(\phi(x) = \bigotimes_{i \in I} x_i. \)

(ii). \(\phi(\psi(\mathcal{A}))\phi^{-1} = \bigotimes_{i \in I} (\psi_i(\mathcal{A}_i), x_i). \)

(iii). For all \(A_i \in \mathcal{A}_i \) and each \(i \in I \):

\[
\phi(\psi(A_i))\phi^{-1} = \alpha_i(\psi_\mathcal{A}(A_i)) \]

where \(\alpha_i \) denotes the natural injection of \(\mathcal{L}(H_i) \) into \(\mathcal{L}(\bigotimes_{i \in I} (H_i, x_i)). \)

Proof. Let \(\mathcal{K} \) denote the set of families \((A_i)_{i \in I}\) with each \(A_i \in \mathcal{A}_i \) and \(A_i = 1 \) for a.a. \(i \in I \). Let

\[
M = \left\{ \left[\psi\left(\prod_{i \in I} A_i \right) \right] : (A_i) \in \mathcal{K} \right\}
\]
First we claim that M is a dense subset of H. For \mathcal{A} the $*$-algebra $\{\prod_{i \in I} A_i : (A_i) \in \mathcal{A}\}$, is ultrastrongly dense in \mathcal{A} (a corollary of the double-commutant theorem); hence $\psi(\mathcal{A})$ is strongly dense in $\psi(\mathcal{A})$ and $[\psi(\mathcal{A})] = [\psi(\mathcal{A})] = H$ because x is a cyclic vector for $\psi(\mathcal{A})$.

Secondly, N is a dense subset of $\bigotimes_{i \in I} (H_i, x_i)$ by Lemma 2.2, since $x_i \in [\psi_i(\mathcal{A}_i)x_i] = H_i$ for each $i \in I$.

Fix $(A_i) \in \mathcal{A}$. Then:

$$\left\| \left(\psi \left(\prod_{i \in I} A_i \right) \right) x \right\| = \mu \left(\prod_{i \in I} A_i^* A_i \right) = \prod_{i \in I} \mu_i (A_i^* A_i) \left\| \bigotimes_{i \in I} \left(\psi_i (A_i) x_i \right) \right\| = \prod_{i \in I} \left\| \psi_i (A_i) x_i \right\|^2 = \prod_{i \in I} \mu_i (A_i^* A_i).$$

Therefore, since M is dense in H and N is dense in $\bigotimes_{i \in I} (H_i, x_i)$, there exists a (unique) isometry ϕ of H onto $\bigotimes_{i \in I} (H_i, x_i)$ such that, for all $(A_i) \in \mathcal{A}$:

$$\phi \left[\left(\prod_{i \in I} A_i \right) x \right] = \bigotimes_{i \in I} \left(\psi_i (A_i) x_i \right).$$

Now (i) follows immediately, (iii) by a direct calculation, and (ii) from (iii).

Theorem 3.2. Suppose that $(\mathcal{A}_i)_{i \in I}$ is a factorization of the W^*-algebra \mathcal{A}. Suppose that $\mu = \bigotimes_{i \in I} \mu_i$ is a product functional for this factorization, and suppose that (IV-μ) holds. Then there exist, for each $i \in I$, a faithful representation \mathcal{A}_i of \mathcal{A}_i on H_i and a vector $x_i \in H_i$, and there exists a representation ψ of \mathcal{A} on $H = \bigotimes_{i \in I} (H_i, x_i)$ such that:

(i) ψ maps $(1 - E(\mu))\mathcal{A}$ into 0 and maps $(E(\mu))\mathcal{A}$ isomorphically onto $\psi(\mathcal{A}) = \bigotimes_{i \in I} (\mathcal{A}_i, x_i)$.

(ii) For each $i \in I$ and all $A_i \in \mathcal{A}_i$:

$$\psi(A_i) = \alpha_i(A_i),$$

where α_i denotes the natural injection of $\mathcal{A}(H_i)$ into $\mathcal{L}(H)$.

(iii). For each $i \in I$ and all $A_i \in \mathcal{A}_i$:

$$((\mathcal{A}_i(A_i)) x_i | x_i) = \mu_i (A_i).$$

(iv). If x denotes $\bigotimes_{i \in I} x_i$, then, for all $A \in \mathcal{A}$:

$$((\psi(A)) x | x) = \mu(A).$$
Proof. For each $i \in I$, select (by Zorn’s lemma) a family $(\mu^i)_{j \in J(i)}$ of normal nonzero positive functionals on \mathcal{A}_i such that $\sum_{j \in J(i)} Z(\mu^i) = 1$ and $0 \in J(i)$ with $\mu^i_0 = \mu_i$. Let J be the subset of $\Pi_{i \in I} J(i)$ consisting of $(j(i))$ with $j(i) = 0$ for a.a. $i \in I$. Since $(IV-\mu)$ holds, each $j = (j(i)) \in J$ the product functional $\mu^i = \bigotimes_{i \in I} \mu^i_{j(i)}$ exists on \mathcal{A}_i. We have $Z(\mu^i) \leq \Pi_{i \in I} Z(\mu^i_{j(i)})$ by Lemma 1.4, so that $(Z(\mu^i))_{j \in J}$ is a mutually orthogonal family of central projections of \mathcal{A}. Let $Z = \sum_{j \in J} Z(\mu^i)$.

For each $j \in J$ let Γ^j be a representation of \mathcal{A} on G^j with a μ^j-cyclic vector y^j. Let Γ be the direct sum representation $\bigoplus_{j \in J} \Gamma^j$ of \mathcal{A} on $G = \bigoplus_{j \in J} G^j$.

\[(3.1) \quad \Gamma^j(A) = \bigoplus_{j \in J} \Gamma^j(A) \quad \text{for all } A \in \mathcal{A}_i.\]

Then Γ maps $(1 - Z)\mathcal{A}$ into 0 and maps $Z\mathcal{A}$ isomorphically onto $\Gamma(\mathcal{A})$.

For each $i \in I$ and each $j \in J(i)$, let Δ^i_j be a representation of \mathcal{A}_i on H_i^j with μ_i^j-cyclic vector x_i^j. Let Δ_i be the direct sum representation $\bigoplus_{j \in J(i)} \Delta^i_j$ of \mathcal{A}_i on $H_i = \bigoplus_{j \in J(i)} H_i^j$.

\[(3.2) \quad \Delta_i(A_i) = \bigoplus_{j \in J(i)} \Delta^i_j(A_i) \quad \text{for all } A_i \in \mathcal{A}_i.\]

Then each Δ_i is faithful.

Fix $j = (j(i))$ in J. We know that $\mu^j = \bigotimes_{i \in I} \mu^i_{j(i)}$, that Γ^j is a representation of \mathcal{A} on G^j with μ^j-cyclic vector y^j, and that $\Delta^i_{j(i)}$, for each $i \in I$, is a representation of \mathcal{A}_i on $H^j_{i(i)}$-cyclic vector $x^j_{i(i)}$. Therefore Proposition 3.1 demonstrates the existence of an isometry ϕ^j from G^j onto $H^j = \bigotimes_{i \in I} (H^j_{i(i)}, x^j_{i(i)})$ such that:

\[(3.3) \quad \phi^j(y^j) = \bigotimes_{i \in I} x^j_{i(i)}\]

and

\[(3.4) \quad \phi^j(\Gamma^j(A_i))(\phi^j)^{-1} = \alpha_i(\Delta^j_{i(i)}(A_i)) \quad \text{for all } A_i \in \mathcal{A}_i,\]

where α_i denotes the natural injection of $L(H^j_{i(i)})$ into $L(H^j)$.

Let x_i^j denote $x^j_{i(i)}$ for each $i \in I$. Let $H = \bigoplus_{i \in I} (H_i, x_i)$, and denote by α_i the natural injection of $L(H_i)$ into $L(H)$. Then (Lemma 2.8), $H = \bigoplus_{j \in J} H^j$, and, for each $i \in I$ and all operators $T_i \in L(H_i)$ with $T_i = \bigoplus_{j \in J(i)} T_i^j$ and with each $T_i^j \in L(H_i^j)$:

\[(3.5) \quad \alpha_i(T_i) = \bigoplus_{j = (j(i)) \in J} (\alpha_i(T^j_{i(i)})).\]

Define the isometry ϕ of G onto H by:

\[\phi\left(\bigoplus_{j \in J} f^j\right) = \bigoplus_{j \in J} \phi^j(f^j) \quad \text{for all } f^j \in G^j.\]

Let ψ be the representation of \mathcal{A} on H defined by:
\[\psi(A) = \phi(\Gamma(A))\varphi^{-1} \quad \text{for all } A \in \mathcal{A}. \]

Evidently \(\psi \) has the same kernel as \(\Gamma \): \(\psi \) maps \((1 - Z)\mathcal{A}\) into 0 and \(Z\mathcal{A} \) isomorphically onto \(\psi(\mathcal{A}) \).

Now fix \(i \in I \) and \(A_i \in \mathcal{A}_i \). In view of (3.2), applying (3.5) to \(A_i \) we obtain:

\[\alpha_i(\mathcal{A}_i) = \bigoplus_{j = (j_i)} [\alpha_i(\mathcal{A}_j)] . \]

Using (3.1), the definitions of \(\psi \) and \(\varphi \), and (3.4), we get:

\[\psi(A_i) = \phi\left[\bigoplus_{j \in J} \Gamma^i(A_i) \right] \varphi^{-1} = \bigoplus_{j \in J} \phi^i(\Gamma^i(A_i))\varphi^{-1} \]

\[= \bigoplus_{j = (j_i)} [\alpha_i(\mathcal{A}_j)] . \]

We conclude, from (3.6) and (3.7), that:

\[\psi(A_i) = \alpha_i(\mathcal{A}_i) \quad \text{for all } A_i \in \mathcal{A}_i \text{ and all } i \in I. \]

Hence \(\psi \) maps \(\mathcal{A} = \mathcal{B}(\mathcal{A}_i; i \in I) \) onto

\[\mathcal{B}(\alpha_i(\mathcal{A}_i); i \in I) = \bigotimes_{i \in I} (\mathcal{A}_i, x_i). \]

Assertion (ii) of the theorem is precisely (3.8). (iii) holds because \(x_i = x_i^i \) is a \(\mu \)-cyclic vector for \(\mathcal{A}_i \). (iv) holds because of (3.4) and the choice of \(\psi \) to be a \(\mu \)-cyclic vector for \(\Gamma^o \). To complete the proof of the theorem, then, we need to show only that \(Z = E(\mu) \).

Evidently \(Z \leq E(\mu) \). Let \(\beta_i : \mathcal{A}_i \to Z\mathcal{A}_i \) be defined by \(\beta_i(A_i) = ZA_i \) for all \(A_i \in \mathcal{A}_i \). Then we have just proved that \((Z, \mathcal{A}_i, (\beta_i)) \) is isomorphic to the product \((\bigotimes (\mathcal{A}_i, x_i), (\alpha_i, \cdot, \cdot)) \), which satisfies (VI-\(\mu \)) by Proposition 2.6. Hence (\(Z, \mathcal{A}_i, (\beta_i) \)) is a product for \((\mathcal{A}_i) \) which satisfies (VI-\(\mu \)). Now suppose that each \(\nu_i \) is a nonzero normal positive functional on \(\mathcal{A}_i \) and that \(\nu_i = \mu_i \) for a.a. \(i \in I \). Then \(\nu' = \bigotimes \nu_i \) exists as a product functional for \((Z, \mathcal{A}_i, (\beta_i)) \). Hence, by Lemma 1.17, \(\nu = \bigotimes \nu_i \) exists in \(\Sigma_\mu \) with \(S(\nu) = S(\nu') \leq Z \). Since \(E(\mu) \) is the supremum of such \(S(\nu) \), \(E(\mu) \leq Z \). This completes the proof.

Corollary 3.3. Suppose that \((\mathcal{A}_i)_{i \in I} \) is a factorization of the \(W^* \)-algebra \(\mathcal{A} = \bigotimes_{i \in I} \mathcal{A}_i \), that \(\mu = \bigotimes_{i \in I} \mu_i \) is a product functional for this factorization, and that (IV-\(\mu \)) holds. Then

\[S(\mu) = [E(\mu)] \prod_{i \in I} S(\mu_i). \]

Proof. Use Theorem 3.2 and (2.1) of Proposition 2.6.

Corollary 3.4. Suppose that \((\mathcal{A}_i)_{i \in I} \) is a family of \(W^* \)-algebras,
and that, for each \(i \in I \), \(\mu_i \) is a normal positive functional of \(\mathcal{A} \). Suppose that \((\mathcal{A}, (\alpha_i)) \) and \((\mathcal{B}, (\beta_i)) \) are products for \((\mathcal{A}) \) which satisfy (VI-(\(\mu_i \))). Then \((\mathcal{A}, (\alpha_i)) \) and \((\mathcal{B}, (\beta_i)) \) are isomorphic: i.e., there exists an isomorphism \(\psi \) of \(\mathcal{A} \) onto \(\mathcal{B} \) such that \(\psi \circ \alpha_i = \beta_i \) for all \(i \in I \).

Corollary 3.5. Suppose that, for each \(i \in I \), \(\mathcal{A}_i \) and \(\mathcal{B}_i \) are von Neumann algebras on \(H_i \) and \(G_i \) respectively, that \(x_i \in H_i \) and \(y_i \in G_i \) with

\[
0 < \prod \| x_i \|, \quad \prod \| y_i \| < \infty,
\]

and that \(\psi_i \) is an isomorphism of \(\mathcal{A}_i \) onto \(\mathcal{B}_i \) such that:

\[
(\psi_i(A_i))y_i | y_i = (A_i x_i | x_i) \quad \text{for all } A_i \in \mathcal{A}_i.
\]

Then there exists an isomorphism \(\psi \) of \(\mathcal{A} = \bigotimes (\mathcal{A}_i, x_i) \) onto \(\mathcal{B} = \bigotimes (\mathcal{B}_i, y_i) \) such that \(\psi \circ \alpha_i = \beta_i \circ \psi_i \) for each \(i \in I \), where \(\alpha_i \) is the natural injection of \(\mathcal{A}_i \) into \(\mathcal{A} \) and \(\beta_i \) is the natural injection of \(\mathcal{B}_i \) into \(\mathcal{B} \).

Proof. Use Corollary 3.4 and Proposition 2.6.

Theorem 3.6. Suppose that \((\mathcal{A}_i)_{i \in F} \) is a finite family of \(W^* \)-algebras. Suppose that \((\mathcal{A}, (\alpha_i)) \) is a product for \((\mathcal{A}_i)_{i \in F} \) satisfying (III) and (IV-\(\mu \)) for some product functional \(\mu \). Then there exists an isomorphism \(\psi \) of \(\mathcal{A} \) onto \(\bigotimes_{i \in F} \mathcal{A}_i \) such that:

\[
\psi \left(\prod_{i \in F} \alpha_i(A_i) \right) = \bigotimes_{i \in F} A_i \quad \text{for all } A_i \in \mathcal{A}_i.
\]

(We write \(\bigotimes_{i \in F} A_i \) for \(\prod_{i \in F} \lambda_i(A_i) \), where \(\lambda_i \) is the natural injection of \(\mathcal{A}_i \) into \(\bigotimes_{i \in F} \mathcal{A}_i \).) Furthermore, for every product functional \(\nu = \bigotimes \nu_i \) for \((\mathcal{A}_i, (\alpha_i)) \):

\[
S(\nu) = \prod_{i \in F} \alpha_i(S(\nu_i)).
\]

Proof. If \(\mu = \bigotimes_{i \in F} \mu_i \), \(E(\mu) = 1 \) because (III) holds and \(F \) is finite. Hence (VI-(\(\mu \))) holds, and Corollary 3.4 and Proposition 2.6 complete the proof.

4. Local tensor products.

Lemma 4.1. Suppose that \((\mathcal{A}_i)_{i=1}^N \) is a factorization of the \(W^* \)-algebra \(\mathcal{A} \), and that \(\mu_i \) is a normal positive functional on \(\mathcal{A}_i \). Let \(\Sigma_i \) be the set of normal positive functionals \(\mu_i \) on \(\mathcal{A}_i \) such that
\(\mu_1 \otimes \mu_2 \) exists as a product functional on \(\mathcal{A} \) for the factorization \((\mathcal{A}_i) \).

Then:

(i). If \(\mu_i \in \Sigma_i \) and \(x > 0 \), then \(x \mu_i \in \Sigma_i \).

(ii). If \(\mu_1^\ast \in \Sigma_1 \) and \(\sum_i \mu_i^\ast(1) < \infty \), then \(\sum_i \mu_i^\ast \in \Sigma_i \).

(iii). If \(\mu_i \in \Sigma_i \) and \(A_i \in \mathcal{A}_i \), with \(\mu_i(A_i^\ast A_i) \neq 0 \), then \((\mu_i)_{A_i} \in \Sigma_i \)

(iv). If \(\nu_i \) is a nonzero normal positive functional on \(\mathcal{A}_i \) with \(S(\nu_i) \leq Z(\mu_i) \) and \(\mu_i \in \Sigma_i \), then \(\nu_i \in \Sigma_i \).

(v). If \(\Sigma_i \) is separating then \(\Sigma_i \) is the set of all nonzero normal positive functionals on \(\mathcal{A}_i \).

Proof. (i), (ii), and (iii) are obvious by direct calculation. To prove (iv) suppose that \(\nu_i \) is a normal positive functional on \(\mathcal{A}_i \) and that \(S(\nu_i) \leq Z(\mu_i) \) with \(\mu_i \in \Sigma_i \). Then, by Proposition 3.1, there exists a normal homomorphism \(\psi \) from \(\mathcal{A} \) onto \((Z(\mu_i))_i \otimes (Z(\mu_2))_{\mathcal{A}_2}\) such that:

\[
\psi(A_1 A_2) = (\nu_i(A_1)) \otimes (Z(\mu_2)A_2)
\]

for all \(A_1 \in \mathcal{A}_1 \) and \(A_2 \in \mathcal{A}_2 \).

Now, since \(S(\nu_i) \leq Z(\mu_i) \), by Corollary 2.7 there exists a normal positive functional \(\omega = \nu_i \otimes \mu_2 \) on \((Z(\mu_1))_i \otimes (Z(\mu_2))_{\mathcal{A}_2}\) such that:

\[
\omega((Z(\mu_i)A_1) \otimes (Z(\mu_2)A_2)) = (\nu_i(A_1))(\mu_2(A_2))
\]

for all \(A_1 \in \mathcal{A}_1 \) and \(A_2 \in \mathcal{A}_2 \).

Evidently \(\omega \circ \psi \) equals \(\nu_i \otimes \mu_2 \in \Sigma_p \) and \(\nu_i \in \Sigma_i \).

To prove (v) assume that \(\Sigma_i \) is separating. Then, using (iii) and Zorn's lemma, we can choose a family \((\mu_i^\ast)_{j \in J} \) with each \(\mu_i^\ast \in \Sigma_i \) and \(\sum_{j \in J} Z(\mu_i^\ast) = 1 \). Suppose that \(\nu_i \) is a normal state of \(\mathcal{A}_i \). Then \(\sum \nu_j(Z(\mu_i^\ast)) < \infty \) and therefore \(\nu_j(Z(\mu_i^\ast)) = 0 \) for all but a countable number of \(j \in J \). Hence a suitable countable linear combination \(\mu_i \) of the \(\mu_i^\ast \) satisfies \(S(\nu_i) \leq Z(\mu_i) \) and \(\mu_i \in \Sigma_i \) by (ii). Then \(\nu_i \in \Sigma_i \) by (iv).

Remark. Lemma 4.1 may be proved directly (without using Proposition 3.1 or properties of the tensor product) by using Sakai's Radon-Nikodým theorem [8] and the weak Radon-Nikodým type result of [5, p. 211].

Proposition 4.2. Suppose that \((\mathcal{A}_i)_{i \in I} \) is a factorization of the \(W^\ast \)-algebra \(\mathcal{A} \). Let \(\Sigma_{IV} \) be the set of product functionals on \(\mathcal{A} \) for which (IV-\(\mu \)) holds, and suppose that \(\Sigma_{IV} \) is separating. Suppose that \(F \) is a finite subset of \(I \). Then there exists an isomorphism \(\psi \) of \(\mathcal{A} \) onto \(\mathcal{A}_F \otimes \mathcal{A}_{-F} \) such that:

\[
\psi(AB) = A \otimes B \quad \text{for all } A \in \mathcal{A}_F \text{ and } B \in \mathcal{A}_{-F}.
\]
Proof. By Proposition 1.6 \(\{\mathcal{A}_f, \mathcal{A}_{-f}\} \) is a factorization of \(\mathcal{A} \) and each \(\mu \in \Sigma_{Y} \) is a product functional for this factorization: \(\mu = \mu_f \otimes \mu_{i-f} \). Let \(\Sigma_1 = \{\mu_{i-f}: \mu \in \Sigma_Y\} \) and let \(\Sigma_i \) be the set of product functionals on \(\mathcal{A}_f \) for the factorization \((\mathcal{A}_i)_{i \in I} \). By Proposition 1.5. (iii), \(\Sigma_1 \) is separating on \(\mathcal{A}_f \) and \(\Sigma_2 \) is separating on \(\mathcal{A}_{-f} \). Because (IV-\(\mu \)) holds for all \(\mu \in \Sigma_Y, \nu \otimes \mu_{i-f} \) exists on \(\mathcal{A} \) for all \(\nu \in \Sigma_1 \) and all \(\mu_{i-f} \in \Sigma_2 \). Hence, by Lemma 4.1 (\(\nu \)), \(\nu \otimes \omega \) exists on \(\mathcal{A} \) for all \(\nu \in \Sigma_1 \) and all nonzero normal positive functionals \(\omega \) on \(\mathcal{A}_{-f} \); and, from there, by the same lemma, \(\nu \otimes \omega \) exists on \(\mathcal{A} \) for all nonzero normal positive functionals \(\nu \) of \(\mathcal{A}_f \) and \(\omega \) of \(\mathcal{A}_{-f} \). Thus (IV) holds for the factorization \(\{\mathcal{A}_f, \mathcal{A}_{-f}\} \). (III) obviously holds for \((\mathcal{A}_i) \) and thus for \(\{\mathcal{A}_f, \mathcal{A}_{-f}\} \) (Proposition 1.6. (iii)). Now Theorem 3.6 completes the proof.

Remark. Proposition 4.2 is false if the hypothesis that \(F \) be finite is omitted (see Example 7.3).

Corollary 4.3. If \(\Sigma_Y \) is separating then (III) and (IV) hold.

Proof. That (III) holds is obvious. To prove (IV) use Proposition 4.2 and Corollary 2.7.

Corollary 4.4. If a product \((\mathcal{A}_i, (\alpha_i)) \) satisfies (VI-\(\mu_i \)), then it satisfies (III), (IV), and (V): i.e., it is a \((\mu_i) \)-local tensor product.

Proof. Use Proposition 1.16 and Proposition 4.2.

Proposition 4.5. Suppose that \((\mathcal{A}_i, (\alpha_i)) \) is a tensor product for \((\mathcal{A}_i)_{i \in I} \); i.e., that (III) and (IV) hold. Then, for all \(\mu = \bigotimes_{i \in I} \mu_i \in \Sigma_p \):

\[
E(\mu) = T(\mu)
\]

and

\[
S(\mu) = [T(\mu)] \prod_{i \in I} \alpha_i(S(\mu_i)).
\]

Proof. \(E(\mu) \leq T(\mu) \) by Proposition 1.15. To prove (4.1), then, it suffices to prove that \(E(\mu) \) is tail. Let \(\Sigma = \{\nu \in \Sigma_p: \nu = \bigotimes \nu_i \text{ for a.a. } i \in I\} \). Then \(E(\mu) = \sup \{S(\nu): \nu \in \Sigma\} \). Suppose that \(F \) is a finite subset of \(I \). Then \(\{\mathcal{A}_f, \mathcal{A}_{-f}\} \) is a factorization of \(\mathcal{A} \) for which each \(\nu \in \Sigma \) is a product functional: \(\nu = \nu_f \otimes \nu_{i-f} \). By Proposition 4.2 and (2.1) of Proposition 2.6, for all \(\nu \in \Sigma \):

\[
S(\nu) = [S(\nu_f)][S(\nu_{i-f})].
\]

Thus:
Because of (IV), for fixed ν_{I-F}, ν_F runs through all product functionals for $(\mathcal{A}_F, (\alpha_i)_{i \in F})$ and therefore (Proposition 1.5. (iv)):

$$\sup \{S(\nu_F): \nu \in \Sigma, \nu_{I-F} \text{ fixed} \} = 1.$$

Using (4.3), we obtain:

$$E(\mu) \geq \sup \{S(\nu_{I-F}): \nu \in \Sigma \}. \quad (4.5)$$

Now (4.4) and (4.5) show that $E(\mu) \in \mathcal{A}_{I-F}$. Since F was an arbitrary finite subset of I, we have shown that $E(\mu)$ is tail. That proves (4.1).

(4.2) follows from (4.1) and Corollary 3.3.

Corollary 4.6. A product $(\mathcal{A}, (\alpha_i))$ for (\mathcal{A}) is a (μ_i)-local tensor product for (\mathcal{A}) if and only if (VI-(\mu_i)) holds.

Proof. Corollary 4.4 shows that (VI-(\mu_i)) is sufficient. Suppose that $(\mathcal{A}, (\alpha_i))$ is a (μ_i)-local tensor product for (\mathcal{A}). Let $\mu = \bigotimes \mu_i$. Then (IV-\mu) holds because (IV) does, and, using Proposition 4.5 and (V), we see that $E(\mu) = T(\mu) = 1$.

Theorem 4.7. Suppose that, for each $i \in I$, \mathcal{A}_i is a W^{*}-algebra and μ_i is a normal positive functional on \mathcal{A}_i. Suppose that $0 < \prod_{i \in I} \mu_i(1) < \infty$. Then a (μ_i)-local tensor product exists and is unique up to isomorphism.

Proof. Proposition 2.6, Corollary 3.4, and Corollary 4.6.

5. Tensor products. Throughout this section we suppose that $(\mathcal{A}_i)_{i \in I}$ is a family of W^{*}-algebras. Let A be the set of families $(\mu_i)_{i \in I}$, each μ_i a normal positive functional on \mathcal{A}_i and

$$0 < \prod_{i \in I} \mu_i(1) < \infty.$$

Let the relation R on A be defined by writing $(\mu_i) \sim (\nu_i) \pmod{R}$ to mean that a (μ_i)-local tensor product for $(\mathcal{A}_i)_{i \in I}$ is necessarily a (ν_i)-local tensor product for $(\mathcal{A}_i)_{i \in I}$. R is a well defined equivalence relation because a (μ_i)-local tensor product exists and is unique up to isomorphism. The following lemma is a trivial consequence of the definition of (μ_i)-local tensor product.

Lemma 5.1. Let $(\mathcal{A}, (\alpha_i))$ be a (μ_i)-local tensor product and let $(\nu_i) \in A$. Then $(\mu_i) \sim (\nu_i) \pmod{R}$ if and only if $\bigotimes \nu_i$ exists on $(\mathcal{A}, (\alpha_i))$.
REMARK. If \(\sum_{i \in I} [d(\mu_i, \nu_i)]^2 < \infty \) then \((\mu_i) \sim (\nu_i)\), and the converse holds provided each \(\mathcal{A}_i \) is semi-finite [2].

Lemma 5.2. If \((\mu_i)\) and \((c_i\mu_i)\) are in \(A \) (where the \(c_i \) are positive real numbers), then \((\mu_i) \sim (c_i\mu_i)\).

Proof. Since \(\prod \mu_i(1) \) and \(\prod c_i\mu_i(1) \) both converge to a nonzero number, so must \(\prod c_i \) converge to \(c \neq 0 \). If \(\mu = \bigotimes \mu_i \) exists as a product for \((\mathcal{A}_i)\), \(c\mu \) is a product state equal to \(\bigotimes (c_i\mu_i) \) by direct calculation.

Remark. This lemma shows that we could, without loss of generality, confine ourselves to \((\mu_i)\) with each \(\mu_i(1) = 1 \).

Define \(A \) to be the quotient set \(\Lambda/R \) and let \(\varphi \) be the quotient map \(A \to A/R = \Delta \).

Definition 5.3. A tensor product \((\mathcal{A}, (\alpha_i))\) for \((\mathcal{A}_i)\) will be called a \(\Gamma \)-tensor product for \((\mathcal{A}_i)\) when:

\[\{ (\mu_i) \in A : \bigotimes \mu_i \text{ exists on } (\mathcal{A}, (\alpha_i)) \} = \varphi^{-1}(\Gamma) \]

Lemma 5.4. Let \(\gamma = \varphi((\mu_i)) \). Then a \((\mu_i)\)-local tensor product is a \(\{\gamma\} \)-tensor product.

Theorem 5.5. Suppose that \((\mathcal{A}, (\alpha_i))\) is a tensor product for \((\mathcal{A}_i)_{i \in I}\). Let

\[\Gamma = \varphi((\mu_i) \in A : \bigotimes \mu_i \text{ exists on } (\mathcal{A}, (\alpha_i))) \]

Then:

(i) \((\mathcal{A}, (\alpha_i))\) is a \(\Gamma \)-tensor product for \((\mathcal{A}_i)\).

(ii) If \(\mu = \bigotimes \mu_i \) and \(\nu = \bigotimes \nu_i \) are product functionals for \((\mathcal{A}, (\alpha_i))\) then:

\[T(\mu) = T(\nu) \text{ if and only if } (\mu_i) \sim (\nu_i) \]

and

\[[T(\mu)][T(\nu)] = 0 \]

otherwise.

(iii) If \(\mu = \bigotimes \mu_i \) is a product functional for \((\mathcal{A}, (\alpha_i))\) then:

\[S(\mu) = [T(\mu)] \prod_{i \in I} \alpha_i(S(\mu_i)) \tag{5.1} \]

\[T(\mu) = \sup \{ S(\bigotimes \nu_i) : (\nu_i) \sim (\mu_i) \} \tag{5.2} \]
(iv). \((N, (\alpha_i))\) is a \((\mu_i)\)-local tensor product if and only if \(\Gamma = \{\varphi((\mu_i))\}\).

(v). For each \(\gamma \in \Gamma\), define \(T(\gamma)\) to be \(T(\mu)\) for \(\mu = \bigotimes \mu_i\) and \(\varphi((\mu_i)) = \gamma\). Let \(N(\gamma) = [T(\gamma)]N\) and let \(\alpha_i(\gamma)\) be defined by:

\[
(\alpha_i(\gamma))(A_i) = \left[\Gamma(\gamma)\right][\alpha_i(A_i)]
\]

for all \(A_i \in N\) and all \(i \in I\).

Then, for each \(\gamma \in \Gamma\), \((N, (\alpha_i))\) is a \((\mu_i)\)-local tensor product for \((N)\) provided that \(\gamma = \varphi((\mu_i))\).

Furthermore:

\[N = \bigoplus_{\gamma \in \Gamma} N(\gamma)\]

and \(\alpha_i = \bigoplus_{\gamma \in \Gamma} \alpha_i(\gamma)\) for all \(i \in I\),

with respect to the same direct sum decomposition of \(N\).

Proof. Suppose that \(\mu = \bigotimes \mu_i\) is a product functional on \((N, (\alpha_i))\).

For each \(i \in I\), define \(\beta_i : N \to N\) by:

\[
\beta_i(A_i) = [T(\mu)][\alpha_i(A_i)]
\]

for all \(A_i \in N\).

Then, by Proposition 1.18:

\[([T(\mu)]N, (\alpha_i)) \text{ is a } (\mu_i)\text{-local tensor product for } (N)\]

By Lemma 5.1, therefore, for all \((\nu_i) \in N, (\nu_i) \sim (\mu_i)\) if and only if \(\bigotimes \nu_i\) exists on \([T(\mu)]N, (\beta_i))\). According to Proposition 1.18. (iii), however, this happens precisely when \(\bigotimes \nu_i\) exists on \((N, (\alpha_i))\) and \(S(\bigotimes \nu_i) \leq T(\mu)\).

We have shown that, for all \((\nu_i) \in N\), and for all product functionals \(\mu = \bigotimes \mu_i\) for \((N, (\alpha_i))\):

\[\beta_i(A_i) = [T(\mu)][\alpha_i(A_i)] \text{ for all } A_i \in N\]

(5.3) shows that, if \((\nu_i) \sim (\mu_i)\) and if \(\bigotimes \mu_i\) exists on \((N, (\alpha_i))\), then \(\bigotimes \nu_i\) exists on \((N, (\alpha_i))\); (i) follows. (ii) is an immediate consequence of (5.4) and the fact that \(I\) is atomic (Proposition 1.9). (5.1) of (iii) is just (4.2) of Proposition 4.5, and (5.2) is a consequence of (4.1) of Proposition 4.5 and (5.4). (iv) follows from (ii). (5.3), together with (ii), proves (v).

Theorem 5.6. Suppose that \((N)_{i \in I}\) is a family of \(W^\ast\)-algebras and that \(A\) is as defined above. Then:

(i). If \(A\) is a nonempty subset of \(A\), a \(\Gamma\)-tensor product for \((N)\) exists and is unique up to isomorphism.

(ii). Suppose that \((N, (\alpha_i))\) is a \(\Gamma\)-tensor product for \((N)\) and that \((P, (\beta_i))\) is a \(\Gamma\)-tensor product for \((N)\). Then \(\Gamma_1 = \Gamma_2\) if and only if \((N, (\alpha_i))\) and \((P, (\beta_i))\) are isomorphic: i.e., if and only if
there exists an isomorphism ψ of \mathcal{A} onto \mathcal{B} such that $\psi \circ \alpha_i = \beta_i$ for all $i \in I$.

Proof. Everything but the existence of a Γ-tensor product for (\mathcal{A}) follows from Theorem 5.5. For each $\gamma \in \mathcal{A}$, a $\{\gamma\}$-tensor product exists by Theorem 4.7. Hence the existence is a result of the following proposition.

PROPOSITION 5.7. Suppose that Γ is a subset of \mathcal{A} and that, for each $\gamma \in \Gamma$, $(\mathcal{A}(\gamma), \alpha_i(\gamma))$ is a $\{\gamma\}$-tensor product for $(\mathcal{A})_i$. Let $\mathcal{A} = \bigoplus_{\gamma \in \Gamma} \mathcal{A}(\gamma)$ and $\alpha_i = \bigoplus_{\gamma \in \Gamma} \alpha_i(\gamma)$ for all $i \in I$. Then $(\mathcal{A}, (\alpha_i))$ is a Γ-tensor product for (\mathcal{A}_i).

Proof. Let \mathcal{A} and α_i be defined as above and let $E(\gamma)$ be the projection of \mathcal{A} with $\mathcal{A}(\gamma) = [E(\gamma)]\mathcal{A}$. Let $\mathcal{B} = \bigoplus_i \mathcal{A}(\alpha_i)$ and $(\mathcal{B}, (\alpha_i))$ is a product for (\mathcal{A}_i). If $\varphi((\mu_i)) = \gamma \in \Gamma$, then $\mu' = \bigotimes \mu_i$ exists on $(\mathcal{A}(\gamma), (\alpha_i(\gamma)))$, and, if μ is defined by $\mu(B) = \mu'(E(\gamma)B)$ for all $B \in \mathcal{B}$, we can see by direct calculation that $\mu = \bigotimes \mu_i$ on $(\mathcal{B}, (\alpha_i))$ with

$$(5.5) \quad S(\mu) \leq E(\gamma) \quad \text{where} \quad \gamma = \varphi((\mu_i)).$$

It is clear that such μ form a separating subset Σ of the normal positive functionals on \mathcal{B}, and that—since $\nu_i = \mu_i$ for a.a. $i \in I$ implies $(\nu_i) \sim (\mu_i)$—(IV-μ) holds for each $\mu \in \Sigma$. Therefore (Corollary 4.3), $(\mathcal{B}, (\alpha_i))$ is a tensor product for (\mathcal{A}_i). By (5.2) of Theorem 5.5 (iii), and by (5.5):

$$T(\gamma) = E(\gamma) \quad \text{for all} \quad \gamma \in \Gamma.$$

Hence each $E(\gamma) \in \mathcal{B}$ and $\mathcal{B} = \mathcal{A}$. Furthermore $\sum_{\gamma \in \Gamma} T(\gamma) = 1$, so that, if $\mu = \bigotimes \mu_i$ is a product functional for $(\mathcal{A}_i, (\alpha_i))$, then $T(\mu) = T(\gamma)$ for some $\gamma \in \Gamma$ (Proposition 1.9) and $\varphi((\mu_i)) = \gamma \in \Gamma$ by Theorem 5.5. (ii). Therefore $(\mathcal{A}, (\alpha_i))$ is a Γ-tensor product for (\mathcal{A}_i).

PROPOSITION 5.8. Suppose that, for each $i \in I$, \mathcal{A}_i is a von Neumann algebra on H_i and every normal positive functional on \mathcal{A}_i is induced by a vector. Let H denote von Neumann's complete direct product [7] of $(H_i)_{i \in I}$ and let α_i be the natural injection of $L(H_i)$ into $L(H)$ for each $i \in I$. Let $\mathcal{A}_i = R(\alpha_i, (\mathcal{A}_i))$ for each $i \in I$. Then $(\mathcal{A}_i, (\alpha_i))$ is a Γ-tensor product for $(\mathcal{A}_i)_{i \in I}$. Furthermore, for every nonempty subset Γ of \mathcal{A}, there exists a projection $T(\Gamma)$ in the tail of $(\mathcal{A}_i, (\alpha_i))$ such that $(T(\Gamma), \mathcal{A}_i(\beta_i))$ is a Γ-tensor product for $(\mathcal{A}_i)_{i \in I}$, where $\beta_i(A_i) = [T(\Gamma)]A_i$ for all $A_i \in \mathcal{A}_i$.

The proof is easy and is omitted.

6. Tensor products of factors.

Lemma 6.1. If $(\mathcal{A}_i, (\alpha_i))$ is a product for (\mathcal{A}_i) and if each \mathcal{A}_i is a factor, then (IV) holds for $(\mathcal{A}_i, (\alpha_i))$.

Proof. Use Lemma 4.1. (iv) and mathematical induction.

Lemma 6.2. Suppose that $(\mathcal{A}_i, (\alpha_i))$ is a product for (\mathcal{A}_i) and that \mathcal{A} is a factor. Then $(\mathcal{A}_i, (\alpha_i))$ is a local tensor product for (\mathcal{A}_i) if and only if there exists a product state of $(\mathcal{A}_i, (\alpha_i))$.

Proof. Each \mathcal{A}_i is a factor by Lemma 1.3, and therefore (IV) holds by Lemma 6.1. (V) holds because $\mathcal{A} \subset \mathcal{B}$. If μ is a product functional on $(\mathcal{A}_i, (\alpha_i))$, then $E(\mu) = 1$, for $E(\mu)$ is central by Theorem 3.2. Thus (III) holds if and only if a product state μ exists.

Proposition 6.3. Suppose that $(\mathcal{A}_i, (\alpha_i))$ is a tensor product for (\mathcal{A}_i) and that each \mathcal{A}_i is a factor. Then $\mathcal{A} = \mathcal{B}$: the tail of $(\mathcal{A}_i, (\alpha_i))$ equals the center of \mathcal{A}.

Proof. By Theorem 5.5, the family $(T(\gamma))_{\gamma \in I}$ of atomic projections of \mathcal{A} is such that each $[T(\gamma), \mathcal{A}]$ is a local tensor product for (\mathcal{A}_i). By Lemma 2.5, each $[T(\gamma), \mathcal{A}]$ is a factor. Hence the center of $\mathcal{A} = \bigoplus [T(\gamma), \mathcal{A}]$ is $\mathcal{B} (T(\gamma); \gamma \in I) = \mathcal{A}$.

Corollary 6.4. Suppose that $(\mathcal{A}_i, (\alpha_i))$ is a tensor product for (\mathcal{A}_i) and that each \mathcal{A}_i is a factor. Then \mathcal{A} is a factor if and only if $(\mathcal{A}_i, (\alpha_i))$ is a local tensor product: i.e., if and only if (V) holds.

Proposition 6.5. Suppose that \mathcal{A} is a finite factor and that $(\mathcal{A}_i)_{i \in I}$ is a factorization of \mathcal{A}. Let μ_i be the restriction of the normalized trace on \mathcal{A} to \mathcal{A}_i. Let $(\mathcal{B}, (\alpha_i))$ be a (μ_i)-local tensor product for $(\mathcal{A}_i)_{i \in I}$. Then there exists an isomorphism ψ of \mathcal{A} onto \mathcal{B} such that, for each $i \in I$:

$$\psi(A_i) = \alpha_i(A_i) \quad \text{for all } A_i \in \mathcal{A}_i.$$

Proof. (c.f. [6]). If μ is the normalized trace on \mathcal{A}, a direct calculation (see the proof of Theorem 4.3 in [2]) demonstrates that $\mu = \bigotimes \mu_i$ for (\mathcal{A}_i). From there Lemma 6.2, Theorem 4.7, Corollary 4.4 and Proposition 2.6 complete the proof.
7. Some simple counterexamples.

EXAMPLE 7.1. Let \(\mathcal{A} \) be a factor of Type II\(_1\) on the Hilbert space \(H \). Then \(\{\mathcal{A}, \mathcal{A}'\} \) is a factorization of \(\mathcal{L}(H) \) which satisfies (IV) and (V), and for which no product functional exists.

See Lemmas 6.1, 6.2 and Theorem 3.6.

EXAMPLE 7.2. For \(i = 1 \) and \(2 \), let \(\mathcal{A}_i \) be a \(W^* \)-algebra with central projection \(Z_i \neq 0 \) or 1. Let \[
Z = (Z_1 \otimes Z_2) + (1 - Z_1) \otimes (1 - Z_2)
\]
in \(\mathcal{A}_1 \otimes \mathcal{A}_2 \), and let \(\mathcal{A} = Z(\mathcal{A}_1 \otimes \mathcal{A}_2) \). Let \(\alpha_i : \mathcal{A}_i \to \mathcal{A} \) be defined by
\[
\alpha_i(A_i) = Z(A_i \otimes 1) \quad \text{for all } A_i \in \mathcal{A}_i
\]
\[
\alpha_i(A_2) = Z(1 \otimes A_2) \quad \text{for all } A_2 \in \mathcal{A}_2.
\]
Then \((\mathcal{A}, (\alpha_i)) \) is a product for \((\mathcal{A}_i)_{i=1,2} \) which satisfies (III) and (V) but not (IV).

EXAMPLE 7.3. Let \(I = \{1, 2\} \times J \) where \(J \) is infinite, and, for each \(i \in I \), let \(\mathcal{A}_i \) be an abelian \(W^* \)-algebra generated by its two atomic projection \(E_i \) and \(1 - E_i \). Let the states \(\mu_i \) and \(\nu_i \) of \(\mathcal{A}_i \) be defined by \(\mu_i(1) = \nu_i(1) = 1 \) and \(\mu_i(E_i) = 1 \) and \(\nu_i(E_i) = 1/2 \). Let \(I' = \varphi((\mu_i), (\nu_i)) \) and let \((\mathcal{A}, (\alpha_i)) \) be a \(I' \)-tensor product for \((\mathcal{A}_i) \). Let
\[
\mathcal{A}_\delta = \mathcal{R}(\alpha_i(\mathcal{A}_i) : i \in \{\delta\} \times J)
\]
and let \(\lambda_\delta : \mathcal{A}_\delta \to \mathcal{A} \) be the inclusion map, for \(\delta = 1 \) and \(2 \). Then \((\mathcal{A}, (\lambda_i)) \) is a product for \((\mathcal{A}_i)_{i=1,2} \) which satisfies (III) and (V) but not (IV). In particular, \((\mathcal{A}, (\lambda_i)) \) is not isomorphic to \(\mathcal{A}_1 \otimes \mathcal{A}_2 \).

To make this clearer, let \(\mathcal{B} = \mathcal{A}_1 \otimes \mathcal{A}_2 \) with \(\lambda_\delta \) the natural injection of \(\mathcal{A}_\delta \) into \(\mathcal{B} \). Let \(\beta_i : \mathcal{A}_i \to \mathcal{B} \) be defined for each \(i = (\delta, j) \in I \) by \(\beta_i = \lambda_\delta \circ \alpha_i \). Then \((\mathcal{B}, (\beta_i)) \) is a \(I'' \)-tensor product for \((\mathcal{A}_i) \) where \(I'' \) contains four points. In fact
\[
I'' = \varphi((\mu_i), (\nu_i), (\omega_i), (\rho_i))
\]
where:
\[
\omega_i = \mu_i \quad \text{and} \quad \rho_i = \nu_i \quad \text{for } i \in \{1\} \times J
\]
and
\[
\omega_i = \nu_i \quad \text{and} \quad \rho_i = \mu_i \quad \text{for } i \in \{2\} \times J.
\]
EXAMPLE 7.4. Let $I = \{1, 2\} \times J$ with J infinite. For each $i \in I$, let H_i be a Hilbert space (of arbitrary dimension ≥ 2) and let φ_i and ψ_i be orthogonal unit vectors in H_i. For each $j \in J$, let $H_j = H_{(1,j)} \otimes H_{(2,j)}$ and let $x_j = [\varphi_{(1,j)} \otimes \omega_{(2,j)} + \varphi_{(1,j)} \otimes \psi_{(2,j)}] \sqrt{2}$. Let $H = \bigotimes_{i \in I} (H_i, x_i)$ and let β_j be the natural injection of $\mathcal{L}(H_j)$ into $\mathcal{L}(H)$. Let $\gamma_{(\delta,j)}$ be the natural injection of $\mathcal{L}(H_{(\delta,j)})$ into $\mathcal{L}(H_j)$. Let $\alpha_{(\delta,j)} = \beta_j \circ \gamma_{(\delta,j)}$ for all $(\delta,j) \in I$. Then $(\mathcal{L}(H), (\alpha_i))$ is a product for $(\mathcal{L}(H_i))_{i \in I}$, and there exist no product functionals for $(\mathcal{L}(H), (\alpha_i))$.

See [2] or the remark which follows Lemma 5.1.

REFERENCES

Received October 27, 1967. This work was supported in part by N.R.C. grant 67-2987.

UNIVERSITY OF BRITISH COLUMBIA
Willard Ellis Baxter, *On rings with proper involution* 1
Donald John Charles Bures, *Tensor products of W*-algebras* 13
James Calvert, *Integral inequalities involving second order derivatives* 39
Edward Dewey Davis, *Further remarks on ideals of the principal class* 49
Le Baron O. Ferguson, *Uniform approximation by polynomials with integral coefficients I* .. 53
Francis James Flanigan, *Algebraic geography: Varieties of structure constants* .. 71
Denis Ragan Floyd, *On QF − 1 algebras* .. 81
David Scott Geiger, *Closed systems of functions and predicates* 95
Delma Joseph Hebert, Jr. and Howard E. Lacey, *On supports of regular Borel measures* ... 101
Martin Edward Price, *On the variation of the Bernstein polynomials of a function of unbounded variation* 119
Louise Arakelian Raphael, *On a characterization of infinite complex matrices mapping the space of analytic sequences into itself* 123
Louis Jackson Ratliff, Jr., *A characterization of analytically unramified semi-local rings and applications* 127
S. A. E. Sherif, *A Tauberian relation between the Borel and the Lototsky transforms of series* .. 145
Armond E. Spencer, *Maximal nonnormal chains in finite groups* 167
Li Pi Su, *Algebraic properties of certain rings of continuous functions* 175
G. P. Szegő, *A theorem of Rolle's type in E^n for functions of the class C^1* 193
Giovanni Viglino, *A co-topological application to minimal spaces* 197
B. R. Wenner, *Dimension on boundaries of ε-spheres* 201