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In this paper we look at the problem of maximizing a func-
tion P defined on a manifold M, Although we shall be pri-
marily concerned with the case where J is a certain polyhedron
in a Euclidean space R” and P is a polynomial with nonnegative
coefficients defined on R", some of our results are valid in
greater generality.

In §2 we describe the general behavior of a growth transforma-
tion of P in the vicinity of a local extremum. These results are of
a topological nature and can be thought of as a topological—dynamical
description of growth transformations.

In §3 we turn our attention to a particular class of growth
transformation which arise for polynomials with nonnegative coefficients.
We shall prove the following result, which is the main theorem of
this paper:

THEOREM. Let M U oM denote the manifold with boundary given
by x = (x;;) where

{xﬁ: z;; = 0 and qu = 1}

where ¢, +++,q, 1S a set of nonnegative tntegers. Let P be a homo-
geneous polynomial in the variable {x;;}, with nonnegative coefficients.
Let 7 = 7 ,:M— MUOoM defined by y = .7 p(x) where

0P [&

o oP
Yos = Bis 0%, |_Z P 0%, ]

Then
(1) P() = P(tT p(x) + (1 — t)2) , O=st=sl,zeM).

The proof of this is based on a suitable modification of an argu-
ment of L. E. Baum and J. A. Eagon, cf., [1].

We also study the problem of extending the mapping .7, to the
boundary oM in such a way that it is continuous. These results are
stated in Theorem 7. It is a consequence of this that .7, maps
neighborhoods of a local maximum into themselves even if the maximum
is on the boundary.

In §5 we examine other growth transformations that are related
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212 L. E. BAUM AND G. R. SELL

to the mapping .7,. By using an argument suggested by Professor
0. Rothaus we are able to extend the theorem stated above to arbitrary
(nonhomogeneous) polynomials with positive coefficients.

2. Growth transformations. In this section we shall investigate
the behavior of a growth transformation in the vicinity of an isolated
maximum,

DEFINITION. Let P be a continuous function defined on a C=-
manifold M. We say that a continuous mapping o: M— M is a
growth transformation (for P) if

(2) P(x) = P(o(x)), (veM).

If P is a C>-function we say that ¢ is a proper growth transforma-
tion (for P) if (2) holds and

(3) P(x) = P(o(x)) implies that « is a critical point of P,

which means that grad P = 0 at x. A growth transformation ¢ is
said to inmcrease P homotopically if there exists a continuous mapping

Sx):[0,1] x M— M
such that
(i) Siz) ==

(4) (i) Siz) = o(2)
(iii) For each ¢,0 <t <1, S, is a growth transformation for P.

A continuous function P is said to have a local maximum at ¢
if there is a neighborhood V of ¢ with

P(x) = P(q)

for all z in V. If P is a C>-function, the point ¢ is called an isolated
maximum if it is a local maximum of P and an isolated critical point.

We will describe the asymptotic behavior of the iterates of a
growth transformation. Let o be a growth transformation for P and
define the fixed value set F'p, by

(5) F,, ={xeM: Px) = Po(x))} .

We say that a set K M is invariant if o"(x) e K for n = 1, when-
ever x e K.

THEOREM 1. Let P be a real-valued continuous function on a
Ce-manifold M and let 6 : M— M be a growth transformation for
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P. Let K be the largest invariant subset of the fixed value set Fp,
given by (5). If a point x in M has the property that 6"(x) remains
m a compact for n =1, then

o (x)—> K as n— oo,

Proof. Let xe€M be a point with the property that {x, o(z),
o*x), ---} lies in a compact set in M. Since P(g"(z)) is increasing in
n, it follows that lim,_. P(o"(x)) exists, say that

P(o"(x)) — @ a8 m— oo,

Now let y € M be a limit point of a subsequence {c"i(x)}. Then by
the continuity of P we have

P(o"i(x)) — P(y) = a .

However o"i*}(x) — o(y) and in general o"i+*(x) — o*(y). From this it
follows that P(o*(y)) = a,k = 0,1, ---, in other words, ye K, which
completes the proof of Theorem 1,

By demanding that the growth transformation ¢ leave the local
maxima of P fixed, we are able to assert something about the behavior
of ¢ in the vicinity of a local maximum.

THEOREM 2. Let P be a real-valued C*-function on a C>-manifold
M and let 6: M— M be a growth transformation for P. Assume
that every local maximum of P is a fixed point for o. Then for
every local maximum q of P there is a neighborhood V with o(V)C V.
If, in addition, o is a proper growth transformation and q is an
1solated maximum than V can be chosen so that

() —>q as n—— o

for every xe V.

Proof. Let q be a local maximum of P and let V be the con-
nected component of

{o: P(x) > P(q) — 7}

that contai_ns q, where n» > 0 is fixed. Furthermore, we can choose
7 so that V, the closure of V, is compact. Now define

A={zeV:o@xeV}
B={zxeV:o@)eV}.

It is clear that ANB = @ and V = AU B. Furthermore, B is an
open set since ¢ is continuous. The set A can be written as
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A={xeV:o@x eV}
since o is a growth transformation, that is the set
xeV:io@eV—-Vi={&eV:P) = P — 75

is empty. It follows then that A is an open set. Since V is con-
nected one of the sets A or B must be empty. However, o(q) = q,
therefore B= . Hence V = A4 and o(V)c V. (It also follows that
aV)c V.

If ¢ is a maximum, that is an isolated critical point, then 7 can
be chosen so that V contains no critical point of P other than q. If K
is the largest invariant subset of F',, which is given by (5), then
KNV ={q}. Hence by Theorem 1, if € V, then o"(x) — ¢ as n— oo,

A conclusion similar to that of Theorem 2 is possible under a
slightly different hypothesis.

THEOREM 3. Let P be a real-valued continuous function defined
on o C=-manifold M and let 0 : M — M be a growth transformation
for P. Assume that o increases P homotopically and let S,(x) satisfy
(4). Then for every local maximum q of P there is a neighborhood
V with S(V)c V,0=t <1, If, in addition, o is a proper growth
transformation and q is an isolated maximum, then V can be chosen
so that for every xeV

o*"(x) —>q as n— oo ,

in particular d(q) = q.

Proof. Let ge M be a local maximum of P and let V be the
component of {x: P(x) > P(q) — 71} _that contains ¢, where 7 > 0 is

fixed. We also choose 7 so that V is compact. Now fix « in V.
Then

(6) Pq) —n < P(w) < P(S(x)), 0=¢<1.

Let G ={S,(x):0 =1t <1}, then G is a connected set since S,/(x) is
continuous in ¢. By (6) we see that the set

{Siz) e V — V} = {Sux) : P(Sux)) = P(g) — 7}

is empty. Thus, G = (GN V)U(GN (M — V)). Since G is connected
one of the setsGN V or GN (M — V) is empty. However, zeG N V.
Hence G V, that is S(V)c V for 0 <t < 1. The remainder of the
proof follows that of Theorem 2.

In Theorems 2 and 3 one is able to assert that the neighborhood
V is a disk provided the function P is a C*function, cf. [4]. Also,
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these results are really ‘‘local ”’ results, so they are still valid even
if ¢ and P are defined only in a neighborhood of the maximum gq.
And, finally, they have obvious extensions to manifolds with boundary.
Another refinement of Theorem 3, is the following.

THEOREM 4. Let P be a real-valued continuous function defined
on a C=-manifold M and let 0 : M— M be a growth transformation
that increases P homotopically. If q is an isolated maximum of P, then
a(q) = q.

Proof. Let V, be the component of {x:P(x) > P(q) — n} that
contains q. It was shown in the proof of Theorem 3 that S,(V,) & V,.
By letting » — 0 we conclude that o(q) = g.

The next result seems rather interesting. It asserts that, under
appropriate conditions, every growth transformation increases P homo-
topically in a neighborhood of an isolated maximum.

THEOREM 5. Let P be a real-valued C*-function on a C=-manifold
M and let 0 : M — M be a growth transformation. Assume that every
isolated maximum of P 1s a fized point of o. Then for every
1solated maximum q there is a neighborhood V such that o increases
P homotopically in V.

Proof. Let 7 > 0 be chosen so that the component V = V, of
the set {x: P(z) > P(q) — 7} that contains q has the property that V
is compact and V contains no critical points of P other than q. Now
consider the differential equation

¢ = — grad P

in V,, and let o(x,t) denote the solution that satisfies o(x, 0) = x.
It is easy to show that for x ¢ V,, (x, t) € V,, for ¢ = 0, and o(x, t) — ¢
as t — oo. Now choose ¢, 0 < ¢ <7, so that, in the local coordinate
system at ¢, the convex hull of V, lies in V,. We now define a
mapping h:V,— V. by

Wo) = o, if zeV,
h(x) = ¢(x9 Tx)! if we V77 - Ve ’

where o(x, T,) is the first point at which the trajectory o(x, t) meets
V.. Since the level surface P(x) = P(q) — ¢ is transverse to the flow
p(x, t), it follows that » is continuous. Also the mapping

g:V,x[0,1]—-V,
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given by
9(@,7) = Th(o(@)) + (1 — )h(a)

is continuous. Now define S.(x),0<7<1 and zeV,, to be that
point in V, on the trajectory o(g(x, 7),t) that satisfies

P(S.(x)) = tP(o(w)) + (1 — 7)P(x) .

It is clear that S.(x) is continuous, and it is easy to verify that S.(x)
satisfies (4). This completes the proof of the theorem.

It is apparent from the proofs that if ¢ is a proper growth
transformation then the region of attraction of an isolated maximum
g is ‘‘large’”’. More precisely, let » > 0 and define V, to be the
component of {x:P(x) > P(q) — n} that contains q. We have seen
that the region of attraction for ¢ will contain every V, that has
the property that the closure V, is compact and contains only one
critical point of P, which must necessarily be the point q. If we let
7, > 0 be the first real number for which 17',70 contains more than one
critical point of P then since

Vie=UVy,
7<7%0
this implies that the region of attraction always contains V,,. It should
be emphasized that V,, depends only on the function P and not on
the growth transformation o.

3. Homogeneous polynomials and the transformation .7,.
Let ¢, --+,q, be a set of nonnegative integers with 3,q; = n. Let
M U oM denote the set of all vectors

{.’L‘ = (xw)y'b: 1! "'ykyj = ly "'ch’}
such that
a4
xi,- g O and Z‘xﬁ == 1 .
The set M U oM is a polyhedron in R*. We shall let M denote the
interior of the polyhedron, that is
M: {(x“)GMU aM:xﬁ > 0}

and oM is the boundary. The space M is a manifold of dimension
n — k.

Let P: R*— R be a homogeneous polynomial in the variables (z;;)
with positive coefficients. We define a mapping

T =9, M—MUM
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by v = 9 ,(x) where

a3 ' —1
(7) Vi = T = muga| S|
Note that the range of .7~ is contained in M unless P does not depend
on one of the variables z;;.

In [1] it was shown that P(x) < P(9 (2)) for all xeM and
equality held if and only if .9 () = . In other words, the transfor-
mation .7, is a growth transformation for P. We now can assert a
stronger result.

THEOREM 6. The transformation 7 p increases P homotopically.
More precisely, if P is a homogeneous polynomial in (x;;) with posi-
tive coefficients and 7, = 7 is given by (7), then

(8) P) £ Pt (x) + 1 — D), (xeM,0<t<]).
Moreover, equality holds in (8) if and only +f 7 (x) = .

Note that the transformation .7, is determined by the first
derivatives of P only. In a sense it is similar to moving in the
‘¢ gradient direction ”’, which also depends on only the first derivatives
of P. While moving in the gradient direction will increase the value
of P, this is valid only for small steps, and there is no way—without
considering second derivatives—for determining the size of the step.
On the other hand, the size of the step is completely determined by
the first derivatives above for the transformation 7.

Proof. One can write P(x) = 3,C,m.(x) where the coefficients C,
are positive and m,(x) is a monomial of degree d, that is

ma(a) = [lagp
53

where the «;; are nonnegative integers with 3, ;a;; = d. We shall
let a = (a;;) be the index set for the summation defining P. We note
now a few identities which will be needed later.

1 3P
Pa) = =3, x,~2
(@) = 25
P
025

(9) > a;;Comy(w) = @

where
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. (L)
Y Yij
By the inequality of geometric and arithmetic means |3, p. 16] we get

1

d ZCZ”%” .

(10) ma (@) =

Let t,0<t <1, be fixed and let y =t (x) + (1 —t)xz. Also
define @, by

(11) P(x) = 3 {C.m ()}"'Q, .

By applying Holder’s inequality [3, p. 21] to (11) we get
a/(d+1)

12) P(x) = P(y)”d“(Z Qad‘rlld> )

Now

3Qu = 3 Com o 2oL [

(13) =5 camam)[ma(';)]”d
73 Cam) 3o 21

%53

where we apply (10) in the last step.
By substituting for y;; in (13) we get

1 22 P
a(d+1)/d é il Cama X Q@ [ kVikd ik ]
Z"Q dz’*: ()gg JtPij+(1_t)2kxik ik
where
P, = oP
0%

Now by interchanging the order of summation and using (9) we get

P..
14 a(d+1 g < X, “>I: mu ig ].
o e DAY Do oy o
However, by Lemma 1 (see below) with «; = «;,P;;, b, = tP;; and
¢; = (1 — t)3,x;. P, we see that the quantity in the brackets in (14)
is bounded by 1 for 0 < t < 1, and by continuity it is bounded for
0 <t=<1. Hence (14) becomes
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15) 2R = % 2. 3w Py = Pw) .

By putting this into (12) we get
P({Jl}) = P(y)ll(d“)P(x)d/(dH) ,

which implies that P(x) < P(y), and this completes the proof of the
theorem.

LeEmMMA 1. Let a;,b;,¢;,5 =1, -+, m, be positive numbers with
Sialb; < 1P and 33_a;/c; < 1/Q, then 3-a;/(b; + ¢) <1/(P+ Q).

The proof of this is a straightforward induction argument and we
will omit the details.

The following consequence of Theorems 3 and 6 asserts that the
mapping .7, cannot leave a ‘‘local hill ”’, Furthermore, we are able
to conclude something about the region of attraction for an isolated
local maximum of P.

COROLLARY. Let P be a homogeneous polynomial in the variables
(x;;) with positive coefficients and let q € M be an isolated local maximum
of P. Then there exists a netghborhood V of q such that 7 (V)CV
and for every xeV

I "(x)—>q as n—co,

Observe that this corollary can also be obtained from Theorem 2
since .7~ is a proper growth transformation and 7 (x) = 2 if and
only if x is a critical point of P.

The transformation .77, can, in a limited sense, be extended to
the boundary oM

oM = UN“' U aNii
where each N;; U0N,; is a polyhedron defined by
N;UON;; ={weMUoM:z; = 0}.

Following our original convention, we shall let N;; denote the interior
of N;; UON,; and 6N;; the boundary.

THEOREM 7. (A) The transformation 7 , on M can be extended
to be continuous, and in fact C=, on

UN;UM.

B) 7, can also be continuously extended to any isolated local
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maximum q of P on oM by the definition. .7 (q) = q.
(C) The extended tramsformation .7, still obeys the inequality

P@) = PtT p(@) + 1 —t)2), (0=t=1).

The proof of this theorem and the following corollaries will be
given at the end of the paper.

In an example below we will show that in general .7, cannot be
continuously extended to all of 6N;;. This occurs when a saddle point
of P lies on oN;.

Note that if a local maximum ¢ lies on 0N,;, then statement (B)
above does nmot assert that .7~ can be extended to a neighborhood of
q in MU JM.

COROLLARY 1 (A). Let P be a homogeneous polynomial im the
variables (x;;) with positive coefficients and let qe U;; N;; be an
1solated maximum of P on the boundary oM. Then there exists a
neighborhood V of q, such that Z(V)YCV, and for every eV

T M(x)——q as n—> 00 .

(B) If qe Us;; 0N;; s an isolated maximum of P, then there is a
neighborhood V of g in M U oM such that for every x€ VN (M U U;;N;;)

I "(x)—>q as n—> oo .

COROLLARY 2. Let ge N;; be an isolated local maximum of P
and let xe MU oM a point in the domain of atiraction of q. Let
y" = 7 (x) have coordinates (yr,). Then y%; — 0 as n— oo, Further-
more, if yr is sufficiently small, say that y¥ < o, them we can
replace y™ with § where §,; = 0,¥,, — y%| <6 and 7 *¥H)—q as

k — co.

That is we can set the 75 component of y" equal to zero without
destroying the convergence property. It should be noted that we do
assume ¢ to be an isolated maximum of P in MU oM. If g is only
an isolated maximum on ¢M and not on M U oM, then it will still be
a critical point of P, but it now will act as a saddle point in the
discrete flow induced by .. A simple example of this phenomenon
is given by the polynomial

P, @, ¥, ¥) = 2, + Yi¥e
on

MU aM:{(xlyxmylyyz):xi2Oyyi—>_—0y7::1y21x1+x2:1’y1+y2:1} °
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The points (3,3,0,1),(3,3,1,0),(0,1,%, %) and (1,0, 4, 3) are saddle
points for .7~ and they are local extremum for P on dM, but are not
extremum on M U oM.

4. An illustrative example. Let M U 6M be the subset of R?
given by
{(@, @y, @) 12, =0 and Xz, = 1}
and let P(z) = 2% + 4x,7,. Then on M, .7 (x) is given by

(xf 22,2, 2902993)

PP’ P

j— : (xly g,y x(&)

The range of . is then contained in the set
{(@, @y, ) e MU M : 2, = @}

g

Separatrix for
the transformation
T

Separatrix for
the vector
field

(7p ()i —w:)

Tyt Ty = %

Separatrix for
gradient vector
field

<

Ty

Figure 1.

The critical points of P on M U oM are:
(1,0,0),(0,1,0),(0,0,1),(0, §, %), 3, 4, 1) .

The points (1, 0, 0) and (0, 3, 1) are local maxima, (0, 1, 0) and (0, 0, 1)
are local minima, and (3, 4, 1) is a saddle point. The set of points

{(x,, 5, x) € M : 22 = Ao,s}

is mapped onto (},%,4) by 7. This forms a separatrix for the
domains of attraction of (1,0,0) and (0,3,3). If «? > 4x,,, then
7 "(x)—(0, %, %), and if a? < 4x,x, then 7 ,(x) — (1, 0, 0).

By taking limits from the inside, as indicated in Theorem 7, &
can be extended to all boundary points other than (0, 1, 0) and (0, 0, 1).
(.7 is defined and continuous even at the corner (1, 0, 0) in this case.)
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The corners (0,1, 0) and (0,0,1) are points of discontinuity of .7~
since there are points arbitrarily clogse to either that are mapped near
(1, 0, 0) and other points that are mapped near (0, %, 1).

Finally let us show that the function of ¢ P(t.7 (x) + (1 — t)x)
may fail to be monotone in £. We use this example, which is due to
Blakely [2]. Let x, = (4/16, 1/16, 11/16)

77 (4/16, 1/16, 11/16) = (8/30, 11/30, 11/30) .

Now

-%P(tf(w) + (1= 8)2) i = grad Pl_, - (T (@) — ),

and by a direct computation
grad P, - (F (%) — %) < 0.
Hence P(t.9 (x,) + (1 — t)x,) is not monotone,.

5. Growth transformations related to .7,. Let us, for the
moment, consider a special case of the polyhedron M U oM discussed
in §3, namely where k' =1. Then MU oM is the set of vectors
z=(,),7=1,---,n such that z; =0 and 3", 2; = 1. In Theorem
3, when we were studying the behavior of the transformation .7,
generated by a homogeneous polynomial P, we were only interested
in the behavior of P on the polyhedron M U oM. Even though P is
fixed on M U oM, its extension to R is not unique. As a matter of
fact, for every integer m = 0, the polynomial Q(x) = S x;)"P(%) is
homogeneous and agrees with P on M U oM. However, since the
partial derivatives oP/ox; and 0Q/ox; differ, the transformation .7,
and .7, generated by P and @ differ. A direct computation shows
that the transformation generated by @ is given by

(16) Te=—T_14_29¢

7,
d+m d+m ~ °

where I denotes the identity and d is the degree of P. Now (16) is
valid for every integer m = 0, and if we set ¢ = d(d + m)™", (16)
becomes

To=tTp+ (1 —t)I.

By using the fact that the transformation .7, is a growth trans-
formation, cf. [1], we can give a partial proof of (8). Indeed,

P(@) = Q) = QT o(x)) = P(T o(w)) = PtT 5(2) + (1 — t)o)

provided ¢ = d(d + m)™ where m is an integer.
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It is also interesting to note that when m is large, the trans-
formation .77, is a local homeomorphism since the jacobian is (approxi-
mately) m(d + m)™'. In fact, it is not hard to show that .77, is a
homeomorphism. This suggests that one may be able to use the
topological-dynamical theory of discrete flows in order to study the
asymptotic behavior of .7 %(x) when there are nonisolated singularities
for P, or Q.

In the general case, where

MUoM = {x = (%) 1%, = 0, ZiLiw; =1,9=1,---, k}

the same method yields an improvement of Theorem 6. We are able
to conclude not only that

P(x;;) < P{1 - (@) + tfP(xij)ij} , 0=¢t=1
but also that

P(x;;) = P{(1 — t)(@i;) + 6.7 p(x:5)i5)
0§t7,§19 ’L.:]-y"'yk9

that is, not only is the number P(x) smaller than (or equal to) the
value of P at any point along the line joining (x) to .7 ,(x), but P(x)
is also less than (or equal to) the value of P at any point of the k-
dimensional rectangle determined by (x) and 7 .(x).

The proof of this fact is obtained by applying the original in-
equality [1] to the polynomials

k

Qx;;) = H <:Z; mn)nip ()

i=1

for integers m, while noting that P and Q agree on M U oM.

Another interesting consequence of this observation is that we
can define proper growth transformations for nonhomogeneous poly-
nomials with positive coefficients.

THEOREM 8. Let P be a polynomial in the variables (x;;) with
positive coefficients. Then P agrees with a homogeneous polynomial
Q with positive coefficients on the manifold MU oM and the trans-
formation 7, is a proper growth transformation for P, in fact

Pa) S Pt o(x) + L —t)x), O0<tZ1, xzeM),
where equality holds if and only of I o(x) = =.
Proof. Write P in the form
P=H,+H + -+ H,;
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where H, is a homogeneous polynomial of degree [. Let
d d—1
Q= Ho<2x”) + H1<2x13> 4+ .-+ H,,
J 7

then @ = P on MU oM. The remainder of the theorem follows from
Theorem 6. Observe that @ is not unique since there is great free-
dom in choosing the multipliers of the H,.

Finally, the method of proof of this section can be used to extend
the basic inequality (10) for homogeneous polynomials with positive
coefficients to all polynomials with positive coefficients. We are grate-
ful to Oscar Rothaus for this observation.

THEOREM 9. Let P be a polynomial in the variables
{(xij):wz]___ozj 190”_1 ’i:l’...’x}

with nonnegative coefficients. Let

- N oP[< aP] -1
T p(X)i; = X o7, [Z; axm .

Then
P) £ P -t +t7 px), O0<t<]).,
Furthermore, equality holds if and only if 9 .(x) = x.

Proof. We write P(x) in the form P(x) = > ¢ H,(x) where H,
is a homogeneous polynomial of degree d. Now we introduce some
dummy variables y,, ¥, and enlarge the domain M U oM. That is, let
N U JN be the domain

(@ i, )t (@) e MU M, y, 20,9, = 0,9, + ¥, = 1}
and consider the polynomial
d
Q(m, Yoy Yo) = %Hl(x)(yl + yz)d_l .
@ is a homogeneous polynomial with nonnegative coefficients and with

y, and vy, fixed, @ agrees with P on M U oM. Furthermore, we can
apply Theorem 6 of this paper to Q. Since

T 1 ¥y — Ty ;Q [ink 0Q ]_1

0&;; Lk=t 0%,
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and

2 o} —1
Tt Y — ph2 [Z?/z 0Q ] =y,
oy, L™ oy,

it follows that y, and y, are fixed. Hence
P(x) = Qx, ¥, ) = QUET (%, 1, ) + (L — (&, ¥, ¥2))
= QT p@) + (1 — )2, ¥, ¥o) = PETH(x) + (1 — b)) .
Furthermore, strict inequality holds for 0 < ¢ < 1 unless
T, Y1, ¥2) = (2, Yy, )
that is, unless . 7,.(x) = =.

6. Proof of Theorem 7. For clarity we consider first the
special case where there is only one restraint equation. Let

MUM={xr = (¢;):2; 20 and 37 ., =1}
Let P; = 0P/ox;. Then

T ;= it g = it
@ = 55 = "up

k

is C= on the subset of M U oM where P = 0, and in particular is
continuous on M U oM at any point where P = 0 including points on
the boundary o¢M. Therefore, .7 (x) is well defined on any local
maximum of P with respect to M U oM whether this local maximum
is on oM or not, since P = 0 at a local maximum.

Since P has positive coefficients it has no zero in M unless P = 0.
On the interior of the boundary oM, P can vanish only if P is of the
form P = x'Q) where @ is homogeneous of degree d — [ and does not
have x; as a factor. Hence @ # 0 in the interior of the face z; = 0.
In this case P = 0 on the face z; = 0 and " is continuously extended
to the interior of the face z; = 0 by

f(x)izxé% N
=1d, i=3.

However, P can vanish on oN;; without having a common factor
and therefore &~ cannot generally be extended to oN;;. For example,
on the domain

MUOM = {=z,y,2):x+y+2z=12,9,2 =0}

the function P(z, y, 2) = 2* + 4xy vanishes at z = x = 0, ¥ = 1 although
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P has no common factor and in fact .7, cannot be continuously
extended to 2= 0,2 = 0,y = 1. (See the example of §4.)
More generally, the transformation .7 :

—1
(@) = xijPijI:Z ik m]
k
qq
MUaM: {(56”):06“- go,zxw = 1,’[: = 1, -..,k}
J=1

is well defined and C= on the set where no denominator X.x,,P;.
vanishes. In particular, this is true in the interior M if we assume
P depends on at least one of each set

Si={xy;:j=1---¢q}1=1,2, -+ k.

(If no term «;,;,7 =1-.--q; appears in P then we consider 7, is
acting on the reduced domain without the factor
i,
{2;; = 0, JZ:AI ®;; = 1}.)
NOW aM == U N'io”:o U 6N4'
NiGJO = {(%;;) : Cigig = 0,2;; #0 for 1,5+ {iy,Jo)}.

Let R; be the sum of all terms of P that do not involve any
factor @;;,5 =1, ---,q;. Then for any {3, j,) including %, = 1,, P can
be expressed as

9070 ipy Where

P = ul,Q@) + R,

where @ does not have a common factor «;;, and hence does not
vanish on N, ;. Using this decomposition one can show that .~ can
be continuously extended to N, ; as follows:

If Y2, P=+0on N,,, then

0do
0do?

T i@y X P Y aa Pl

If Y, P, =0 on N, ; we consider two cases, 7 i, and @ = 1,.
(a) If 7 1, then Y, 2,Q,; #* 0 and we define

T 1y — 4, Q[ 20 Q]
Iy —— 0 Q[ Qi

(¢) If <=1, and ¥2,Q:; = 0, we define
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-.7— . x.;uj _— 0, j +* jo, and f : xioja —1 .

At a local maximum on J;; 0N;;, while P> 0, this does not
obviously imply that >ii.x,;0P/0x;; = 0 for each ¢. Hence a proof
that .7~ can be extended to be continuous at a local maximum of P
is most easily made by a route other than that used for the special
case where there is a single restraint equation. We proceed as follows:
Assume that all variables x;; appear in P. (Otherwise the discussion
proceeds in a reduced space.) Then .7, maps M into M, and for
any point ¢ = (z;;) in M, the value of P at x is smaller than (or equal
to) the value of P at any point along the line joining x to .7 (x).
If 2° is an isolated local maximum of P in M U oM, whether on the
boundary oM or not, then for all sufficiently small ¢ > 0, the trans-
formation .9~ maps the connected component of

{@ | P@) > P — N M

surrounding z° into itself. Since these sets form a base for the
neighborhoods about 2° .7~ can be extended to be continuous at (x°)
by defining .7 (2°) = 2°.

Part C of Theorem 7 follows from the known inequalities for points
in M and standard limiting arguments.

Corollaries 1 and 2 to Theorem 7 are now direct applications of
the above arguments.

We are grateful to the referee for some helpful comments and
suggestions.
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