ON INTERCHANGE GRAPHS

BENJAMIN L. SCHWARTZ
ON INTERCHANGE GRAPHS

BENJAMIN L. SCHWARTZ

The interchange graph $I(G)$ for an unoriented graph G has been defined by Ore as follows: The vertices of $I(G)$ are the edges of G; and two vertices of $I(G)$ are connected by an edge if and only if they are adjacent (i.e., have a vertex in common) in G. In 1962 Ore raised the problem of determining those graphs for which

$$I(G) = G.$$

This paper solves this problem for finite connected graphs with loops and parallel edges, extending earlier work on the problem.

A loop (an edge whose two ends coincide in a single vertex) is considered adjacent to itself, and hence generates another loop under the I mapping. If two edges of G connect the same two vertices, the corresponding vertices of $I(G)$ are also connected by two distinct edges.

A natural generalization of (1) is the problem of finding the graphs for which, for some fixed positive integer k,

$$I^k(G) = G.$$

Prior work, has shown that for graphs without loops, (1) and (2) are equivalent, and hold if and only if G is a cycle. When loops are present, the result is different and new methods are required. A typical noncycle graph satisfying (1) and (2) is a loop with a line adjoined. It is proved below that the only finite solutions to (2) are either graphs of this type or cycles.

The first step toward solving Ore's original problem [7] and its generalization seems to have been made by Anna Maria Ghirlanda [3], who solved the case in which G has no loops and no multiple edges. Menon [5], using different methods, removed the latter restriction to show that if multiple edges are admitted the same conclusion holds: viz., G must be a cycle. Harary [4] remarked in 1967 that this result "is now well known".

This paper comprehends both these earlier results and extends them to include the case of graphs with loops, for which the new answer does not appear to be so well known, (although B. Clark [2] discovered in 1964 that noncycle solutions to (1) exist). Moreover, whereas the above named earlier studies use techniques that are to some extent advanced, one of the most striking aspects of the demonstration that follows is that in extending and unifying these
earlier results, it has been possible to limit the methods entirely to
elementary procedures. At present further extensions, e.g., to oriented
and/or disconnected graphs, appear to pose a more challenging problem.
Some partial results occur in [6], but the difficulties are illustrated
by the fact that (1) and (2) are not equivalent for oriented graphs.

2. Notations. Terminology in graph theory is not standardized.
This paper will use primarily that of [1]. Upper case Latin letters
will be used for graphs, Greek for their edges and vertices, and lower
case Latin for nonnegative integers. Graphs with more than one edge
allowed between the same two vertices are called s-graphs. Figures
1 and 2 are examples of a graph and an s-graph respectively, each

![Diagram 1](image1.png)

Figure 1

![Diagram 2](image2.png)

Figure 2

with its interchange graph. A *k*-vertex of a graph means a vertex
of degree *k*, i.e., a vertex at which *k* edges meet. (By convention,
a loop contributes 1 to the degree of its vertex.) If the highest
degree vertex of a graph *G* is of degree *k*, we shall say that *G* is of
degree *k*.

For brevity the term *line* will be used to denote an elementary
path, i.e., a connected chain of edges that does not meet the same
vertex twice. The number of edges in a line will be called its *length*.
By convention, a line of length zero is an isolated vertex; and a line
of negative length is the empty graph. It is easy to show that for
length greater than 1, an equivalent definition is that a line is a tree
of degree 2.

3. Preliminaries. In this section let *G* be an arbitrary nonempty
unoriented finite connected s-graph of *m* edges.

Lemma 1. If *G* has a *p*-vertex, *α*, with *p* ≥ 3, then *I(G)* contains
a cycle generated by α. This is immediate from the definition of the I mapping.

Lemma 2. If G contains a cycle C, then $I(G)$ contains a cycle generated by C. This is also trivial from the definition of I.

Corollary 1. If G contains a cycle, then so does $I^k(G)$ for $k > 0$.

Theorem 1. If G is a tree, then $I^k(G) \neq G$ for any $k > 0$.

Proof. a. For graphs of degree 0 and 1 the assertion is trivial.

b. If G is of degree 2, it is a line of length m. By definition of the I mapping, $I^k(G)$ is a line of length $m - k \neq m$.

c. If G is of degree $p > 2$, then by Lemma 1, $I(G)$ has a cycle. By Corollary 1, $I^k(G)$ also has a cycle and hence is not a tree.

4. The main results. In this section let G be an arbitrary nonempty unoriented finite connected s-graph such that $I^k(G) = G$ for some (known, fixed) $k > 0$. Let the number of edges and vertices of $I^j(G)$ be denoted respectively m_j and n_j.

Theorem 2. $m_j = n_j$.

Proof. Since (2) is true for G, it is also true for $I^j(G)$ for all j. Hence G and $I^j(G)$ are all not trees, by Theorem 1. Now it is well known that $m_j + 1 \geq n_j$ for any graph K [1; p. 28]. But equality holds if and only if K is a tree [1; p. 152]. Hence, in the present case $m_j \geq n_j$.

But by definition of the I operation, $m_{j-1} = n_j$. Hence $\{m_j\}$ is a monotone nondecreasing sequence. But since $m_k = m_0$, we can conclude that $\{m_j\}$ is actually a constant. Hence, in particular, $m_j = m_{j-1} = n_j$.

Corollary 2. G and $I^j(G)$ each contain exactly one cycle [1; p. 29].

Theorem 3. The degree of G is ≤ 2.

Proof. Since G contains a cycle, so does $I(G)$, by Lemma 2. But if G also had a vertex of degree $p, p \geq 3$, then $I(G)$ would have another cycle, by Lemma 1, contrary to Corollary 2.

Theorem 4. If G contains no loops, then G is a cycle. This follows immediately from Theorem 3 and Corollary 2. This is Menon’s previous result [5].
Theorem 5. If G contains loops, then it contains exactly one loop and consists of that loop with a line adjoined to its (only) vertex. See Figure 3. (The line may be of length zero.)

\[\text{Figure 3} \]

Proof. A loop is a cycle. Hence by Corollary 2, there can be only one. By Theorem 3, any additional part of G can attach to the vertex of the loop by only one other edge, and all other vertices must be of degree 2 or 1. Hence the additional part can only be a line.

It follows that only graphs of the type described are eligible candidates to satisfy (2). By direct calculation, we verify that for such graphs, (1) holds, and hence (2) follows.

References

Received June 26, 1967.

Mitre Corporation
Arlington, Virginia
Leonard E. Baum and George Roger Sell, *Growth transformations for functions on manifolds* .. 211
Henry Gilbert Bray, *A note on CLT groups* .. 229
Douglas Napier Clark, *On matrices associated with generalized interpolation problems* .. 241
Richard Brian Darst and Euline Irwin Green, *On a Radon-Nikodym theorem for finitely additive set functions* .. 255
Carl Louis DeVito, *A note on Eberlein’s theorem* .. 261
P. H. Doyle, III and John Gilbert Hocking, *Proving that wild cells exist* 265
Leslie C. Glaser, *Uncountably many almost polyhedral wild (k − 2)-cells in E^k for $k \geq 4$* .. 267
Samuel Irving Goldberg, *Totally geodesic hypersurfaces of Kaehler manifolds* .. 275
Donald Goldsmith, *On the multiplicative properties of arithmetic functions* .. 283
Jack D. Gray, *Local analytic extensions of the resolvent* .. 305
Eugene Carlyle Johnsen, David Lewis Outcalt and Adil Mohamed Yaqub, *Commutativity theorems for nonassociative rings with a finite division ring homomorphic image* .. 325
André (Piotrowsky) De Korvin, *Normal expectations in von Neumann algebras* .. 333
James Donald Kuelbs, *A linear transformation theorem for analytic Feynman integrals* .. 339
W. Kuich, *Quasi-block-stochastic matrices* .. 353
Richard G. Levin, *On commutative, nonpotent archimedean semigroups* .. 365
James R. McLaughlin, *Functions represented by Rademacher series* 373
Calvin R. Putnam, *Singular integrals and positive kernels* .. 379
Harold G. Rutherford, II, *Characterizing primes in some noncommutative rings* .. 387
Benjamin L. Schwartz, *On interchange graphs* .. 393
Earl J. Taft, *A counter-example to a fixed point conjecture* .. 405
J. Roger Teller, *On abelian pseudo lattice ordered groups* .. 411