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Throughout this paper po-group will mean partially ordered
abelian group. A subgroup H of a po-group G is an o-ideal
if H is a convex, directed subgroup of G. A subgroup M of
G is a value of 0 Φ g e G if M is an o-ideal of G that is
maximal without g. Let <^€ (g) = {M Q G | M is a value of #}
and ^^*(g)= f\^st(g). Two positive elements aybeG are
pseudo disjoint (p-dis joint) if α€^C*(6) and &e^^*(α), and
G is a pseudo-lattice ordered group (pl-group) if each g e G
can be written g = a — b where a and b are ^-disjoint.

The main result of § 2 shows that every pl-group G is a
Riesz group. That is, G is semiclosed ing ^ 0 implies g ^ 0
for all #eG and all positive integers n), and G satisfies the
Riesz interpolation property; if, whenever xu , #TO, yu - - ,yn

are elements of G and #» ̂  ?/i for 1 ^ ΐ ^ m, 1 ^ i ^ n, then
there is an element 26G such that Xi ̂  z S yj.

In § 3, we determine which Riesz groups are also pi-groups. In
the^ίinal section it is shown that each pair of p-disjoint elements α, b
determines an o-ideal H(a, b) with the property that i fα — b = x — y
where x and y are also p-disjoint, then H(a, b) = H(x, y) and a — x —
b — ye H(a, b).

The concept of a pZ-group has been introduced by Conrad [1].
For each g e G, ^/f*(g) exists by definition, and in particular, ^^*(0) = G.
In § 2 we list a number of properties of pi-groups that will be used.
We adopt the notation a\\b for α ^ 6 and b g α. If S is a subset
of a po-group G and a e G, the notation a > S means a > s for all
se S. If H is an o-ideal of a po-group G, a natural order is defined
in G/H by setting X e G/H positive if X contains a positive element
of G. All quotient structures will be ordered in this manner. Finally,
G+ = {xeG\x ^ 0}.

2* Some properties of p£-grouρs* We first list a number of
properties of pi-groups. The proofs of these may be found in [1].
If G is a pZ-group, then

( 1 ) G is semiclosed.
(2 ) G is directed.
( 3 ) The intersection of o-ideals of G is an o-ideal.
( 4 ) If geG and Me^/f{g) and M' is the intersection of all

o-ideals of G that properly contain M, then g eM', M'/M is o-isomor-
phic to a naturally ordered subgroup of the real numbers and, if
M < XeG/M\M'/M, then X > M'/M.
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(5) If K is an o-ideal of G, then K and G/K are pZ-groups.
( 6) If K is an o-ideal of G and g e G\K, then there is M e ̂ /

such that M^K.
(7) If g = a — b where a and 6 are p-disjoint, then

^f(a) U ^T(6).
(8) A nonzero element geG is positive if and only if g + M>M

for all Λfe^T(flr).
(9) If a and 6 are p-dis joint and g ^ α, g ^ 6, then ng ^ a and

ng ^b for all w > 0.
(10) If α and 6 are p-dis joint, then no value of a is comparable

to a value of b.

The following set of propositions leads to the first theorem which
states that every pi-group is a Riesz group.

(2.1) Let G be a po-group and geG. If g = a — b where a and
b are p-dis joint and zeG+ such that z^g, then each value of a is
contained in a value of s, and if a ;> s, then z and ^ — cjr are p-disjoint.

Proof. Let ikf e ^f(a), then 6 e M and 2 ̂  # = a — b implies
z + b ;> α :> 0. Hence, 2 g Λf and there is I T e ̂ f (2) such that Λf'3 M.

From α ̂  2 ̂  0 it follows that if M e Λ?(z), then a£M. By the
above, Λίe^£(p) sobeM. Now a^ z^g implies a — g = b^z — g^O
so z — geM. Similarly, if Me^f(z — #), then δgΛf so M e ^ ( ί > ) ,
αeikf and hence, 2 G M . Thus, 2 and 2 — g are p-disjoint.

(2.2) If G is a po-group and g = a — b = x — y where a and b
are p-disjoint and x and 2/ are positive, then for each

there is M' e ̂ T(a;)[M' e ̂ €(y)] such that ikf'3ikί. In particular, if
x and /̂ are p-disjoint, ^f(a) — ̂ €(x), ^tfφ) — ̂ £{y) and a — x =
b - ye^f*(g).

Proof. Let geG and g — a — b — x — y where α and b are p-
disjoint and x and ?/ are positive. Since y ^ 0, we have a? ̂  ^ so for
Me ^f(a) there is, by (2.1), Mf e ̂ £{x) such that M' 2 ikf. Similarly
for J l ί e ^ δ ) . If x and ?/ are also p-disjoint then, by interchanging
the roles of a and x, y and b we obtain ^Γ(α) = ̂ £(x) and

Thus, 6,2/ G ^/T*(α) and α, a? G ^^*(6) so

a - x = b - ye ^ T *(α) Π

which is equal to ^€^*(g) by property (7).
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(2.3) Suppose G is a pί-group, geG, g = a — b where a and b
are p-disjoint and zeG+ such that z^g. If ikf e ^C(α — z), then
either Me ^/έ(z) and z + ikf>α + ikforikf is properly contained in
a value of α.

Proof. If J l ί G y / ( α - 4 then by (4),

a + M> z + M or α + ikf < 2 + ikf.

For Me^fέiz) and Λf £ ^ ( α ) , it follows that z + M> M and, from
(2.1), that a e M. Hence, z + M>M=a + M. For Me ^t(z) and
Me Λf(a), we have α + i l f = # + ikf^2-i-ikf so a + M < z + M.
Now if I ί ^ ( 4 then a$M so there is M ' e ^ ( α ) such that
ikf' 3 M. If ikf' = ikf, then M is properly contained in ikf" e ^£(z) so a
and α — 2 are in ikf" and z e l " , a contradiction. Thus ikf' properly
contains M.

LEMMA 2.1. If G is a pl-group, geG and zeG+ such that z 7> g,
then there is xeG+ such that z >̂ x and xf x — g are p-disjoint.
Moreover, if g = a — 6, wiίfe α α^ώ 6 p-disjoint, then there exists
such an x with a ^ x.

Proof. Let G be a pl-group and geG. Then g — a — b where
α and 6 are p-disjoint. If z e G+ and g ^ z, take # = a if 2 >̂ α; and
take x — z if z < a. The result follows from (2.1).

If z — a II 0, then z — a — p — q where p and g are p-disjoint.
We first show ^T(g) = {Me ^£{z - a)\z + M<a + M}. Let Me ^T(g),
then ilί G ̂ #(2; — α) and (« — a) + M= — q + M < Λf so z + ikf < α + M.
Conversely, if M e ^/f(z — a) and z + ikf < a + M, then ikf 6 ^^(p) or
Me ^f(q). If Me ^/Γ(p), then g e l s o ( ^ - α ) + ikf=p + M > i l ί .
This implies z + ikΓ>α + ikf, a contradiction. Thus, ikfG^^(g).

Now let x — a — q = z — pf then x < a and a? < 2. If Me ^€(x),
then g e M. For if g £ ikf, then ikf g M' e Λf{q), M' e ^€(z - a) and
z + ikf' < a + ikf'. By (2.3), ikf' is properly contained in ikf" e ^ f(α).
Thus, x e M", q e M" so a e ikf" a contradiction. Therefore, qe M and
hence α ί M. We now have ikf^α + ikf^a + g + Λfso ikf<α + ikf =
x + M for all Me ^ ( α ) . By (8), α ^ 0.

To complete the proof we need only show x ^ g, for then the
result follows by (2.1). To accomplish this we show (b — g) + M > ikf
for all Me ^T(δ - g). Thus, let ikf e ^€{b - g). / / ikf e ^T(g), then
ikf 6 ^/έ{z - α) and z + If < a + M, so 6 g Λf. By (2.3) and (10) there
must exist If' e ^t€φ) such that ikf' properly contains ikf. But ikf'
properly containing ikf implies b — q, q and hence b e ikf', a contradiction.
Thus, Λf^^T(g).

Now since b£ ikf, there is ikf"e^#(6) such that ikf" =2 ikf. If
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M" Φ M, then b-qeM" so M" < b + M" = q + M" and q £ M".
By (2.3), every value of q is contained in a value of a so JM7' is con-
tained in a value of α, a contradiction. Thus Λf" = Me^fφ), and
as above, it follows that qeM. Consequently, b — q + M = b + M> M
so by (8), b > q and α? > g. This completes the proof.

With Lemma 2.1 we are now able to prove the following.

THEOREM 2.1. Every pi-group is a Riesz group.

Proof. Since by (1), a pϊ-group is semiclosed, we need only show
a pZ-group G satisfies the Riesz interpolation property. Without loss
of generality, we may assume, g,u, zeG and u >̂ 0, z ^ 0, u ^ #, s ^ # .
There exists, by Lemma 2.1, an element aeG+ such that w Ξ> <z with
a,a — g ^-disjoint. Also, there is x e G+ such that a ^ x, z >̂ a; with
α;, a? — r̂ p-disjoint. Hence, % ; > # ; > 0, 2 ^ # ^ # and G is a Riesz
group.

We note that the above theorem and Theorem 4.8 in [1] answer
affirmitively the open question posed at the end of [2].

3* Sufficient conditions for pseudo-lattice ordering* As a
consequence of §2 we have that every pi-group G is a Riesz group
that satisfies

(*) for each g e G, there is aeG+ such that g ^ a and whenever
0 <; xf g ^ x then a ^x + h for some h e ^/ί*(a) Π ̂ # * ( α — #).

To see this let g eG, then # can be written g = α — & where α
and 6 are p-disjoint, so aeG+ and g ^ a. lΐ xeG+ and # ^ # , then,
since G is a Riesz group, there is u e G such that a ^ u ^ 0 and
# ^ u ^ #. By (2.1), u and u — g are p-disjoint and by (2.2) and (7),
a — ue^€*(a) Π ̂ ^ * ( α — #). By setting a — u = h we have u =
a — h^ox^u — a — h which implies α? + h ^ α.

In this section we show that every Riesz group that satisfies (*)
is a pϊ-group. For the remainder of this section we assume G is a
Riesz group that satisfies (*).

LEMMA 3.1. The intersection of o-ίdeals of G is again an o-ideal.

Proof. Let Ma, aeJbe o-ideals of G and M = Π«ejMa. Clearly,
M is a convex subgroup of G. To show M is directed let g eM. By
(*) there is a e G such that 0 ^ α, g ^ α. Now for each aeJ,Ma is
directed so Λfα is a Riesz group. Thus, there are elements ya e May

xaeG such that ya ^ 0, ya ^ g, a ^ xa ^ g and ya^ ^a^ 0. Thus,
α?β e Λfα and α ^ a;α + ha for some fcα e ^ ^ * ( α ) Π ̂ #^*(α — gr).

Now α?α 6 Mα and xa + ha^z a^> xa implies a — xae ^<€*{a). Thus,
if a$Ma then there is M' e ^f(a) such that Mf 2 Mα. But then xa,
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a — xa and hence αeikF, a contradiction. Thus aeMa for all a, M
is directed and M is an o-ideal of G.

We note that in the above we have proved that if a satisfies (*)
for g and α :> $ ^ 0, x ^ g then a — x e ^/t*(a) Π ̂ f *(α — g).

LEMMA 3.2. // M is an o-ideal of G, then M and G/M are Riesz
groups satisfying (*).

Proof. If M is an o-ideal of G, then M and G/M are Riesz groups
by [2, p. 1393]. If g e M, then let α e G such that a satisfies (*) for
g. There then are elements m e M+ and xeG such that rn ̂  g,
a ^ x ^ # and m Ξ> $ ^ 0, which implies x e M and a — xe ^t*(a).
As a consequence of this latter part, aeM. Now if Q ̂  y e M and
# <: 2/ then there is u e M such that y^u^0,a^u^>g. Thus, by
the remark preceding this lemma, u = a + h where

fce.#*(α)n^f*(α- g)

and hence u — a = he M. By Lemma 3.1, every o-ideal ikί' of M
that is maximal without a [a — g] can be written M'=- M Γ) M where
I e ^ f ( α ) [ Ϊ G y / ( α - g)]. Thus, it follows that h belongs to every
value of a and every value of a — g in M and M satisfies (*).

Now let g + Me G/M, and let α e G such that a satisfies (*) for
g. Then a + M^ M and a + M ̂  g + ikf. If ikfgα + M e G/ikf
and # + M ^ ^ + M, then there are elements m1,m2eM such that
ff + Wi ̂  0 and a; + m2 ̂  β'. Since M is directed, there i smeJl ί such that
m ^ m2, m ̂  m2.

By (*), a^(x + m) + h so a + M^(x + M) + (h + M) where

Λ G ^ r * ( α ) Π ^ ^ * ( α - g) .

Now let X be a value of a + M in G/ikf. Then X = M'/M where
M ; is an o-ideal of G and α ί ikf'. It follows that JkP e ^T(α) so fteM'
and h -\~ MeX. In a similar manner, h + M belongs to every value
of (α — g) + M in G/ikί. The proof is complete.

LEMMA 3.3. Let H be the intersection of all nonzero o-ideals of
G. // x e H+, g e G\H and g < x, then g < 0.

Proof. Suppose H is the intersection of all nonzero o-ideals of G.
If xeH+, ge G\H and g < x, then a £ x + h where a satisfies (*) for
g and h e ^t*{a) Π ̂ * ( α - g). If α ̂ 0 and Me ^T(α), then M Φ 0
so HQM and x + he M. This implies α € ikΓ since O ^ α ^ α + fe, a
contradiction. Thus, a = 0 and (/ < 0.
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COROLLARY. // H is the intersection of all nonzero o-ideals of
G, then every positive element of G\H exceeds every element of H.

Proof. Let 0 < geG\H and he H. By Lemma 3.1, H is an o-
ideal of G so there is h' e H+ such that h' ^ h. Now h' - ge G\H
and hr — g < h' so hf — g < 0, h ^hr < g and the corollary follows.

As a final observation before we turn to the main proof of this
section, we note that if G has no proper o-ideals then G is a subgroup
of the naturally ordered real numbers. This is a special case of 4.6
in [1].

THEOREM 3.1. A Riesz group G is a pl-group if and only if G
satisfies.

(*) for each g e G, there is aeG+ such that g ^ a and whenever
0 ίg x, g ^ x then a ^ x + h for some h e ^C*(α) Π ̂ €*{a — g).

Proof. Let g e G and a satisfy (*) for g. We show a and a — g
are p-disjoint. If a — 0 or a — g, the result easily follows so we
assume flr||0. Let Jlίey/(α) and let M' be the intersection of all
o-ideals of G that properly contain M. Then Mr is an o-ideal of G,
aeM', M'jM is o-isomorphic to a subgroup of the naturally ordered
real numbers and if M < Xe (G/M)\(M'/M), then X > M'/M.

If (α — g) + M ^ a + M, then there is m e M+ such that a — g +
m ^ α, so m Ξ> #. By (*), 0 < α ^ m + /& where fe 6 ^^*(α) Π
^T*(α - g) .
Thus, m + heM and αeJIί, a contradiction. Since (a — g) + M is
comparable to a + M, we must have (α — #) + M < α + M, so there
is m e M such that α > (a — g) + m. Let ml eM such that m' < m,
m' < 0, then g - mf > g and g - m' > 0. Thus, by (*), α g (̂  - m') + Λ'
where λ' e ^€*{a) Π ̂ ^ ( α -fir), and 0 < a - g ^ - m ' l ^ e l . By
convexity a — g e M so a — g e ^J?*(a).

By interchanging the roles of a and a — g in the above we are
led to the conclusion that a + M < (α - g) + M where Λf e ^ ( α — #).
There then is m e M+ such that a < (α — #) + m so # < m. As always,
α ^ m + h with & e ^f*(α) Π ̂ ^*(α — ̂ r) so α e ikί. Thus, a and α — βr
are p-disjoint and G is a p£-group.

The necessity follows from the remarks at the beginning of this
section.

4* Pseudo-disjoint elements* Throughout this section we assume
G is a pί-group. We have shown if g e G and g = a — b = x — y
where α, b and x, y are pairs of p-disjoint elements then

a - x = b - ye ^€*(CL) Π
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However, the converse of this is not true. For if K = Rλ + R2 + R3

(the cardinal sum) where each R{ is the real numbers, i = 1, 2, 3;
then K is an i-group so, of course, a pϊ-group. Clearly, (1, —1, 0) =
(1, 0, 0) - (0,1, 0) where (1, 0, 0), (0,1, 0) are p-disjoint. Now (1, 0, 0)
has exactly one value namely M1 = R2 + R3 and (0,1, 0) has the value
M2 = R, + Rz. Thus, Rz = M1 Π M2 and if 0 Φ h e R3 it is clear that
(1, 0, 0) + (0, 0, h) = (1, 0, h) and (0,1, 0) + (0, 0, h) = (0,1, h) are not
p-disjoint but (1, - 1 , 0) = (1, 0, h) - (0,1, h).

We now show how pairs of ^-disjoint elements α, b and x, y are
related, when g — a — b — x — y. Assume a and b are p-disjoint and
let K = {0 ^ m G G \ m ^ α, m ^ 6}. Clearly, if is convex. If mu m2 e iί,
then by the Riesz interpolation property, there is an element meG
such that m1 ^ m ^ α and m2 ^ m ^ b. Moreover, 2m ^ mi + m2 ^ 0
and by (9), 2m ^ α, 2m ^ b since α and 6 are p-disjoint. Thus, 2m e K
so mt + m2 G K and if is a convex subsemigroup of G+ that contains 0.
Let H be the o-ideal of G that is generated by K. It is well known
that H+ — K and any xe Hcan be written x = h1 — h2 where hu h2e K.
Thus H < a and H < b. We denote by jBΓ(α, δ) the o-ideal generated
by {0 ^ m G (J I m ^ α, m ^ 5} for p-disjoint elements α, δ.

LEMMA 4.1. // a and b are p-disjoint and me H(a,b),
+ m) and ^f(b) = <^f(b + m).

Proof. We first consider O ^ m e if(α, 6). Since a ^ α — m ^ 0
and a — m^a — b (2.1) implies a — m and b — m are p-disjoint, so
^T(α) = ^T(α - m), ^T(6) = ^^(6 - m) by (2.2).

If M e ^€{a + m), then α — m $ M so there is Λί' 2 Λf such that
M'G^^(α — m) = ^//{a). Since 0^m<:&GikΓ, meM' so M =
M' G ̂ ^(a) . Conversely, if M G ^ί€(a) then 0 ̂  m ^ 6 G ikί implies meM
so α + m ί ikί and Λf e ^ ^ ( α + m). Hence, ^(a) — ̂ £{a + m).
Similarly, ^T(6) = ^ ( 6 + m).

For an arbitrary element m G H(a, b) there are elements mu

m2 G ίί(α, &) such that m1 ^ 0 and mx ^ m, 0 ^ m2 ^ α, m ^ m2 ^ b.
Hence, O ^ α + m i ^ α + m and 0 ^ α + m ^ α + m2. By the above,
^(a) = ̂ €(a + m^ = ^ " ( α + m2). If Me ^S(a + m), then α + m 2 ί l
so Me^(a + m2) = ^€(a). Conversely, if Me^(a), then meM
and M" G ^ ^ ( α + mj so a + m ί l and Me ^ ^ ( α + m). Thus, for
any me H (a,b), ^f(a) — ̂ £(a + m). In a similar manner

We note at this point that if 0 ^ m G H(a, δ), then 0 ^ m ^ α
implies m e ^^*(6) and 0 ^ m ^ 6 implies m G ̂ ^*(α). Consequently,
H(a, b) c ^ T *(α) ΓΊ

LEMMA 4.2. If a and b are p-dίsjoint in G, then a + m
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b + m are p-disjoint if and only if me H(a, δ).

Proof. Let a and δ be p-dis joint and meH(a, δ), since
^/έ(a + m), δ, m and hence 6 + m G ^J?*(a + m). Dually, α +
m G ^C*(δ + m) so α 4- m and δ + m are p-disjoint.

Conversely, if a + m and δ + m are p-dis joint, then α ^ — m,
δ ^ — m so there is feeG such that α ^ /& ^ 0 and δ ^ h ^ — m.
This implies heH(a, b). Since ^ ( α ) = ^ ( α + m) and ^ ( δ ) =
^t(b + m) we have m e ^ * ( α ) ί l ^ f * ( ί ) ) . Now if ik fG^(α — m)
and α + m G ikf, then agM, so Jlίe ^f/(a) = ^ # ( α + m) and α + m ί l ,
a contradiction. Thus, α + mίJ l ί so ildΓ G ^/ί{a + m) = ^?(a), α £ itf,
5 G Λf. Therefore ilί < α + ikί = (a - m) + M. By (8), α - m > 0.
A similar argument shows b > m. Finally, by the Riesz interpolation
property, there is an element W e G such that a ^ h! ^ 0 and b^h'^tm.
Thus, &' G ίί(α, 6) and we have fe'^m^— h so me H(a, 6).

COROLLARY. // α α^d & are p-disjoint in G, £/&ew a A b = 0
f iϊί^, δ) = 0.

As a consequence of Lemma 4.2 we can associate with g — a — δ,
α and δ p-disjoint, the o-ideal H(a, δ). Moreover, ίί(α, δ) depends
only on g and is independent of the representation of g as the difference
of p-disjoint elements. To show this, let g = x — y where x and y
are also p-disjoint. Then by (2.2) ^//(a) = ^/ί(x) and ^ ( δ ) = ^%(y).
If 0 ^ fc G iJ(£, 2/) then k e ^€*(a) n ^ * ( δ ) and α + fc, δ + A are p-
disjoint so keH(a,b) and H(x,y)ξΞ:H(a,b). Dually, we can show
H(a, δ) c ίί(a;, y) so Jϊ(α, δ) = H(x, y).

Using the above we can easily show a pZ-group G satisfies
(**) for each g e (?, there is a e G+ such that g ^ a and whenever

0 <; x, and # ^ x, then α ^ a; + h for some Λ e H(a, a — g).
To see this, let g e G and a satisfy (*) for g. If 0 ^ x, g ^ α?

there is 2 G G such that a^ z ^> 0 and a? ̂  2 ^ ^ since every pϊ-group
is a Riesz group. By (2.1), z and z — g are p-disjoint and since a =
z + (a — z) and α — g = (z — g) + (α — 2) we have a — zeH(z, z — g) =

£Γ(α, α — #). Therefore, a? J> z = a — (α — z) so # + (a — 2) ^ α.
We have shown, that in a pϊ-group G, ίί(α, δ) is the o-ideal

generated by K = {0 <£ m G G | m ^ α, m ^ δ} for α and δ p-disjoint,
and H{a, b)+ = K. If we now let H(x, y) be the o-ideal generated by
K={0^meG\m^x,m^y} for arbitrary positive elements x and
y, it may happen that H(x, y)+ Φ K and the following example shows
(**) is not sufficient for a Riesz group G to be a pϊ-group.

Let R be the naturally ordered real numbers and G = R + R.
Let (u, v)eG be positive if v > 0 or v = 0 and w = 0. Then G is a
Riesz group but G is not a pZ-group. If g = (̂ L, ^2) G G and ^2 > 0
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let a = g; if g2 < 0 let a = 0. In either case H(a, a — g) = 0 and a
satisfies (**) for g. If g2 •=• 0 and gt = 0 take a = 0. If #2 = 0 and
0! =£ 0 let a — (aίy α2) where α2 > 0. Then α > 0, a> g and
H(α, a- g) = G. For any δ = (6^ δ2) ^ (0, 0) and (6X, b2) ^ (^, r̂2) we
must have b2 > 0. If A = (0, α2), then (au α2) < (6^ b2) + (0, α2) and
h e H(a, a - g). Thus (**) holds.
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