A NOTE ON EBERLEIN’S THEOREM

Carl Louis DeVito
A NOTE ON EBERLEIN'S THEOREM

CARL L. DEVITO

This paper is concerned with locally convex spaces which are closed, separable subspaces of their strong biduals. Let $E$ be a space of this type. We first prove that, for an element of $E'$, weak* continuity on $E'$ is equivalent to sequential weak* continuity on the convex, strongly bounded subsets of $E'$. We then prove Eberlein's theorem for spaces of this type; i.e., we prove that, for the weakly closed subsets of $E$, countable weak compactness coincides with weak compactness. Finally, we show that the separability hypothesis in our first theorem is necessary.

Our notation and terminology will be that of [1]. The letter $E$ will always denote a locally convex, topological vector space over the field of real numbers. If we want to call attention to a specific, locally convex topology $t$ on $E$, we will write $E[t]$. The dual of $E$ will be denoted by $E'$. The weakest topology on $E$ which renders each element of $E'$ continuous will be denoted by $\sigma(E, E')$. We shall be working with the strong topology, $\beta(E', E)$, on $E'$. This is the topology of uniform convergence on the convex, $\sigma(E', E')$-bounded subsets of $E$. $E''$ will denote the dual of $E'[\beta(E', E)]$. We shall often identify $E$ with its canonical image in $E''$. The topology induced on $E$ by its strong bidual, $E''[\beta(E'', E')]$, will be denoted by $\beta^*(E, E')$. Recall that $\beta^*(E, E')$ is the topology of uniform convergence on the convex, $\beta(E', E')$-bounded subsets of $E'$.

DEFINITION. We shall say that $E$ has property $(S)$ if the following is true: An element $w$ of $E''$ is in $E$ if and only if $\lim wf_n = 0$, whenever $\{f_n\}$ is a $\beta(E', E)$-bounded sequence of points of $E'$ which is $\sigma(E', E)$-convergent to zero.

THEOREM 1. Suppose that $E[\beta^*(E, E')]$ is separable. Then $E$ has property $(S)$ if and only if $E$ is a closed, linear subspace of $E''[\beta(E'', E')]$.

Proof. We shall prove sufficiency first. Let $w$ be in $E''$ and suppose that $\lim wf_n = 0$, whenever $\{f_n\}$ is a $\beta(E', E)$-bounded sequence of points of $E'$ which is $\sigma(E', E)$-convergent to zero. Let $B$ be a convex, $\beta(E', E)$-bounded subset of $E'$ and let $F$ be the dual of $E[\beta^*(E, E')]$. Clearly $E' \subset F$ and, by [1; Prop. 2, p. 65], $B$ is relatively $\sigma(F, E)$-compact. Since $E$ is $\beta^*(E, E')$-separable, the restriction of $\sigma(F, E)$ to $B$ is metrizable. Hence $\sigma(E', E)$ is metrizable on every
convex, $\beta(E'E)$-bounded subset of $E'$. This fact, together with our assumptions on $w$, implies that $w$ is $\sigma(E', E)$-continuous on every convex, $\beta(E', E)$-bounded subset of $E'$. Thus, by [4; Th. 10, p. 97], $w$ is in the completion of $E[\beta^*(E, E')]$. But $w$ is in $E''$ and $E$ is closed in $E''[\beta(E'', E')]$. It follows that $w$ is in $E$.

Now assume that $E$ has property (S). Let $w$ be a point in the closure of $E$ for $E'[\beta^*(E'', E')]$, and let $\{f_n\}$ be a $\beta(E', E)$-bounded sequence of points of $E'$ which is $\sigma(E', E)$-convergent to zero. We may, for each fixed positive integer $k$, choose $x_k$ in $E$ such that: (a) $|wf_n - x_k f_n| \leq 1/k$ for every $n$. The inequality

$$|wf_n - wf_m| \leq |wf_n - x_k f_n| + |x_k f_n - x_k f_m| + |x_k f_m - wf_m|$$

shows that $\lim wf_n$ exists. But by (a), this limit is $\leq 1/k$ for every $k$. Thus, $E$ is closed in $E''[\beta(E'', E')]$.

**Theorem 2.** If $E$ has property (S), then every weakly closed, countably weakly compact subset of $E$ is weakly compact.

**Proof.** Let $M$ be a weakly closed, countably weakly compact subset of $E$. Let $w$ be a point in the closure of $M$ for $E''[\sigma(E'', E')]$ and let $\{f_n\}$ be a $\beta(E', E)$-bounded sequence of points of $E'$ which is $\beta(E', E)$-bounded and $\sigma(E', E)$-convergent to zero. For each positive integer $k$ we may choose $x_k$ in $M$ such that: $|x_k f_n - wf_n| \leq 1/k$ for $n \leq k$. Thus, for each fixed $n$, $\lim x_k f_n = wf_n$. Since $M$ is countably weakly compact, $\{x_k\}$ has a weak adherent point $x_0$ in $M$. It follows that $wf_n = x_0 f_n$ for every $n$. But then $\lim wf_n = 0$ and, since $E$ has property (S), $w$ is in $E$ and hence in $M$.

Let $B$ be a Banach space and let $Q$ be a linear subspace of $B'$. Following Dixmier [2], we shall say that $Q$ has positive characteristic if $\{x \in Q | \|x\| \leq 1\}$ is weak* dense in some ball of $B'$. If $Q$ has positive characteristic and is also norm closed in $B'$, then it is easily seen that $\beta^*(B, Q)$ is equivalent to the norm topology of $B$. Thus, if $B$ is separable, then Theorem 2 shows that compactness and countable compactness coincide for the closed subsets of $B[\sigma(B, Q)]$. This result was first obtained by I. Singer [6] who also showed that it is no longer true if $B$ is nonseparable; see [7]. Hence, in Theorem 1, the separability of $E[\beta^*(E, E')]$ is necessary.

In the preceding application we made use of the following:

**Theorem 3.** If $E[\beta^*(E, E')]$ is both complete and separable, then $E$ has property (S).

Y. Komura [5] has shown that the strong bidual of a locally convex space need not be complete. Thus Theorem 3 is weaker than Theorem 1.
REFERENCES


Received October 12, 1967.

UNIVERSITY OF ARIZONA
TUCSON, ARIZONA
Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California 90024.

Each author of each article receives 50 reprints free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners of publishers and have no responsibility for its content or policies.
Leonard E. Baum and George Roger Sell, *Growth transformations for functions on manifolds* .................................................. 211
Henry Gilbert Bray, *A note on CLT groups* ........................................... 229
Douglas Napier Clark, *On matrices associated with generalized interpolation problems* .................................................. 241
Richard Brian Darst and Euline Irwin Green, *On a Radon-Nikodym theorem for finitely additive set functions* .................................................. 255
Carl Louis DeVito, *A note on Eberlein's theorem* ....................................... 261
P. H. Doyle, III and John Gilbert Hocking, *Proving that wild cells exist* . . . 265
Leslie C. Glaser, *Uncountably many almost polyhedral wild (k − 2)-cells in E^k for k ≥ 4* .................................................. 267
Samuel Irving Goldberg, *Totally geodesic hypersurfaces of Kaehler manifolds* .................................................. 275
Donald Goldsmith, *On the multiplicative properties of arithmetic functions* .................................................. 283
Jack D. Gray, *Local analytic extensions of the resolvent* ........................................... 305
Eugene Carlyle Johnsen, David Lewis Outcalt and Adil Mohamed Yaqub, *Commutativity theorems for nonassociative rings with a finite division ring homomorphic image* .................................................. 325
André (Piotrowsky) De Korvin, *Normal expectations in von Neumann algebras* .................................................. 333
James Donald Kuelbs, *A linear transformation theorem for analytic Feynman integrals* .................................................. 339
W. Kuich, *Quasi-block-stochastic matrices* .................................................. 353
Richard G. Levin, *On commutative, nonpotent archimedean semigroups* .................................................. 365
James R. McLaughlin, *Functions represented by Rademacher series* .... 373
Calvin R. Putnam, *Singular integrals and positive kernels* .................................................. 379
Harold G. Rutherford, II, *Characterizing primes in some noncommutative rings* .................................................. 387
Benjamin L. Schwartz, *On interchange graphs* .................................................. 393
Satish Shirali, *On the Jordan structure of complex Banach * algebras* .................................................. 397
Earl J. Taft, *A counter-example to a fixed point conjecture* .................................................. 405
J. Roger Teller, *On abelian pseudo lattice ordered groups* .................................................. 411