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Let A be a finite-dimensional associative algebra with
identity over a field k, M an A-module which is finite-dimen-
tional as a vector space over k, and E = Horn*; (M, M) the
algebra of linear transformations on M. For aeA. Let aL

denote the linear transformation of M given by aΣ(x) = ax,
for x e M. Define the following subalgebras of E:

AL = {aL: aeA}

C = {feE: f{ax) = af(x) for each ae A, x e M}

D = {fe E: f{g(x)) = g{f(x)) for each geC,xeM} .

Clearly, AL g D. Require M to be faithful. Then A is
isomorphic to, and will be identified with, AL. If A = D, it
is said that the pair (A, M) has the double centralizer
property.

A is called a QF-1 algebra if (A, M) has the double
centralizer property for each faithful ^.-module M.

The following results in the theory of QFΊ algebras are
obtained:

1. Let A be a commutative algebra over an arbitrary
field. Then A is QF-1 if and only if A is Frobenius.

2. Let A be an algebra such that the simple left A-modules
are one-dimensional. Suppose there exist distinct simple
two-sided ideals Ai and A2 contained in the radical of A, and
primitive idempotents e and /, such that eAkf Φ 0, for k — 1, 2.
Then A is not QF-1.

3. Let A be an algebra with the properties that the
simple left A-modules are one-dimensional, and the two-sided
ideal lattice of A is distributive. Then if A satisfies any one
of the following conditions, it is not QF-1.

(a) There exist, for r Ξ> 2, 2r distinct simple two-sided
ideals Auv contained in the radical, and primitive idempotents
βiu and βjv for 1 ̂  u, v ^ r, satisfying eiuAuvEjv Φ 0, where the
index pair (u, v) ranges over the set

(1,1), (2,1), (2, 2), (3, 2), (3, 3), • , (r, r - 1), (r, r), (1, r) .

(b) There exist, for r ^ 1, 2r -f 2 distinct simple two-sided
ideals Auv and Aζ, for (u, v) = (1,1), (1, 2), , (r — 1, r — 1),
(r - 1, r), and (/>, v) = (1,1), (2,1), (3, r), and (4, r), and primi-
tive idempotents e,tt, ejv, and e/ĉ  satisfying eiuAuvej Φ 0 and
ejfcpAίê  =£ 0, where (u, v) and (p, v) range over the index pairs
indicated above.

It is to be noted that the condition given in 2b is but one of
three conditions of that type which may be formulated. An algebra
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satisfying either of the other two conditions is also not QF-1.
A special case of (2b) is worth mentioning, namely the case where

the set of index pairs (u, v) which occur in statement is empty. There
are two variants of the case, rather than the usual three. This
special case appears separately in the following form: let A be an
algebra whose simple two-sided ideals are one-dimensional, and whose
two-sided ideal lattice is distributive. Suppose that either (i) ekAke Φ 0
or (ii) eAkek Φ 0, for k — 1, 2, 3, 4, where the Ak are distinct simple
two-sided ideals, and the ek and e are primitive idempotents of A. Then
A is not QF-l.

The results (2a) and (2b) appear in Chapter 3, and are stated there
in terms which involve the notion of the graph associated with the zero
ideal of an algebra. The notion of the graph associated with Aθ1 where
Ao is a two-sided ideal of an algebra A contained in the radical of A
was first used by J. P. Jans in his dissertation. The results above
was stated in more elementary terms for the sake of brevity.

Introduction* Throughout this paper, an algebra will be a finite-
dimensional associative algebra with identity over an arbitrary field.
All modules are finite dimensional over these fields.

In 1946, C. Nesbitt and R. M. Thrall showed [5] that if A is a
Quasi-Frobenius algebra, then each faithful representation J? of A is
equal to its own second commutator algebra Rn\ In 1948 Thrall [6]
initiated the study of the class of algebras A for which R = R" for
each faithful representation R oί A. He called this class the QF-l
algebras, and showed by an example that it properly contains the
Quasi-Frobenius algebras.

Although results in the theory of QF-l algebras have been ob-
tained since ThralΓs original paper, notably by Morita [3], a problem
whose solution was unknown to Thrall remains unsolved to this day.
The problem, which may be posed in the form of a question, is this:
Is the property "QF-l ness" equivalent to one or more purely internal
properties of an algebra? By the expression "internal properties" is
meant properties of the algebra expressible in terms of the left, right,
or two-sided ideals of the algebra, in terms of the structure constants
associated with a basis, etc.

The main theorems of this paper, Theorems 1.1, 2.1, and 3.2,
may be viewed as contributions to the solution of this problem. The
first of these states that a commutative algebra is QF-l if and only
if it is Frobenius. The latter class of algebras has several character-
izations which may be called "internal" in the sense of the previous
paragraph. The other results apply to algebras A which are required
to satisfy the first, or both of the following conditions:
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( i ) The simple left A-modules are one-dimensional.
(ii) The two-sided ideal lattice is distributive.
The second results below is stated in terms which involve the

notion of the graph associated with the zero ideal of an algebra.
This notion will be defined in § 3. The results are as follows:

1. Let A be an algebra satisfying property (i). Suppose there
exist distinct simple two-sided ideals A1 and A2 contained in the radical
of A, and primitive idempotents e and /, such that eAkf ΦQ, for
k = 1, 2. Then A is not QFΛ.

2. Let A be an algebra which satisfies conditions (i) and (ii). If
the graph associated with the zero ideal of A contains a cycle, a
vertex of order greater than three or a chain which branches at both
ends, then A is not QFΛ.

1. This section is devoted to the following theorem which pro-
vides a nice characterization of commutative QFΛ algebras.

THEOREM. A commutative algebra is QFΛ if and only if it is
Frobenius.

The "if" part of the theorem is true in general; each Frobenius
algebra is Quasi Frobenius, as was first established by, Nakayama [4]
and Quasi-Frobenius algebras are QFΛ, as was shown by Nesbitt and
Thrall.

The proof in the other direction is facilitated by the following
lemma, the proof of which is omitted.

LEMMA. Suppose A is an algebra, and Aiy i — 1, 2, - , n are
two-sided ideals of A such that A = Aλ + A2 + + An; where the
sum is vector space direct. Let e denote the identity of A, and write
e = eι + e2 + + en, where e{ e A{. Then:

( i ) Each βi is the identity for A{.
(ii) A is Frobenius if and only if each A{ is Frobenius.
(iii) A is QFΛ if and only if each A{ is QFΛ.

We proceed with the "only i f part of the theorem. Let A be
an algebra which is not Frobenius. We shall construct a faithful re-
presentation of A which is smaller than its second commutator algebra.

By virtue of the preceding lemma, we may assume A to be in-
decomposable as a module over itself. Then A = A/N is a simple A
module and each simple A-module is isomorphic to A. For proofs of
these statements, see [1]. Let (A:k) = t < co.

The set S(A) = {xeA: Nx = xN = 0} is called the socle of A. It
is well-known that S(A) is the sum of the simple (two-sided) ideals
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of A. The hypothesis implies that S(A) is not simple. For suppose
S(A) were simple. Let B be a basis for A containing seS(A), and
let f:A—>k be that unique linear map satisfying f(s) = l,/(δ) = 0,
beB ~ {s}. Clearly S(A)ςt ker/. Therefore, since each nonzero ideal
of A must contain S(A), it follows that ker/ can contain no such
ideals. This implies that A is Frobenius, a contradiction. Thus S(A)
is not simple. Let Ax and A2 be distinct simple ideals of A.

Choose a composition series 0 = Vo c Vι c c Vn = A satisfying
Vj = Σi=iΆ*f for j = 1, 2, and 7 ^ = iV. By an inductive procedure,
a single basis for A may be chosen which contains a basis for V{ for
each i. We may assume that that part of the basis in V2 but not
in Fi is chosen from A>.

Let R denote the regular representation of A relative to the basis
chosen above. Let X{ be the induced representation whose space is
Vi/Vi-i for i = 1, 2, , n. Because the composition factors are all
isomorphic, it may be assumed that for each ae A, the matrices Xi{oc)
are equal; denote their common value by X{a). R{a) is exhibited in
the following block form:

X(a)

Yx(a) SSμ) X(a)

Y2(a) S2(a) X{ά)

where X(a) and Yi(a) are t x t matrices, Q(a) and Si(a) are
(n — m — l)t x t and t x (n — m — l)ί matrices, respectively, and
P(α) is an (n — m — l)tx(n — m — l)t triangular matrix which has
n — m — 1 copies of X(a) on its main diagonal.

For i = 1, 2, let ^ denote arbitrary nonzero elements of Ait For
x e N, ViX = »2/i = 0. In general, ^ e Ai9 Thus, X(^), Q(^) and P(Vi)
are zero matrices and Y^Vi) = 0, i ^./. The matrices Γί(^) are non-
zero, since otherwise y{ would annihilate A, and hence τ/̂ 1 = y{ would
be zero, contradicting the choice of yi% Furthermore, Yi(y{) are non-
singular, by the following argument: consider the nontrivial linear
transformation T{\ A-+Si defined by T^x + N) = y{x. Because A is
commutative, it is easily seen that the T{ are A-homomorphisms, and
hence isomorphisms, since A and St are simple. As Yι{y%) is the
matrix of Ti relative to appropriate bases, it is nonsingular. Without
loss of generality we may assume that Y^) is the t x t identity
matrix, It, for i = 1, 2.

Let / be the 3 x 3 identity matrix, T the 3 x 3 matrix with Γs
directly below the main diagonal and 0's elsewhere. We observe, by
direct computation, that the matrix function
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\IxX{a)
S(a) = ΠxQ(a) IxP(a)

11 x Yx(a) +Tx Y2(a) I x Sx(a) + Tx S2(a) I x X(a) I

is a representation for A.
Let C represent a matrix in the commuting algebra ^(V) of V,

the space on which S acts. Then C must commute with the two
matrices representing yι and y2

0 0 0 0 0 0

0 0 0 and 0 0 0

1 x It 0 0 Γ x / , 0 0

This implies that C must have the form

\cn o o
* * 0

* 0 Cn

where Cn(T x It) = (T x It)Cn. The matrix

0 0 0

0 0 0
T2 x It 0 0

commutes with each matrix C having the above form, yet D Φ S(a),
for each aeA. Thus, A is not a QF-1 algebra. This concludes the
proof.

2* From this point on, we consider algebras A over a fixed field
k with radical N such that A/N is the ring-direct sum of simple
ideals each of which is isomorphic to k.

Each algebra of this type admits a vector space decomposition

( 1 ) A^SΛ-N

where S is the direct sum of ideals of dimension 1 over θ. That is,
S has a basis of primitive orthogonal idempotents {e^i — 1, 2, , n,
and 1 = Σ e{. We call the {βj the collection of idempotents associated
with the decomposition (1).

If I is a simple two-sided ideal of an algebra A it is not difficult
to prove the following facts:

( i ) I is one-dimensional
(ii) There exists exactly one pair of indices (ί,j) such that

ejβj Φ 0. For this pair of indices, ej.eά = I.
Theorem 2.1 gives the first of four conditions which imply that A is



DENIS RAGAN FLOYD

not QFΛ.

THEOREM 2.1. Let A be an algebra, A1 and A2 distinct simple
two-sided ideals of A contained in JV, and suppose eiAkej Φ 0 for
k — 1,2, where e{ and eά are (not necessarily distinct) primitive
idempotents of A. Then A is not QFΛ.

Proof. It is clear that the condition e^ej Φ 0 remains true if
βi and βj are replaced by isomorphic idempotents. We may therefore
assume that if e{ and ed are distinct they are nonisomorphic. Similar
assumptions will be made tacitly in the proof of Theorem 3.2. We
may choose a decomposition of A of form (1) such that the associated
collection of idempotent contains e{ and e5.

We put the left regular representation R of A into triangular
form relative to a basis containing the {er}, a basis for JV, and a basis
bk for Akt k = 1, 2. Specifically, let xk(a) be the coefficient of ek in
the representation of an element a in A in terms of this basis, and
let yk(cc) be the coefficient of bk in the expansion of aej9 for k = 1, 2.
Since the Ak are annihilated on either side by the radical, it follows
that R has the form

R(a) =
Q(ά)

x3-(a)

P(a)

y2(a) S2(a)

and that there exist elements akeAk, for k = 1,2 such that Xj(ctk)f

Xi(ak), P{ak), Q(ak) and Sι(ak) are zero matrices, and such that Vι{ak)
is 0 for I Φ k and 1 for I — k.

Let I and T be as in the proof of Theorem 1.1. We observe by
direct computation, that the matrix function

I x Xj(a)

I x P(a)

I x y,(a) + T x

/ x Q(a)

I x &(«) + T x S2(a)

is a representation for A. A comparison of S with the regular re-
presentation R shows that S is faithful.

Let V be the module on which S acts. If C represents a matrix
in the commuting algebra C(V) of this representation, then C must
commute with the two matrices

0
0

/

0
0

0

on
0

0

and
0
0

T

0
0

0

0
0

0
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xt and a2. This implies that C must have the form

Cn 0 0

* * o

0

0

τz

0

0

0

0

0

0

where CnT = TCn. The matrix

D =

commutes with each matrix of form (2). However, D Φ S(cc) for each
ae A. Thus, S is strictly smaller than its second commutator algebra
S". This concludes the proof.

3* For an algebra A, the symbol LA will denote the lattice of
two-sided ideals of A. In this section we consider only algebras A
for which LA is distributive. For such algebras, we define a graph,
Go, associated with the zero ideal of A. (This is a special case of
the notion of the graph associated with an arbitrary two-sided ideal
contained in the radical of A-a notion which was first defined and in-
vestigated in [2]). Let {Ak}k be the collection of simple two-sided ideals
of A. Let βi be the collection of primitive orthogonal idempotents
associated with a vector space decomposition of A of the form (1).
The graph Go consists of a set of n symbols Plf •• , P n , called the
vertices of the graph, and a relation R in this set defined by: PιRPά

if and only if there exists k such that e{Akeά Φ 0. If PiRP3 obtains,
then Pi and Pά are said to be connected by an (oriented) edge. It is
clear that the definition of R does not depend upon the particular de-
composition of A of form (1).

We shall say that the vertex Pi has right order r (left order τ)
if there exist distinct vertices Ptl, •• ,P < r , such that PiRP^iP^RPi)
hold for j = 1, 2, , τ. The order of a vertex is the larger of the
two orders. A chain C is a set of vertices and edges

such that successive edges are distinct, that is iv Φ ίv+2, for v —
1,2, , τ — 1. The parentheses indicate that the first and last edges
of the chain may have either orientation. The chain C2 extends the
chain d on the right (and Cλ extends C2 on the left) if the last
vertex of Cx is the first vertex of C2 and identifying these equal
vertices makes Cx followed by C2 a chain. The chain C is a cycle if
it extends itself. Note that a cycle has an even number of edges.
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A chain branches at one end if it can be extended by at least two
distinct edges at that end.

The following lemma is crucial in the proof of the main theorem.

LEMMA 3.1. Let PikRPJk, k = 1, 2, , m be a collection of distinct
edges of Go. Then for each k there exists special element akeA, and
representation Rk such that:

(1) Rk is a triangularized representation of A with the form

k &k %ik

where xjk and xik are one-dimensional representations of A.
(2) Rk(ctj) = 0 for k Φ j, and Rk(cck) has a 1 in the lower left

hand corner and zeros elsewhere.
(3) + Σ?=iΛ* is a faithful representation for A.

Proof. Without loss of generality, we may assume that, for each
k, eikAkej]c Φ 0. (Observe that condition (ii) listed immediately preceding
Theorem 2.1 implies that to each simple two-sided ideal is associated
exactly one edge of GQ). We choose a decomposition of A of form (1)
such that the associated collection {ej- of primitive idempotents contains
eijc and ejk, all k. Select βk Φ 0 in Ak. We may triangularize the
left regular representation R of A relative to a basis B containing
the {β, }, containing a basis for N, and containing βk for each k (here,
distributivity of LA is used, in case m ̂  3). Let x^a) denote the coef-
ficient of βi in the expansion of an element a in terms of the basis
first selected, and let yk(a) denote the coefficient of ak in the expansion
of aejk. Put Ai = ^{Aiii Φ k}, and Bk = A/Ak. The representation
Rk with space Bk has, relative to the basis of Bk induced by B, the
form described in (1). The elements ak described in (2) can be gotten
as the appropriate scalar multiples of βk for each k. Finally, that
+ Σ ? = i J ^ is faithful is a consequence of the distributivity of LA.

In terms of the graph Go, we can now state three other conditions
for an algebra to be QFΛ.

THEOREM 3.2. // the graph Go of an algebra A has a cycle, a
vertex of order greater than three, or a chain which branches at
both ends, then the algebra is not QFΛ.

Proof. We consider separately the various cases. Assume that
Go has a vertex of order greater than three. We may assume that
the order of the vertex in this case is the left order, the other case
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being handled analogously. Then there exist four distinct edges
Pi]eRPif for k = 1, , 4. By Lemma 3.1, there exist four representa-
tions

and four special elements ak,k = 1,2, 3, 4, satisfying the conditions
of that lemma.

Let / and T be as in the proof of Theorem 2.1, and let /6 be
the 6 x 6 identity matrix. Then the matrix function

(I,0)xpί ixQ,

(0,I)xpz IxQ2

(I,I)xp3 IxQ3

(I,T)xPi IxQt

(I,0)xyl IxS, Ixxh

IxS2

Ixxh

(I,T)xy4

is seen, by direct computation, to be a representation of A. A com-
parison of S with the representation +Σ*=IJRJ ; shows that S is faith-
ful. Let C represent a matrix in the commuting algebra ί f ( F ) of
V, the module on which S acts. In particular, B must commute with
the four matrices which represent ak, k — 1, , 4. By direct com-
putation one sees that this condition forces C to have the form:

C =

0

C" 0

0 •

C" 0

0 C" 0

0 0 C" 0

0 0 0 C"

where C" is a 3 x 3 matrix satisfying TC = C'T.
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Let D be the matrix of the same dimensions as C having the
submatrix (0, T2) x 1 in the lower left hand corner and 0's elsewhere.
Then DC = CD for each matrix C in <tf(V). However, D Φ S(a)
for each aeA, and thus S g S", concluding the proof for this case.

Now suppose that Go contains a cycle. It can be shown that if
Go has a chain which has a repeated edge then GQ has a cycle. Thus
we may assume that Go has a cycle all of the edges of which are
distinct. Let

Ph, PhRPh, Pdι, Pi2RPh, Piτ, PhRPJτ, Ph

be that cycle. Let i?n, R21, Rττ, Rίτ be the representations associated
with the edges of the cycle by Lemma 3.1.

Rμv —

Sμu

(μ,ι>) = (1,1), (2, 1), . . . ( l , τ ) .

From the submatrices of these Rμv construct a matrix function

\Xl

R = \\P Q

Y S X

which has the following description in block form (it is to be under-
stood that those portions of the matrix blocks not described are filled
with 0's):

( i ) X1 is the direct sum of the representations / x xJv, for
v = 1, 2, , τ; X2 is the direct sum of I x x{ , for μ = 1, 2, , τ;
and Q is the direct sum of / x Qμv for

(μ, v) = (1, 1), (2, 1), (2, 2), . . . (τ, τ), (1, τ) .

(ii) P has J x Pμv directly below Ix xju, and to the left of
I x Qμv, for (μ, v) e J ~ {(1, τ)}, and contains T x P1 7 directly below
I x α?ir and to the left of / x QlT

(iii) S has I x S/<v directly below I x Q^, and to the left of
I x Xi , for (μ, v) e J.

(iv) Y has / x yμv directly below / x xjv, and to the left of
I x Xi , for (μ, v)eJ~ {(1, τ)}, and contains T x ?/ίΓ directly below
I x xjτ, and to the left of I x xh.

Note that Y has the form
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I x y21 I x y22

I x yZ2 I x y33

I x 2/43

T x yίτ

I X yr-\r-l

I X 2/r,r-l / X Vrr

One shows, by direct computation, that the matrix function con-
structed above is indeed a representation for A. Comparing A with
the (faithful) representation

+ Σ {Rμ>: (μ, v) = (1,1), (2,1) . . . (τ, τ), (1, τ)

we see that R is faithful. Let C be the matrix representing an ele-
ment of the commuting algebra. ^(V) of V the module on which
R acts. Let aμv be the 2τ special elements associated with the re-
presentations Rμv by Lemma 3.1. Then C must commute with R
evaluated at each of these elements. Direct computation shows that
this forces C to have the form:

C =
C"

C"

where C is the direct sum of r copies of a 3 x 3 matrix Co satisfy-
ing CQT = TC0.

Now let D be the matrix of the same dimensions as R, which
has O's in all positions except the 3 x 3 position corresponding to the
upper right hand corner of the matrix Y. Require that the matrix
in the special position indicated by T\ Then DC = CD, and yet
D Φ R{a), for each a e A. Thus, R£R",A is not QFΛ, and the
proof is complete for this case.

Finally, assume that the graph of A contains a chain which
branches at both ends. It is enough to consider the case that all the
edges involved are distinct, for if they are not distinct the graph has
a cycle. Let the chain and its branches be as follows:

There are two other cases to consider, depending on the orienta-
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tion of the first and last edges of C. These cases are handled an-
alogously.

Let Rμu, for (μ, v) = (1,1), (1, 2), . . . , (τ - 1, τ), and ΛJ, for (p, v) =
(1,1), (2,1), (3, τ), (4, τ) be the 2τ + 2 representations associated with
C and its edges as given by Lemma 3.1.

•tCμu — II X/tv

and

Xi

(μ, v) = (1,1), (1, 2), . . . , ( r - l , τ )

= \\PP

\yζ

Qi

Si

(p, v) = (1,1), (2,1), (3, r), (4, τ) .

Form the matrix function R,

( 3 ) R = P Q

Y S X2

from the submatrices of the Rμu and Rp

v, as follows:
( i ) X2 is the direct sum of I6 x x5v for v — 1, 2, , τ; Q is the

direct sum of /6 x Qμv for (/£, v) = (1,1), (1, 2), , (τ - 1, r), and

/6 x Qί, for do, v) - (1,1), (2,1), (3, r), (4, r); X2

in the upper left hand corner, / x xh + I x
hand corner and the direct sum of /6 x x{ , for
the middle diagonal position.

(ii) P has J6 x P ^ directly below I6 x a?iv

has / x χki + / x .τfc2

%4 in the lower right
μ = 1, 2, , r — 1 in

and to the left of

IQ x Qμv, and J6 x P^ directly below J6 x a?ii;, and to the left of J6 x Q£.
(iii) S has (I, 0) x Si directly below 16 x Qί, and to the left of

I x xky\ (0,1) x SI directly below I6 x Q\ and to the left of / x xk2;
(/, /) x SΓ

3 directly below /6 x Q3

r, and to the left of / x xh; (I, T) x St
directly below /6 x Q\, and to the left of / x xk^, and /6 x S/iv direct-
ly below /6 x Qμv and to the left of /6 x x{ , for

(μ, v) - (1,1), (1, 2), . . . , ( r - l , τ ) .

(iv) F has J x j/1 + / x j/ϊ directly below 76 x xSι and to the left
of / x xkl + I x a?A2; (/, /) x ί/3

Γ directly below IQ x a;ir, and to the left
of I x xkz; (/, T) x 2/t directly below I6 x τ/ir and to the left of I x xk4;
and J6 x 7/̂ ^ directly below J6 x α;iy and to the left of J6 x x% . Note
that F has the following form:
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Y =

x vl

X Vu Ie X 2/i2

7 6 x 2/22 J 6 x

Λ X ?/r~l3r

(Λ i) x yJ

(/, T) x #

One shows by direct computation that R is a representation of
A. Moreover, a comparison of i? with the faithful representation

+ Σ {Rμ»(μ, v) = (1, 1), (1, 2), , (τ - 1, r)} + Σ {Rϊ(P, »)
= (1, 1), (2, 1), (3, τ), (4, τ)}

shows that R is faithful.
Now let C represent an element of the commuting algebra ^(V)

of V the module on which R acts. For convenience, we write C =
(Cij)i, j — 1, 2, 3, where the dimensions of the C /̂s correspond in an
obvious way to the dimension of the submatrices of R as exhibited
in (3). Let aμu9 for (μ, v) = (1,1), (1, 2), .. , (r - 1, r), and α£, for
(̂ ^ v) — (1,1), (2,1), (3, τ), (4, τ) be the special elements of A associated
with the representations Rμv and Rp

u, as described in the lemma. C
must commute with the matrices representing these special elements.
This implies that C12, C13 and C23 are zero matrices, and Cn and C33

are 2τ and 2τ + 2 copies, respectively, of a 3 x 3 matrix Co satisfying
C0T = TC0.

Now let D be a matrix of the same dimensions as R(a) which
has O's in all positions except the 3 x 3 position corresponding to the
lower right corner of the matrix Y. Require that the matrix in the
special position indicated by Γ2. Then it is easily checked that
DC = CD; however, D Φ R(a), for each aeA; hence R^jLR"\ this
concludes the proof for the final case.

We conclude this paper with an example which illustrates the
incompleteness of the theory. Let k be an arbitrary field. The algebra
A of dimension 3 over k consisting of 2 x 2 matrices of the form

a
\b

where α, 6, and c are in k, satisfies the conditions that its irreducible
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representations are one-dimensional, and its two sided ideal lattice is
distributive. The representation of A consisting precisely of the above
matrices is not equal to its second commutator algebra. However, A
does not satisfy any of the conditions given in the hypotheses of
Theorems 2.1 and 3.2.

Thus, "QFA ness" is not a consequence of the negation of any,
or all, of the conditions stated in the hypotheses of these theorems.
A precise characterization of the class of QF-1 algebras, given in
terms of "internal properties" as defined in the introduction, has yet
to be found.

The author wishes to thank Professor Jans for his encouragement
and guidance in the preparation of this work.
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