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In this paper we define a generalization of the set ./#Z of
all pairs of relatively prime natural numbers and then define
a limit process to measure the multiplicativity of an arithmetic
function with respect to this generalized set of pairs. In so
doing we gain useful information about that most important
special case, namely, functions which are multiplicative in the
usual sense,

2. Preliminary definitions and results. By an arithmetic func-
tion we shall mean a real-valued function f whose domain is the set
of natural numbers. We will deal only with arithmetic functions and,
furthermore, we will assume throughout this paper that no function
is eventually zero; that is, given any arithmetic function f and any
number N, there is a natural number k¥ = N such that f(k) = 0.

Closely connected with the multiplicative properties of an arithmetic
function is the concept of a basic sequence, which is defined as follows:
A basic sequence is a set <& of pairs of natural numbers (a, b) with
the following three properties:

(i) If (a,b)e <#, then (b, a)e Z;

(ii) (a, bc)e & if and only if (a,bdb)e # and (@, c) € F;

i) ,k)e#,k=1,2,8,.--.

We denote by B(k =1, 2, .- -) the set of pairs (a, b) € <& such that ab = k.

Let an arithmetic function f and a basic sequence < be given.
In order to measure the multiplicativity of f with respect to <& we
first define

f(m) f(n) — f(mn)
|f(m) f(n)| + | f(mn)|
ay(m,n) = if |fm)fm)|+ |f(mn)|>0,
0

it f(m)fn) = f(mn)=0.
Next we set
a(k; f, Z) = max {a,(m, n) | (m, n)e B},
a(k; f, &) = min {a,(m, n) | (m, n) € B,},
(2.1) alf, ) = limsup a(k; f, Z) ,

a(f, &) = liminf a(k; f, Z) .
k—co
Finally, we define the index of multiplicativity of f with respect
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to the basic sequence <# (or, simply, the index of f) to be the common
value of a(f, &) and a(f, &&), if such a common value exists.
In this case we denote the index of f by I(f, .<#) or, simply, by
I(f).

Many of the multiplicative properties of f with respect to .Z
will be independent of the sign of I(f, <Z). Accordingly, we define

Byim,n) = |am,n)|,
Bk; f, ) = max {Bm, n) | (m, n) € B},
(2.2) @(k; ty #) = min{B,(m, n) | (m, n) e B,} ,
B(f, ) = lim sup B(k; f, &2 ,

B(f, ) = lim inf B(k; f, 27) .

J(f, &#), the absolute index of f, is defined to be the common
value of B(f, &) and B(f, &Z), if such a common value exists.

When no confusion is possible we will write I(f), J(f), for
I(f, &), J(f, <), respectively. Occasionally we will talk about
I(f, %) or J(f, &%) without prefacing our discussion with a state-
ment (which should then be supplied by the reader) such as “if
I(f, &7) exists.”

A necessary and sufficient condition that I(f, <&&) exists and has
the value ¢ is that }cim a(m;, n,) = @ for every collection of pairs
{(my, m)}pro, C such that lim mgn, = . A similar statement holds
for J(f, 7). If I(f, <7) exists, then J(f, &#) also exists and
J(f, &) = |I(f, &#)|. Without additional assumptions, however,
the existence of J(f,.%) does not imply the existence of I(f, %),
except in one case: J(f, <) = 0 if-and only if I(f, <#) = 0.

ExampiE 2.1. Let & = (JS, where S,={({1,k), (% 1)}. If
k=1

fQ)=M>1 and f(k) =(—1)* for k> 1, then J(f, &)= (M —1)/(M + 1)
but I(f, .s”) does not exist.

A number of consequences follow readily from the preceding
definitions.

LEMMA 2.2. (a) If there exists an increasing sequence {k,}n-, of
natural numbers such that f(k,) =0, then B(f, ZF) =0 (in par-
ticular, if J(f, ) ewists and is nmot zero, them f(k) =0 for all
sufficiently large k).

(b) If a(f, #) >0 |a(f, #) < 0], then

fm)f(n) > f(mn)  [f(m)f(n) < f(mn)]

provided mmn is sufficiently large and (m,n)e 7.
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LEMMA 2.3, If B(f, &) <1, then there exists an integer N
such that, for each k = N, exactly one of the following must hold:

(1) fk) =0 and f(m)f(n) =0 for every (m,n)c B,,

(2) f(m)f(nm) =0 for any (m,n)€ B,.
Moreover, if (2) holds, then f(m)f(n) has the same sign as f(k) for
every (m, n) € B,.

LEMMA 2.4. (@) f(1) £ 0 implies B(f, &) = 1. Thus, if J(f)
exists, f(1) £ 0 <f and only if J(f) = 1.

(b) Suppose I(f) ewists and f(1)>1; then I(f) > O[I(F) < 0]
if and only if f(k) > 0[f(k) < 0] for all sufficiently large k.

(c) Suppose I(f) exists and f(1) < 1; then I(f) > O[I(f < 0] ¢of and
only if f(k) < O[f(k) > 0] for all sufficiently large k.

Combining some of the results of the previous lemmas, we have

THEOREM 2.5. (1) If J(f) exists then

__lrm -1y,
Jf)=LD =11
V= Tror+1

wn particular, J(f) = 0 if and only +f f(1) =1;

(2) If I(f) exists and is mot zero, there is an integer N such
that

(a) fk)+#0 for all k= N, and

(b) f(k) does mot change sign for k = N.

We see from Example 2.1 that part (2) above does not hold if we
replace I(f) by J(f). Under a slightly stronger hypothesis we are
able to determine the sign of f(k) for large values of k.

LEMMA 2.6. If f(k) <O for all k= N and B(f, %) <1, then
B = .

Proof. The lemma follows easily from Lemma 2.3.
As an immediate consequence of this lemma and Theorem 2.5(2)

we have

COROLLARY 2.6.1. Suppose that 0 < |I(f, Z)| <1. If &%+ 5,
then f(k) > 0 for all sufficiently large k.

ExAmpPLE 2.7. Let <# be the basic sequence consisting of &
together with all pairs of the form (2¢,3%,a >=1,b=1. Let f(k) =
MM>0,M+1) for k=23, a=0, b=0, and let f(k)= —1
otherwise. Then <% %= .9 and 0 < J(f, &%) <1, but f(k) keeps
changing sign. Hence Corollary 2.6.1 is not valid with I(f, <&#)
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replaced by J(f, <Z).

The next lemma and the theorem following, which will conclude
this section, relate the existence of J(f, <#) to the behavior of
Ffm)f(n)]f(mn), We will deal with sequences {p,};, where

_ _fm)fen). |
ey O fmny o (MemeF,
lim mm, = oo, f(mxzny) * 0 .

v—o0

LEMMA 2.8. If B(f, <#) <1 there ewist comstants N, M, M,
such that

f(m)f(n)
0< M < L2 <M,
<M, < Fimm) <

whenever (m,n)e <&, mn = N, f(mn) + 0.

THEOREM 2.9. If (1) f(k)==0 for k=N and (2) if every
sequence {0,} satisfying (2.3) may be decomposed into two subsequences
{p.}, {¥.} (one of which may be empty) such that

_1
fa

then J(f, &#) exists. Conversely, if J(f, F) exists and
J(f, &) <1, then every sequence {0,} satisfying (2.3) allows a
decomposition (where, again, one subsequence may be empty) such
that (2.4) holds.

(2.9) limp, = f(1), limy, =

Proof. The first part of the theorem follows directly from
definitions (2.2), the second part from Lemma 2.4, Theorem 2.5, and
Lemma 2.8.

3. The basic sequence. It is clear that the size of the basic
sequence <# will play a crucial role in the existence of I(f, <#).
For example, I(f,.5”) will exist (and have the value 0) whenever
f(@) =1, while at the other extreme, the existence of I(f, &),
where &~ is the basic sequence consisting of all pairs (m, n) of natural
numbers, imposes severe demands upon f.

For any finite set S, let us denote by #S the number of distinct
elements in S. In order to make more precise the idea of “size” of a
basic sequence <%, we make the following definitions: For a basic
sequence Z = Jr-, B, set

() = %
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where d(k) represents the number of divisors of %,

(=) = limsup 6,(Z) ,

(=) = liminf 0,() .
0(<#) and 6(<#) will be called the upper density and lower demsity
of <#, respectively. If the upper and lower densities have a common
value, we will define the density of <& to be that common value,
and denote it by o6(<).

ExamPLE 3.1. Let .#Z = Ui, M, be the basic sequence consisting
of all pairs of natural numbers (a, b) for which a and b are relatively
prime. We assert that 6(_~2) = 6/z%. It is clear that *M, = 2°*) where
w(k) is the number of distinct prime divisors of %k, and so *M, = d(k)
whenever k is square-free. By [1, Th. 333], the number of square-
free integers not exceeding x is 6x/7*+0(V 2). Hence

5t B , _
g‘i a0 > k%l = 6n/m*+0(V' n) ,

k square-free

from which the assertion follows.

The above estimate for d(_.7) is considerably too low and will be
improved shortly.

For any set S of real numbers, let us define S(k) = {x |2 e S,z < k}.

LEmMA 3.2. If {b,} is a bounded sequence of real numbers, then

C1e b
lim — &
o &

In particular, if B, < M (k=1,2,8, --.), then 6(=) = 0.

Proof. For a fixed ¢, 0 <e <1, let A be the set of positive
integers k for which it is not true that 20—*losle? < g(f) < 2+eNoaloek,
By [1, p. 359, Th. 432], *A(n) = o(n). Hence

1 1
WA

2n

1

n
< _l. Z 9—(1—e)log logk + M
T on

1

n

S, (log k)0~ + o(1) .
%

The lemma now follows from the fact that if ¢ > 0,
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; (log k)= < Sn(log x)~°dx + O(1) = O(n(log n)~°) .

From Corollary 2.6.1. and the above lemma we have

5

COROLLARY 3.2.1. If 0<|If,Z)| <1 and o(<#) >0, then
f(k) >0 for all sufficiently large k.

ExampLE 3.3. Let .97, = Ur., T, consist of the basic sequence
& together with all pairs of the form (m®, m*), a =1, b = 1. Then
*T ,=a+1 but 6(7,) =0. Hence the boundedness of {!B,} is
sufficient to make 6(<#) = 0, but it is not necessary.

Let us turn next to a more detailed discussion of the relationship
between the structure of a basic sequence <# and its density. Suppose
that @ is a set of pairs of natural numbers. We define the basic
sequence generated by @ to be I'(@) = | & where the intersection is
taken over all basic sequences ¥ which contain @. We will call a
pair (m, n) a primitive patr if both m and % are primes. If m # n,
then the primitive pair (m, n) is said to be of type I, otherwise it is
a primitive pair of type II.

Suppose that we represent m and % canonically: m = phpg - - . pir,
n = qhgd --- q%. Then it is clear that (m, n) is a member of <z if
and only if the primitive pairs (p;, ¢q;) are all in F (1 =1, -+, 77 =

i, --+,8). Therefore, a basic sequence <# is completely determined
by its subset of primitive pairs: <Z = I'(<Z N 4), where 4 represents
the set of all primitive pairs. In view of the preceding remark it
seems reasonable to expect that we should be able to make a statement
about 6(<#) if we have enough information about the primitive pairs
in . To pursue this further we need some preliminary results.

Let A be a set of distinct natural numbers. We define the
asymptotic density of A to be D(A) = liminf, .*A(n)/n. If *A(n)/n
has a limit as n—co, we call that limit the natural density of A and
denote it by D(A). The following lemma is a standard result (see, for
example, [2] p. 228-230) which we state here for convenience.

LEMMA 8.4. Let N be a fived positive integer. If each member
of A has N or fewer distinct prime factors, then D(A) = 0.

We will say that a prime p is finitely distributed with respect
to a basic sequence <Z if p appears as a co-member in only a finite
number of primitive pairs of <#. Also, p is said to have property
F with respect to <Z if

(1) p is finitely distributed with respeet to <&, and

(2) every prime ¢ with which p appears as a co-member of a
primitive pair in <# is also finitely distributed with respect to <#.
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THEOREM 3.5. If there is a finite set {p,, 0y, -« -, Dy} of distinct
primes each of which has property F with respect to the basic sequence
%, then

1
@3.1) 52) < 11 (1 - pi)

Proof. We will prove the theorem for the case when M = 2,
since this contains all the essentials of the general case. First we
write

‘B, _*_1_
k) o &, + 2+ 23) d(k)

1 %
-2
n k=1

where X, is taken over all £ < » such that !B, = 2 and either p, | k or
v, | k; 2, is taken over those k < n for which *B, > 2 and such that
either p, |k or p,| k; and 3, is taken over the remaining &k < n.

By Lemma 3.2, %, B,/d(k) = o(n). To estimate ¥, we let A repre-
sent the set of all positive integers ¢ for which *B, > 2 and either p,|¢
or p,|t. For a fixed member k in A, there are integers m and »
with m > 1, n > 1, mn =k and (m,n)c <#F. Since either p, or p,
divides mn, let us assume that p,| m. Suppose that g¢,, ¢, ---, q, are
the only primes that appear as a co-member with p, in a pair in <Z.
Then n = qq2 --- ¢, a;, 2001 =1,2, ---,7), and not all the a; are
zero. Suppose also that there are N; primes which appear as co-member
with ¢;(1 = 1,2, ---, 7). If a prime ¢ divides m, then ¢ is a co-member
with ¢; for at least one 1 < ¢ < . Hence there are at most N, +
N, + -+« + N, possible choices for ¢ and therefore not more than
r+ N, + N, + -+ + N, distinct prime factors in k. Similarly, if p, | &,
we again get an upper bound for the number of distinct prime factors
of k. It follows then from Lemma 3.4 that D(4) = 0. Hence

limIZ' B"-—liml B’“<11m A(n)=0
n—e N d(k) n—eo Y ke d(n) d(k) n—oco n

Finally, since #B, < d(k),

on sifhs g oo (221D

Therefore

(F) = hr:xﬂiup 1 k% dﬁck)

(3.3) = lim sup {1 - ’1‘([';‘] + [—Zf—] - [‘fﬁ])}
=(1-)-2)
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which proves (3.1).

COROLLARY 8.5.1. If {p,} is a sequence of distinct prime numbers
such that

(i) Xp7t diverges,

(i) p; has property F with respect to a basic sequence <7, then
o(#) = 0.

COROLLARY 3.5.2. If <Z s a basic sequence such that every
prime p is finitely distributed with respect to <7, then 0(<#) = 0.

COROLLARY 3.5.3. If @ consists of

(a) a finite number of primitive pairs of type I, and

(b) any collection of primitive pairs of type I, then 6(I"(®)) = 0.

If we impose a restriction somewhat more severe than property
F on the primes in Theorem 3.5, then the possibility of inequality in
(3.1) can be eliminated. In particular, we have

THEOREM 3.6. If {p, +--, Du} 18 a finite collection of distinct
primes, let Z|p., Ds, + -+, Pu) denote the basic sequence &% = 7., B:
such that

(1) *B, =2 if p; |k for at least one 1 <1 < M, and
(i) *B, = d(k) if pikk, i=1,2, -, M.
Then

M 1
(F NPy oy pad) = T (L= =),
Proof. We remark first that condition (i) is equivalent to the fact
that p(i =1, ..., M) does not appear in any primitive pair in <,
certainly a severe form of property F.
To prove the theorem we merely note that the inequality in (3.2)
becomes an equality.

COROLLARY 3.6.1, Forany 0 < v < 1, there is a sequence {<# ,.}m=,
of basic sequences such that lim,,_ . 0(F ) = 7.

Proof. If v=1, let &, =rm=12...), If 0=Zv<1,
choose a sequence of distinct primes {p;} such that

lim 11 (1 _ 1 )z v, and let &, = F[v, 0, -+, Onl .
Mmoo §=1 pi

Theorem 3.6 treats the question: what happens if each member of

a finite set of primes appears in no primitive pair in <#? We may

relax this restriction somewhat and ask: what happens if each member

of a finite set of primes appears in no type II primitive pair in <#'?
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The answer to this question is given by

THEOREM 38.7. If p, Ds, -+, Dy are distinct primes such that
(ps;, p)e #, 1=1,2,+-+, N, then

(3.4) () s A=),

where

kx=2—L+2x(l——l>log<l——1—> for x >1.
x x x

Proof. We shall prove the theorem for the case N = 2, since
once again this contains all the essentials of the general case.

Let p,=p and p,=¢q. If (p,p) and (¢, ¢) are not in <7, then
certainly (ps, pt) and (gs, qt) are also not in <# for any natural numbers
s and t. Hence, if »*|k, there are d(k/p®) pairs (ps, pt) with p’st = k,
and so

(3.5) B, < d(k) — d(k/p®) .
It follows then that

_ L 1 & B,
0(7) = lim sup - 3} o5
) 1 d(v) 1 d)
<1 1—-= - 7Y
(3.6) = llzlﬁiup n vsn/pz d(p p) n vsnlq? d(q”l))
1 aE)
+ N vsnipe® d(pzqzw > ’

where we have used the fact that any pair counted in both the first
and second sums must be of the form (pgs, pqt).
Now if we mean by a’|| b that a‘|b but a'*'} b, then

dp) _ & d(v)
vEatet d(py) = Zalot d(p*y)

where K = [log n/log p] — 2. If v = p'w where p} w, we have

av) _ _d@) _ i+1
d(p®y)  d(p**) t+3

Therefore
dv) _ & i+1
vinint d(p*V) =0 4+ 3 vZale

Y|y

_Ea+l/n 0w
=5 o +0W)

- -P)as)y
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Thus, since

3 i+1>«i=ﬂ 2 oo (1 —
go(@'—{»?;% xz(l—w)+x3 og ( ?)

if 0 <|a] <1, and since

we have

D ol Ui (G 2 Gl

+ 2p° log (1 - %) + o(;];-)} + O(log n)

= n\, + O(log n) .

(3.7)

Relation (3.7) still remains valid, of course, if we replace p by q.
Next, by reasoning similar to that used above, we may show that

av)

(3.8) —T
vsalpe2 d(PQPY)

= nx,\, + O(log*n) .

Relation (3.4) now follows from relations (3.6)-(3.8), and so the
proof is complete.

REMARK 3.8. With methods like those used in the above theorem,
one may gain similar results for type I primitive pairs. One may show,
for example, that if (p, q) ¢ <& for distinct primes p and ¢, then

NF)=1— i(xp + —1—><>\.q + i) + AN, -
2 D q

Thus, since 6(<7) < 1 whenever any primitive pair is missing from
<7, we have

THEOREM 3.9. 6(<%) =1 iof and only if <& = 7.

Just as we were able to sharpen Theorem 3.5 when we knew
exactly which primitive pairs were in <#, the same knowledge allows
us to improve Theorem 3.7. To be precise, we have

THEOREM 3.10. (a) If (p, »), *--, (Dy, Py) are the only primitive
pairs not in &, then
N
o(Z) = 1] (1 - \p) .

(b) If {(p;, D)} are the only primitive pairs not in <7, then



ON THE MULTIPLICATIVE PROPERTIES OF ARITHMETIC FUNCTIONS 293

() = A=)
In particular, 6(_7#) = 1,1 — ;) ~ 0.8191 +,

Proof. Part (a) follows immediately from the fact that relation
(3.6) becomes an equality if (p,p) and (g, q) are the only primitive
pairs not in <Z.

To prove (b), let us denote by <& = ., B{® the basic sequence
generated by the set of all primitive pairs except those (p;, p;) for
which p;, < 2. Clearly

(3.9) NZ) < (FZ") = ITA =)
p;<%

for any x. If we let x— < in (3.9), then we have

(3.10) ) =TA-N\),

On the other hand, suppose that N is any fixed positive integer
and that » > N. We may write
2B,
d(k) ’

5(#) = liminf L5 Be _jiminf L (3, + )
- neo  q hZn d(k) noe

where Y, is taken over those k < n such that p}} k for any p; = N,

Y, is taken over those & < n such that p?| k% for at least one p, = N.

Now if k is counted by %,, then !B, = *B{"’., Moreover, since each

integer counted by 5, is divisible by the square of a prime p = N, the
number of integers counted by X, is certainly not more than

n n n n
n e =0(2) .
FOEIG  1 ar (%)

Hence

. . . 1(g #BW ‘B
P =1 f=(3 2 4+ 3 Dk
HF) im in n( >0 + zd(k))

o eal B 1
> _ k —_
= lim inf — 3, an O<N>

= ILa—%) +0(5)-

pi<N

If we let N— «, we have
@.11) HEAES ISP

The theorem now follows from (3.10) and (3.11).
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4. Nonsingular functions. An arithmetic function f will be
called nonsingular with respect to a basic sequence # if I(f, &%)
exists and is zero; the set of all such functions will be denoted by
N(<7). All other functions will be called singular with respect to
#. We shall fix our attention on certain subsets of N(<#):

(1) An arithmetic function f is said to be eventually multipli-
cative with respect to <7, f € EM(<%), if there is an integer N such
that f(m)f(n) = (fmn) whenever (m,n)c < and mn = N. When
we wish to emphasize the role of the integer N, we will write
fe EM(<#, N).

(2) An arithmetic function f is said to be multiplicative
with respect to &, feM(=), if f(m)f(n)= f(mn) for every
(m, n) € &,

We note that f is multiplicative in the usual sense if f e M(_#")
and that f is a character if fe M(<°). Since f(1) =1 if f e N(<),
it is clear that the sets EM(<#, N) and M(<#) are identical if
N=1,238, or 4.

Since M(<#) c EM(<#') < N(<#'), we will concern ourselves in this
section with the conditions that ensure inclusions in the other direction.
First, however, we present some examples to show that M(<Z%) is
indeed a proper subset of EM(<#) and that EM(<%) is a proper subset
of the set of nonsingular functions, N(<#).

The motivation for our first example is as follows: It is clear that
if there is to be a function f such that I(f, <Z) = 0 but f ¢ EM(<%),
then there must be a sequence {(m,, %,)};-, of pairs in <# such that
a(my, n,) = 0 but a(m,, ;) — 0 as m,n, — . Obviously, this imposes
severe restrictions on f(m;), f(n,) and f(mun,. If, moreover,
(¢, my) € <#, then a(t, m;) must be small if ¢m, is large, and this
affects f(¢). It seems plausible, then, that a function with the
desired properties would be most likely to exist with respect to a basic
sequence .<Z for which the number of integers ¢ such that (¢, m;) € &#
is severely limited. This does not necessitate making 6(<#) small (as
we shall see), but can be done by “separating” the pairs (m,, n,;) from
the rest of .

ExampLE 4.1. Let p and ¢ be distinet primes and let <# be the
basic sequence generated by the primitive pair (p,q) and all other
primitive pairs in which neither p nor ¢ is a member. In other words,
F = I'(FZ|p, gl U (p, p)), where <& |p, q] was defined in Theorem 3.6.
Define f by: f(p) =1+ 1ja)@z=1), [flg)=1+1/b)(b=1),
F®¢®) =14+ A/a) + 1/b)(a=1,b=1), and f(n) =1 otherwise. It
is clear that a(m,n) = 0 if neither p nor ¢ divides mn. If » or
q does divide k, then either B, contains only the trivial pairs (1, k)
and (%, 1) or & = p*®(e@ = 1,b = 1), and in the latter case B, contains,
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in addition to the two trivial pairs, only the pairs (p?, ¢*) and (¢, p%).
Clearly a(p®, ¢°*) = (1/ab)/2{1 + (1/a) + (1/b) + (1/2ab)} which is not zero,
but which approaches zero as p°g®— o. Hence fe N(<#) but
f ¢ EM(<#). Finally, we note that

)z (Flp, a) = (1 - ‘i;)(l - ‘;‘)

which can be made arbitrarily close to 1.

ExampLE 4.2. (a) Let <& = 9, (see Example 3.3). Define f
by fm)=11if n#2(a>1), f(2%) =0 for ¢ >1. Then a(l,k)=0
for all # and a242) =0 if o+ b=3, so feFEM(Z). But
f@)f@)~f(4), hence f ¢ M(Z).

(b) Let <# be generated by the pair (2,3) and define f by:
f(n) =mn if n + 6; f(6) = w where w is arbitrary except that w == 6.
Then f e EM(<#,7) but fe M(<#).

The failure of each of the functions in Example 4.2 to be multi-
plicative was due both to the small size of <& and to the values of
k for which f(k) =0. When <Z contains a type II primitive pair,
the function in part (a) is in many ways characteristic of functions
which are in EM(<#) but not in M(<#). In fact, when <# is generated
by a single type II primitive pair (as is the case here), we shall see
from the proof of Theorem 4.5 that we really have very little choice
in the construction of f. For the time being, however, we note that
the zero set Z,={k| f(k) =0} in part (a) is small (in fact, D(Z,) =0),
but that Z, contains all the numbers 2°, ¢ > 1.

The following theorem is an immediate consequence of the definition
of nonsingularity.

THEOREM 4.3. If f s nmonsingular with respect to <Z and if
there exists K > 0 such that either a(m, n) = 0 or B(m, n) > K provided
(m,n)e F and mn is sufficiently large, then fe EM(<#). In
particular, a nonsingular function which assumes only finitely many
values s eventually multiplicative with respect to <7 .

Theorem 4.3 imposes severe demands on f but says little about
the basic sequence <#. The next lemma, which will be most useful
in what follows, depends on the properties of both f and <#.

LEmMA 4.4. Let f be a nonsingular function with respect to
% and suppose that (m, n) e <&. If there exists a strictly increasing
sequence {a;}z, of natural numbers such that

(1) (a;, mn)e <z,

(2) fla) #0,
then f(mn) = f{m)f(n).
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Proof. We will consider two cases.

Case 1. f(a;mn) = 0 for a; = N,. Let N, be the integer given
in Lemma 2.3 and let N = max{N,, N,}. If a;, = N then

fla) f(mn) =0 ;

hence f(mn) = 0. Moreover, f(am)f(m)=0. If f(m)=+ 0, then
flam) = f(a)f(n) = 0; hence f(n) =0. Thus f(mn) =0 = f(m)f(n).

Case 2. Without loss of generality we may assume f(a;mn) == 0
for all 4. Since f is nonsingular, J(f) = 0 and f(1) =1. It follows
from Theorem 2.9 that

f(@a)f(mn)/f(amn),  flam)f@)f(amn),

and f(a;)f(m)/f(a;m) all approach 1 as 4— . Hence f(mn)/
f(m)f(n)—1 and so f(m)f(n) = f(mn).

We note from Example 4.2(a) that Lemma 4.4 is not valid if we
omit assumption (2) from the hypothesis.
As an application of the preceding lemma we now prove

THEOREM 4.5. If f is nomsingular with respect to <& and if
(p, ) € & for some prime p, then there is an integer N, such that

fm)f@") = fe™r)

provided m + n = N,. If also there is a strictly increasing sequence
{r;¥r-1 of natural numbers such that f(p7i) =0, then f(p)+* 0 and

f") = f(p)

Jor all n = 0.

Proof. Let N be the integer given in Lemma 2.3 and suppose
p=N. If f(p')=0, then f(»™)f(p") %0 for any non-negative
integers m and n such that m + » =t. Hence f(p™) =0 for any
0<m <t. We conclude that either

(i) there exists an integer N, such that f(p*) = 0 for t = N,/2, or

(i) Sf(p*) =0 for all £ =0.

If case (i) holds, then f(p™")=0= f(p™)f(»") provided
m + n = N,. On the other hand, if case (ii) holds, we may apply
Lemma 4.4 with a; = p°, from which it follows that f(p™t") =
Sf(@™) f(p) for all m =0, n = 0.

Finally, case (i) cannot hold if f(p") # 0 for arbitrarily large
values of »;. That completes the proof.
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COROLLARY 4.5.1. (@) If <& is generated by a finite set of type
II primitive pairs, then f € N(<Z) implies f e EM(<7).

(b) Suppose F is generated by an arbitrary set of type 11
primitive pairs and f € N(<#). If, for each prime p for which
(p, p) € &, there exists a strictly imcreasing sequence {r,, ;}5-, of
positive integers such that f(p™»s) = 0, then f e M(<#).

As noted earlier, the zero-set Z, will play an important part in
determining whether a function in EM(<%) is also in M(<#). Roughly
speaking, if 6(<#) is large enough, then for any (m,n)ec .<# there
will be (many) large values of ¢ for which (mn,t)e <%. Moreover,
if feEM(Z), then [f(m)f(t)= f(mit), f(n)f(t)= f(nt), and
fmn)f(t) = f(mnt)., Now if Z, 1is small enough, f(¢), f(mi),
f(nt), and f(mmnt) will be nonzero. Thus f(m), f(n), and f(mn)
will be determined by f(k) for large values of %k, and the multi-
plicative properties of f for these large values will carry over to
f(mn). (The trouble spots in Example 4.2 should now be clear.
Even though D(Z;) = 0 in part (a), <& was small enough for f(k)
to be zero for all & for which (4,k)e <. And although Z, = @ in
part (b), <& was so small then that there simply were no ¢ such that
6,0)ez,t+1).

In making the above remarks more precise, the cornerstone of our
arguments will be the easily proved

THEOREM 4.6. Suppose that [feEM(<#Z,N) and let Cy =
Il,cnpe . If there exists an integer a = N/2 such that

(1) (a,Cy)e .z,

(i) fla) =0,

then f is multiplicative with respect to <7 .

Proof. Choose m and » such that mn < N, (m,n)c.<Z. Since
J(@) =1, we may assume m > 1 and n > 1; therefore m < N/2 and
n < N/2 and we may decompose mn canonically: mn = q[igj2 - -+ ¢ir,
where each ¢; is a prime less than N/2. Thus each ¢, | C,.

Since (a, Cy) € <%, we have (a,q;,) € <%, 1 <1 < r; hence (a, mn),
(@, m), (a,n), and (am,n) are all in <. Finally, since f e EM(<#, N)
and amn > am = N, we have

fla)f(mn) = flamn) = f(am)f(n) = f(a)f(m)f(n) .

Thus f(mn) = f(m)f(n) and the proof is complete.

The following corollary and the next three theorems all depend
on Theorem 4.6. They illustrate the remarks preceding that theorem
and emphasize the importance of the relationship between Z, and =%
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COROLLARY 4.6.1. Suppose fe EM(<#,N) and, as before, let
Cy = p<yppp. Also let A={a](a,Cy)cZ}. If

(1) D(A) =46>0,

(2) Dz, <9,
then f ts multiplicative with respect to 7.

Proof. Let » = (0 — D(Z;))/3 > 0 and choose K such that z > K
implies

2O bz +p<o-n< LD

Then *A(x) — #Z,(x) > (0 —D(Z,) — 29)a = nx provided « > K. Thus
tA(x) — #Z;(x) — o as ¥ — oo, and the corollary follows.

THEOREM 4.7. Suppose f e EM(<#, N) and that

HF) =1 — Ny,
where M =[N/2] +1 and N, ts as defined in Theorem 3.7. If
Dy, o, P are the primes less than N/2, then f € M(<Z) provided
A 1

lim inf .
we  log¥(n/M) ~ Kl(log p, - -+ log pg)

Proof. Assume N =5, since otherwise EM(<#, N) and M(<%)
are identical. If (M, p) ¢ .<# for a prime p < N/2, then (q, p) ¢ <& for
some prime ¢ < M. It is a simple exercise to show that, for fixed

y = 2, the function

Flo)=1— l(xg, + l)(xa, + i) O,
2 Yy @

increases for x = 2, and it is also easy to show that
1-t0n+ ) +n<i-n,
2 X
for # = 2. Therefore, if p ++ q, the above and Remark 3.8 yield

NF)<1-— l(x,, + l)(xq + i) A,
2 Y q
<1—l(>»M+i>2+M[<1—>»M.
2 M ’

If, on the other hand, p = ¢, Theorem 3.7 gives

(F)S1L -2, <1— Ny
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In either case, 6(<#) <1 — A, which contradicts the hypothesis.
Hence (M, p) e < for every prime p < N/2 and so (M, Cy)e <#.

Suppose now that f ¢ M(<#). Then, by Theorem 4.6, f(M) =
0. If t =2 is divisible only by primes » < N/2, then, by the above,
(¢, M)e &#, and so f(tM) = f(t)f(M) = 0. Since there are

IOg X ('”// M ) K1
K!(log p, : - - log px) - Otlog™™ (n/ M)

integers ¢ < n/M divisible only by p,, ---, px, there are at least that
many integers k < n such that f(k) = 0. Therefore,

lim inf " 2:M__ > 1 ,
nes log® (n/M) K!(log p, - - - log px)

\Y

and the proof is complete.

If we know something about the structure of the basic sequence
<#, we may be able to weaken the conditions of the preceding theorem.
For instance, recalling from Example 3.1 that _# is the basic sequence
consisting of all pairs (a, b) such that a and b are relatively prime,
we have

THEOREM 4.8. If D(Z;) =0, then feEM(#) implies
feM(.#).

Proof. Suppose that fe EM(_#,N) and A ={a]|(a,Cy) e #},
with C again as given in Theorem 4.6. Then ae A if and only if @
is not divisible by any prime p < N/2. Now it is easy to show that
D(A) = [1,<npil —(1/p)} and, since D(Z;) = 0 < D(A), the conclusion
follows from Corollary 4.6.1.

THEOREM 4.9. If feEM(<#,N) and o6(<%) =1, then f is a
character.

Proof. Choose a¢ = N/2 such that f(a) + 0. By Theorem 3.9,
Z = &°; hence (a, p)e.<# for every p < N/2. It follows now from
Theorem 4.6 that f ¢ M(%).

In anticipation of its importance in connection with singular
functions, we close this section with a short discussion about a par-
ticular type of nonsingular function: An arithmetic function f will
be called a unit with respect to <& if (i) f e N(<) and (ii) there
exists an integer N such that f(k) is not zero and does not change
sign for £ = N. A unit f will be called positive or negative depend-
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ing on the sign of f(k) for large values of k.
From Lemma 2.3 we may easily prove

LEMMA 4.10. If there is an integer N such that
(1) f(k) <0 for k=N,
(2) B(f,Z) <1,
then &% = % In particular, negative units can exist only with
respect to

A straightforward application of Lemma 4.4 yields the following
useful theorem on units.

THEOREM 4.11. (a) Suppose f is a unit with respect to &
and (m,n)e .. If there is an integer a > 1 such that (a, mn) e Z,
then

(1) f(m)>0, f(n) >0,
(2) f(mn) = f(m)f(n). .
() If f is a unit with respect to <& and 6(<Z) = 1, then
(1) fk) >0 for all k,
(2) f 1s a character.
() If f ts a unit with respect to 7, then
(1) f&) >0 for all k,
(2) f is multiplicative with respect to _# .

Finally, from Corollary 4.5.1 we have

THEOREM 4.12. If <Z s generated by an arbitrary collection of
type II primitive pairs and if f is a unit with respect to Z,
then f is multiplicative with respect to 7.

5. Singular functions. We conclude this paper with a discussion
of those singular functions for which I(f, <&) exists. As the follow-
ing theorem shows, these functions are closely connected with the set
of units on 7.

THEOREM 5.1. Let an arithmetic function f and a basic sequence
Z be given. Then I(f, ) exists and 0 < |I(f, Z)| <1 if and
only if

f=Mr,

where (1) f* 1s a unit with respect to #,
(il) M>0, M+ 1.
Moreover, the decomposition f = Mf* is unique.
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Proof. The uniqueness of the decomposition described above, if
such a decomposition exists, is immediate. For suppose

0<|Kf,&Z)| <1 and f =Mf*,
where f* is a unit with respect to <#. Then
fQ)=Mf*1) =M and [f*F&) = fEk)/f(Q).

Assume now that 0 < |I(f, )| <1. We know from Lemma
2.4 that f(1) > 0 and from Theorem 2.5 that f(1) = 1. Let M =
f@) and let f*(k) = f(k)/f(1). Again by Theorem 2.5, f(k) does
not change sign for sufficiently large k& and so f*(k) has the same
property.

If &# = .7 it follows from the above that I(f*, .&°) exists and,
since f*(1) =1, f* is a unit with respect to .S

If & + &, Corollary 2.6.1 implies f(k) > 0 for all sufficiently
large k, hence I(f, <#) = (f1) - /(@) + 1). Therefore, from
Lemma 2.3, we have

fm i
fO -1, fmm) f@ -1
L TFHTT TS Fmim g DTl
F ()

whenever (m, n)e <&, mn = N(¢). Consequently, if p, is defined by
(2.3), then p,— f(1). But then if p} = f*(m,)sf*=,)f*(mmn,),
o¥ — 1. It follows from Theorem 2.9 that J(f*, <) exists. Finally,
since f*(1) =1, J(f*, &) = I(f*, &) = 0.

Conversely, suppose f = Mf*, where M >0, M # 1, f* a unit
with respect to <Z. Since f(k) does not change sign for all
sufficiently large k&, I(f,.&”) exists., By Theorem 2.5, 0 < |I(f, &) | < 1.
If & + . it follows from J(f*, &) =0 (and so f*(1) =1) and
Theorem 2.9 that of = f*(m.)f*(n,)f*(m,n,) — 1 when

(m,n)eF , m,nm, — oo , SH*mm,) #0.

But then if p, satisfies (2.3), o, = Mp¥ — M = f(1). Therefore, by
Theorem 2.9, J(f, &#) exists. Since 0 < J(f, &) < 1 (Theorem 2.5)
and since f(k) > 0 for all sufficiently large & (f* must be a positive
unit), we have with the aid of Lemma 2.3

—1 M—-1
5.2 vy T0y) = o, - .
(5.2) ay(m,, n,) 0+ 1 M+l

Thus I(f, &#) exists and 0 < | I(f, &) | < 1.
A partial analogue to Theorem 5.1 will hold when I(f, &%) = *1.
The proof is straightforward and is omitted.
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THEOREM 5.2. (a) If & =. and f(1)#0, then I(f, Z)
exists and has the value 1 if and only if f = Mf*, where f*
18 a unit with respect to &2 and M < 0. Moreover, the decomposition
18 unique.

b) If F + L and f = Mf*, where f* is a unit with respect
to & and M < 0, then I(f, <7) exists and has the value +1.

ExampLE 5.3. (a) If I(f) = +1 then f*= f/f(1) may or
may not be a unit. For example, let <& = I'((2,2)), f(1) = -1,
f(2%) = —k where £k >0,k +1,a > 0, and let f(t) be any negative
number otherwise. Then I(f*, &) does not exist. On the other
hand, let <& be arbitrary and let f(k) = —1 for all k. Then f* is
a unit with respect to 7.

b) If I(f, #F) = —1and & + .& then f(k) >0 for sufficient-
ly large & and f(1) <0. Hence (assuming f(1)<0) [f*k)=
f&)/fA) < 0 for large k and so f* can never be a unit with respect
to #.

Although, as the preceding example shows, it is not usually
possible to express a function f for which I(f) = —1 as a multiple
of a unit, we can characterize such functions in terms of the behavior

of f(m)f(n)/f(mn).

THEOREM 5.4. I(f, <Z) ewxists and has the wvalue —1 if and
only if
(1) f1) =0,
(2) there is an integer N such that
(@) f(k) >0 for k= N,
(b) f(m)f(m)|f(mn)—0 as mn— o, (m,n)eZ, m = N,
n =N,
() if 1< my< N and f(my) >0, then f(n)f(mm)—0 as
n— oo, (M, M) € F.

Proof. If I(f,<#) = —1, parts (1) and (2a) follow from Lemma
2.4. Parts (2b) and (2c) are easy consequences of part (2a) and definition
(2.1). The converse also follows readily from definition (2.1).

The following example shows that (2¢) may net be omitted from
the above.

ExaMPLE 5.5. Let <& = I'((2,3)). Define f(k)=1 if k=2,
3", or 2:3" for n = 1; f(k) = —1if k=1 or 4; f(k) = k* otherwise.
Conditions (1), (2a), and (2b) are satisfied; (2¢) is not. I(f,.<#) does
not exist.

Theorem 5.1 has an interesting application with regard to the index
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of a product of two arithmetic functions. First we need a lemma.

LEMMA 5.6. If f and g are units with respect to <&, then
fg is also a unit with respect to 7.

Proof. The lemma follows readily from Theorem 2.9.

Suppose now that either (i) f is a unit with respect to <& or
() 0<|I(f,<#)| <1. Then f(k) does not change sign for
sufficiently large k, and it is useful to define a function @ by: w(f) =
+1 if f(k) >0 for all large k¥ and w(f)= —1 if f(k) <0 for
large k.

THEOREM 5.7. Suppose that f and g are arithmetic functions
such that either f is a unit with respect to <& or 0 < |I(f, Z#)| < 1,
and similarly for g. Then I(fg, &) exists and

_ o)) + @(g)Ig)
o) =oNe) 1 he@iNie)

In particular, of & + &,

1) + 1)
9= T 1 he

Proof. The theorem is easily proved by considering the two cases
P = and & + S and, within each case, by considering the
various combinations of f and g. We illustrate one of the possi-
bilities: ;

Suppose &Z # &, 0<|I(f,<Z)| <1, and 0<|I(g,Z)|<1.
From Theorem 5.1 we know that f = Mf* and g = Kg*, where
f* and g¢* are units, M >0, M=1, K>0, K=1. Therefore
fg = MK(f*¢g*) and, by Lemma 5.6, f*g* is also a unit with respect
to &. Since

fy=M-D/M+1), ILg)=EK-D/(K+1),
and I(fg) = (MK — 1)/(MK + 1), we have
M= Q1+ I(f)A - 1))

and K = (1 + I(g))/(1 — I(g9)), and the desired relation follows if we
substitute these values in the expression for I(fg).

COROLLARY 5.7.1. Suppose & + .. IfO0<|I(f,Z) <1 and
K9, Z#) = —If, F), then fg is a unit with respect to <& .

The extension from the product of two functions to the product
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of any finite number of arithmetic functions is easily accomplished by
induction. For let o,z «--, z,] be the m-th elementary symmetric
function of the variables z,, ---,z,. That is, o4z, ---,2,] =1 and
Oy, oo, @] = Dicicociyzn @iy oo @, for 1 < m < n. Then we have

THEOREM 5.8. Let f,, fs +-+, f. be arithmetic functions such
that, for each 1 < i < n, either f; ts a unit with respect to <& or
0<|I(f: #)| <1, Also, for 0 <m < m, let

oy, = 0 JO(f)I(f), -+, o(fI(f)] .
Then I(f,+--- f,.) exists and

Ol + 0} + - + 0%
O(f) « - 0(f,) = : o
1 0y + 0 + -ee +O)

if n is even ,
of + 07 + -+ 0p
e A

if n is odd .

I(Fy+ee fo) =

@(fy) -+ o(f,)

I would like to thank Professors Michael Aissen and Hing Tong
for their valuable suggestions and Mr. Benedict Scott for programming
the computation used in Theorem 3.10 to evaluate d(_#).
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